
September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

FASTCHI: AN EFFICIENT ALGORITHM FOR ANALYZING
GENE-GENE INTERACTIONS

XIANG ZHANG 1, FEI ZOU 2 AND WEI WANG 1

1Department of Computer Science, 2Department of Biostatistics
University of North Carolina at Chapel Hill

Recent advances in high-throughput genotyping have inspired increasing research
interests in genome-wide association study for diseases. To understand underlying
biological mechanisms of many diseases, we need to consider simultaneously the ge-
netic effects across multiple loci. The large number of SNPs often makes multilocus
association study very computationally challenging because it needs to explicitly
enumerate all possible SNP combinations at the genome-wide scale. Moreover,
with the large number of SNPs correlated, permutation procedure is often needed
for properly controlling family-wise error rates. This makes the problem even more
computationally demanding, since the test procedure needs to be repeated for each
permuted data. In this paper, we present FastChi, an exhaustive yet efficient algo-
rithm for genome-wide two-locus chi-square test. FastChi utilizes an upper bound
of the two-locus chi-square test, which can be expressed as the sum of two terms –
both are efficient to compute: the first term is based on the single-locus chi-square
test for the given phenotype; and the second term only depends on the genotypes
and is independent of the phenotype. This upper bound enables the algorithm to
only perform the two-locus chi-square test on a small number of candidate SNP
pairs without the risk of missing any significant ones. Since the second part of the
upper bound only needs to be precomputed once and stored for subsequence uses,
the advantage is more prominent in large permutation tests. Extensive experimen-
tal results demonstrate that our method is an order of magnitude faster than the
brute force alternative.

1. Introduction

Disease association study analyzes genetic variation across a population
consisting of diseased and healthy individuals. The most abundant source of
genetic variation in mammalian genome is represented by single nucleotide
polymorphisms (SNPs), which account for heritable inter-individual differ-
ences in complex phenotypes. The allele differences at these single base sites
are usually represented as binary variables (e.g. inbred mice) or ternary
variables (e.g. human subjects). Recent advancement of the technologies
that enable genotyping a vast number of genetic polymorphism has made

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

genome wide association study possible. Initial reports on genome-wide
searching for disease associated genes are appearing in the literature 6,10,15.

Most existing analytical methods consider each genetic marker individ-
ually 20. In many cases, however, the diseases are complex traits, that
is, they are likely due to the interactions among multiple genes 2,17. In
order to understand their underlying biological mechanisms, we need to
consider simultaneously the joint effects of genotypes across multiple loci.
Various machine learning models have been adopted to study the inter-
actions among genes, such as neural networks 3,18 and classification and
regression trees (CART)12,22. Under the assumption that the number of
SNPs is small, exhaustive algorithms that explicitly enumerate all possible
SNP combinations have been developed 7,13. Since these methods explic-
itly enumerate all possible SNP combinations, they are not suitable for
genome-wide association studies.

The number of SNPs in public datasets ranges from thousands to hun-
dreds of thousands1,21. The computational burden of searching for interac-
tions among the large number of SNPs often makes the complete genome
wide association study intractable. SNP tagging 5,16 have been widely used
to reduce the number of SNPs to be analyzed. The goal of SNP tagging
is to select a subset of SNPs that can be used as proxies for all SNPs
in the genome. The tagged SNPs are then used in the association study.
These methods are not complete because some important SNPs may not
be tagged.

The computational challenge of genome-wide association study is also
caused by another problem known as multiple testing problem. It can be
described as the potential increase in Type I error when statistical tests
are performed multiple times. Let α be the significant level for each inde-
pendent test. If n independent comparisons are performed, the family-wise
error α′ is given by α′ = 1− (1−α)n. For example, if α = 0.05 and we test
twenty null hypotheses, then we have probability α′ = 1 − 0.9520 = 0.64
to get at least one spurious result. Permutation testing has been the gold
standard for assessing significance levels in association studies using multi-
ple markers. However, it is time consuming since the test procedure needs
to be repeated for every permutation. To make this process feasible, other
correction methods have been proposed 8,9. Some recent work 23 addresses
the problem of two-locus quantitative phenotype association mapping when
large permutation tests are needed. However, this method focuses on the
case where the phenotypes are continuous variables, hence is not readily
applicable to case-control study of diseases.

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

Theoretically well studied, the chi-square test has been widely used in
association studies 11. In this paper, we examine the computational as-

pect of the chi-square test. We present an efficient algorithm, FastChi, and
show that the standard chi-square test can be applied in the genome-wide
scale for two-locus association study even when large permutation tests
are performed. Different from the algorithms applying heuristics, tagging
SNPs, or adopting other correction methods, FastChi is an exhaustive al-
gorithm. It guarantees to find the optimal solution. Yet, FastChi does
not need to explicitly compute the chi-square value for every SNP pair. It
utilizes an upper bound of the two-locus chi-square test value, which is the
sum of two terms: one based on the single-locus chi-square test, and the
other based on the pair-wise SNP genotypes. Using this bound, a large
portion of the SNP-pairs are pruned without performing the tests. Due to
space limitation, in this paper, we mainly focus on the case where the SNPs
are binary variables which are encoded using {0, 1}. We also have similar
results for the case where the SNPs are ternary variables, which will be
discussed in Section 5.

2. Problem Definition

Let {X1, X2, · · · , XN} be the set of all biallelic SNPs , and Y be the binary
phenotype of interest (e.g., disease or non-disease). For any SNP Xi (1 ≤
i ≤ N), we represent its chi-square test value with Y as χ2(Xi, Y). For any
SNP-pair Xi and Xj , the chi-square test value is denoted as χ2(XiXj , Y).
We formalize the problem as follows. Given the set of N SNPs and a
phenotype Y for a set of M individuals, let Y ′ = {Y1, Y2, · · · , YK} be the
set of K permutations of Y . There are two possible cases:

(1) For a single pass association study, i.e., no permutation correction
needed: find all SNP-pairs (XiXj) such that χ2(XiXj , Y) ≥ θ.

(2) If there are multiple phenotype permutations: for each Yk ∈ Y ′, find
all SNP-pairs (XiXj) such that χ2(XiXj , Yk) ≥ θ, (1 ≤ k ≤ K).

Our problem formalization can also be applied in other problem settings.
For example, it is easy to modify this problem definition to find the top-k
SNP-pairs that have the largest chi-square test values among all SNP-pairs.
In this scenario, θ would be a dynamic value, i.e., the k-th largest chi-square
test value identified by the algorithm so far.
3. The FastChi Algorithm

We first present the upper bound of the two-locus chi-square test value in
Section 3.1. Then we show how our algorithm FastChi utilizes the upper
bound to achieve efficient two-locus chi-square testing. In Section 3.2, we

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

Table 1. Notations used in the upper bound

Symbols Formulas

T1
M2

(OA + OB)(OA + OC)(OC + OD)
S1 max{O2

A, O2
C}

R1 min{
[

OXj=1

OXj=0
|Xi = 0

]
,

[
OXj=0

OXj=1
|Xi = 0

]
}

T2
M2

(OA + OB)(OB + OD)(OC + OD)
S2 max{O2

B , O2
D}

R2 min{
[

OXj=1

OXj=0
|Xi = 1

]
,

[
OXj=0

OXj=1
|Xi = 1

]
}

describe the method for a single phenotype Y . In Section 3.3, we discuss
how FastChi performs under permutation procedure.

3.1. The Upper Bound

Let A,B, C, D represent the following events respectively: Y = 0∧Xi = 0;
Y = 0 ∧Xi = 1; Y = 1 ∧Xi = 0; Y = 1 ∧Xi = 1. Let Eevent and Oevent

denote the expected value and observed value of an event. T1, T2, S1, S2,
R1, and R2 represent the formulas shown in Table 1. We have the upper
bound of χ2(XiXj , Y) stated in Theorem 3.1. The derivation of the upper
bound is omitted due to space limitation.
Theorem 3.1. (Upper bound of χ2(XiXj , Y))

χ2(XiXj , Y) ≤ χ2(Xi, Y) + T1S1R1 + T2S2R2.

3.2. A Single Phenotype

It is obvious that, if the upper bound of χ2(XiXj , Y) is less than θ, there
is no need to calculate the exact value of χ2(XiXj , Y), which is guaranteed
to be smaller than θ. We now discuss this idea in further detail.

For every Xi (1 ≤ i ≤ N), let AP (Xi) = {(XiXj)|i+1 ≤ j ≤ N} be the
SNP-pairs with Xi being the SNP of lower index value. For all SNP-pairs in
AP (Xi), the phenotype Y and SNP Xi do not vary, thus OA, OB , OC and
OD are constants for all SNP-pairs in AP (Xi). The number of individuals,
M , is also a constant. Thus, in the upper bound, T1S1 and T2S2 are
constants. Moreover, χ2(Xi, Y) is a constant for a given Xi, and θ is given
too. Therefore, R1 and R2 are the only variables that depend on Xj and
may vary for different SNP-pairs (XiXj) ∈ AP (Xi). Thus for a given Xi,
we can treat equation χ2(Xi, Y) + T1S1R1 + T2S2R2 = θ as a straight line
in the 2-D space of R1 and R2.

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

(a) Pruning SNP-pairs in AP (Xi) (b) Candidate retrieval from Array(Xi)

Figure 1. Applying the upper bound

From now on, we use R1(XiXj) and R2(XiXj) to represent the specific
values of R1 and R2 for the SNP-pair (XiXj). The following proposition
specifies the values that R1(XiXj) and R2(XiXj) can take.

Proposition 3.1. If there are m 0’s and (M − m) 1’s in Xi, then for
any (XiXj) ∈ AP (Xi), the possible values that R1(XiXj) can take are:
{ 0

m , 1
m−1 , 2

m−2 , · · · , bm/2c
dm/2e}. The possible values that R2(XiXj) can take

are: { 0
M−m , 1

M−m−1 , 2
M−m−2 , · · · , b(M−m)/2c

d(M−m)/2e}.
Therefore, for all (XiXj) ∈ AP (Xi), in the 2-D space of R1 and R2,

(R1(XiXj), R2(XiXj)) falls in the region [0, 1]×[0, 1]. The line χ2(Xi, Y)+
T1S1R1 + T2S2R2 = θ divides this region into two parts: one above the
line and one below it. Among the SNP-pairs in AP (Xi), we only need to
perform the test for those ones whose (R1(XiXj),R2(XiXj)) values are
above the line, i.e., whose upper bounds are greater than the threshold θ.
We refer to such SNP-pairs as candidate SNP-pairs.

Example 3.1. Suppose that there are 32 individuals, half alleles of Xi are
0’s, and half are 1’s. Thus, for the SNP-pairs in AP (Xi), the possible values
of R1(XiXj) (and R2(XiXj)) are { 0

16 , 1
15 , 2

14 , 3
13 , 4

12 , 5
11 , 6

10 , 7
9 , 8

8}. Figure
1(a) shows the 2-D space of R1 and R2. The blue stars represent the values
that (R1(XiXj),R2(XiXj)) can take. The line χ2(Xi, Y) + T1S1R1 +
T2S2R2 = θ is also plotted in the figure. The candidate SNP-pairs are
those whose (R1(XiXj), R2(XiXj)) values are in the shaded region. The
ones whose (R1(XiXj), R2(XiXj)) values fall below the line can be pruned
without any further test.

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

To efficiently retrieve the candidates, SNP-pairs (XiXj) in AP (Xi) are
grouped by their (R1(XiXj),R2(XiXj)) values and indexed in a 2D array,
referred to as Array(Xi).

Example 3.2. Following Example 3.1, Figure 1(b) shows the 9 ×
9 array, Array(Xi), whose entries represent the possible values of
(R1(XiXj), R2(XiXj)) for SNP-pairs (XiXj) ∈ AP (Xi). The R1(XiXj)
(R2(XiXj)) value of each column (row) is noted beneath (left to) each col-
umn (row). Each entry of the array is a pointer to the SNP-pairs having
the corresponding (R1(XiXj), R2(XiXj)) values.

In order to find the candidates SNP-pairs whose upper bounds are
greater than θ, we start from the right most column of the array, i.e.,
the entries having the largest R1(XiXj) value. We scan this column from
the top (entries with larger R2(XiXj) values) towards the bottom (en-
tries with smaller R2(XiXj) values). If an entry satisfies the inequality
χ2(Xi, Y)+T1S1R1+T2S2R2 ≥ θ, then the SNP-pairs indexed by it are the
candidates subject to the chi-square tests. Once we reach an entry violating
the inequality, we stop searching the current column, since the remaining
entries in the column will not satisfy the inequality. We then move to the
top entry of the column left to it and repeat the same scanning process.
This whole process terminates when (1) we finish examining all columns or
(2) we reach a column whose top entry does not satisfy the inequality.

Example 3.3. Continuing with Examples 3.1 and 3.2, the entries num-
bered from 1 to 14 in Figure 1(b) are the ones visited by the scanning
process. The numbers show the order in which the entries are visited.
Only the SNP-pairs indexed by shaded entries need to be evaluated by chi-
square tests. The SNP-pairs indexed by the blank entries, including the
entries on the boundary can be safely pruned.

3.3. Permuting the Phenotype

Let Y ′ = {Y1, Y2, · · · , YK} be the K permutations of the phenotype Y .
The upper bound in Theorem 3.1 can be easily incorporated in the al-
gorithm to handle the permutations: For any (XiXj) ∈ AP (Xi), its
(R1(XiXj), R2(XiXj)) value does not change over different permutations.
That is, for every SNP Xi, the indexing structure Array(Xi) is independent
of permutations in Y ′. Thus, for each Xi, once we get Array(Xi), it can
be reused in all permutations.

The FastChi algorithm is described in Algorithm 1. For each Xi,
FastChi first indexes (XiXj) ∈ AP (Xi) using Array(Xi). Then it finds

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

Algorithm 1: FastChi
Input: SNPs X′ = {X1, X2, · · · , XN}, phenotype permutations

Y ′ = {Y1, Y2, · · · , YK}, and input parameter θ
Output: for every Yk ∈ Y ′, find the set of SNP-pairs

Result(Yk) = {(XiXj)|χ2(XiXj , Yk) ≥ θ, 1 ≤ i < j ≤ N}
for every Xi ∈ X′, do

index (XiXj) ∈ AP (Xi) by Array(Xi);
for every Yk ∈ Y ′, do

access Array(Xi) to find the candidate SNP-pairs and store them in
Cand(Xi, Yk);
for every (XiXj) ∈ Cand(Xi, Yk) do

if χ2(XiXj , Yk) ≥ θ then
Result(Yk) ← (XiXj);

end

end

end

end
Return Result(Yk) for all Yk ∈ Y ′.

the set of candidate SNP-pairs Cand(Xi, Yk) by accessing Array(Xi) for
every phenotype permutation Yk. The candidates in Cand(Xi, Yk) are then
evaluated for their chi-square test values. The candidates whose chi-square
test values are greater than or equal to θ are reported by the algorithm.

Time complexity: The complexity to build the indexing structure for
all SNPs is O(N2M). The worst case for accessing all Array(Xi) for all per-
mutations is O(KNM2). Let C =

∑
i,k |Cand(Xi, Yk)| be the total number

of candidates. The time complexity of FastChi is O(N2M +KNM2+CM).
Note that the time complexity of the brute force approach is O(KN2M).
The number of SNPs N is the dominant factor here. Space complex-
ity: The dataset size is O((N + K)M). The size of the Array(Xi) is
O(M2 +N). For each Xi, once the evaluation process is over for all permu-
tations, Array(Xi) can be cleared from the memory. Therefore, the space
complexity of FastChi is O((N + K)M) + O(M2 + N). Since M is usually
much smaller than N , this space complexity is linear to the dataset size.

4. Experimental Results

We present extensive experimental results on evaluating the performance of
FastChi. FastChi is implemented in C++. The experiments are performed
on a 2.4 GHz PC with 1G memory running WindowsXP system.

The SNP dataset used in the experiments is extracted from a set of
combined SNPs from the 140k Broad/MIT mouse dataset 21 and 10k GNF 1

mouse dataset. This merged dataset has 156,525 SNPs for 71 mouse strains.

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

20 22 24 26 28 30 32
0

50

100

150

200

chi-square test value

fr
eq

ue
nc

y

Figure 2. Distribution of the maximum chi-square test values

The missing values in the dataset are imputed using NPUTE 14. The
default setting of the experiments are as follows: the phenotypes are random
permutations of binary variable with half 0’s and half 1’s, #individuals =
32, #SNPs=8k, #permutations=20. There are 60,970 unique SNPs for
these 32 mice strains. To find the appropriate threshold value, we permute
the phenotypes 1000 times. Figure 2 shows the distribution of the maximum
chi-square test values of the 1000 permutations. Using a critical significance
level of 1%, we set the default threshold value of θ to be 32.

Note that these experimental settings are chosen to demonstrate the
performance gain and enhanced scalability offered by FastChi over the brute
force approach. In real utility, one may use larger SNP panels and/or more
permutation tests. The performance of FastChi is expected to follow the
same trends presented in the remainder of this section.

FastChi v.s. the brute force approach: As far as we know,
FastChi is the first algorithm addressing the problem of how to scale up the
complete two-locus Chi-square test involving large permutation test. For
comparison, we show the runtime of FastChi versus the runtime of the brute
force approach. The implementation of the brute force approach includes
the computation of two-locus chi-square test for every SNP pairs. Figures
3(a) to 3(d) show the running time comparison under various parameter
settings. The numbers below the runtime line of FastChi indicate the ratio
of the runtime of the brute force approach and the runtime of FastChi.
Figure 3(a) shows that the runtime of FastChi dramatically decreases as
θ increases. FastChi offers 3.9 fold speedup when θ = 26 and 16.3 fold
speedup when θ = 34. Figure 3(b) shows that FastChi is an order of
magnitude faster than the brute force approach. Figure 3(c) shows that
the runtime of FastChi increases as the number of individuals increases.
This is because more SNPs-pairs are expected to have larger chi-square
values when the number of individuals increases. Their upper bounds will
also increase accordingly. In practice, it is reasonable to set higher threshold

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

(a) Varying θ (b) Varying #SNPs

(c) Varying #individuals (d) Varying #permutations

Figure 3. Comparisons between FastChi and the brute force approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24 26 28 30 32 34
theta

pr
un

in
g

ra
tio

(a) Varying threshold values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12/20 14/18 16/16 18/14 20/12
cases/control ratio in the phenotypes

pr
un

in
g

ra
tio

(b) Varing case/control ratios

Figure 4. Pruning effect of the upper bound

values for the datasets containing more individuals. Figure 3(d) shows that
FastChi is consistently an order of magnitude faster than the brute force
approach in permutation tests.

Pruning effect of the upper bound: Figure 4(a) shows the fraction
of SNP-pairs pruned under different thresholds. The pruning ratio is aver-
aged over 20 random phenotype permutations. The datasets contain half

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

0.01

0.1

1

10

100

1000

4k 8k 12k 16k 20k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs
evaluating candidate SNP-pairs

finding candidate SNP-pairs

Figure 5. Computational cost of each component of FastChi

cases (diseased individuals) and half controls (healthy individuals). A large
portion of the SNP-pairs are pruned even when the threshold is low. Figure
4(b) show the pruning ratio of the SNP-pairs when the case/control ratio
varies, while the total number of individuals is fixed. Clearly, the pruning
effect reaches the maximum power when there are 16 cases and 16 controls,
which demonstrates that FastChi is more suitable for balanced study.

Computational cost of each component of FastChi: FastChi has
three major components: building the indexing structure Array(Xi) for
every SNP Xi, accessing Array(Xi) to find the candidate SNP-pairs whose
upper bounds are greater or equal to the threshold, and performing chi-
square tests on these candidates. Figure 5 shows the runtime of these three
components when the number of SNPs increases. We also plot the runtime
of the brute force approach for reference, which is the top line. Note that
the runtimes in this figure are for a single permutation. As we can see, the
most time consuming component of FastChi is building the index structures.
Yet, its runtime is about 1/5 of the time required to perform the two-locus
chi-square tests on all SNP pairs in one permutation. Note that when the
number of permutations is large, the cost on building the index structures
is negligible since they only need to be built once and can be reused in all
permutations. Thus the performance gain of FastChi is more prominent for
large permutation tests.

5. Discussion

In this paper, we present the FastChi algorithm for genome-wide two-locus
chi-square test. FastChi is an exhaustive method which guarantees to find
the optimal solution. It utilizes an upper bound of the two-locus chi-square
test value to prune a majority of the SNP-pairs. The upper bound devel-

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

oped in this paper can be easily incorporated in the algorithm for SNP-pair
pruning and candidates retrieval. By eliminating redundant computation
of the invariant units in each permutation, FastChi is even more effective
than the brute force method in large permutation tests.

So far, we have described the method for given θ. The main goal of per-
mutation test is to find threshold θ for a given family-wise error α′. FastChi
can be easily modified for this task: For each permutation Yk, we use a pa-
rameter θk (initially 0) to track the largest chi-square value identified so
far by the algorithm. The non-decreasing θk is then used as the threshold
to prune the search space when the remaining SNP-pairs are examined.

FastChi can also benefit the two-stage genome-wide association study.
The idea of the two-stage approache 4,19 is to first select a subset of im-
portant SNPs according to some criteria. Then in the second step, an
exhaustive search is performed to find the interactions among the selected
SNPs. FastChi can dramatically speed up the interaction analysis proce-
dure in the second step. A much larger number of SNPs can now be selected
in the first step for the subsequent interaction analysis.

In this paper, we mainly focus on the biallelic SNPs. For the heterozy-
gous case (where SNPs are encoded using {0, 1, 2}), we can also derive a
similar upper bound. Let A,B, E,C, D, F represent the following events
respectively: Y = 0 ∧ Xi = 0; Y = 0 ∧ Xi = 1; Y = 0 ∧ Xi = 2;
Y = 1 ∧ Xi = 0; Y = 1 ∧ Xi = 1; Y = 1 ∧ Xi = 2. The up-
per bound for χ2(XiXj , Y) is: χ2(XiXj , Y) ≤ χ2(Xi, Y) + T1S1R0 +

T2S2R1 + T3S3R2. In the upper bound, Ra = {[min{OXj=1

OXj=0
,

OXj=0

OXj=1
} +

min{OXj=2

OXj=0
,

OXj=0

OXj=2
} + min{OXj=2

OXj=1
,

OXj=1

OXj=2
}]|Xi = a}, where a ∈ {0, 1, 2},

T1 = L/(OA + OC), T2 = L/(OB + OD), T3 = L/(OE + OF), (where
L = M2/[(OA + OB + OE)(OC + OD + OF)]), S1 = max{O2

A, O2
C}

S2 = max{O2
B , O2

D} S3 = max{O2
E , O2

F }.
In our future work, we will investigate association study involving more

than two SNPs following the same principle discussed in this paper.

References

1. http://www.gnf.org/.
2. C. S. Carlson, M. A. Eberle, L. Kruglyak, and D. A. Nickerson. Mapping

complex disease loci in whole-genome association studies. Nature, 429, 2004.
3. D. Curtis, B. V. North, and P. C. Sham. Use of an artificial neural network

to detect association between a disease and multiple marker genotypes. Ann.
Hum. Genet., 65:95–107, 2001.

4. D. M. Evans, J. Marchini, A. P. Morris, and L. R. Cardon. Two-stage two-
locus models in genome-wide association. PLoS Genet., 2: e157, 2006.

Pacific Symposium on Biocomputing 14:528-539 (2009)

September 22, 2008 12:35 Proceedings Trim Size: 9in x 6in ws-procs9x6

5. E. Halperin, G. Kimmel, and R. Shamir. Tag snp selection in genotype data
for maximizing snp prediction accuracy. In Proceedings of the International
Conference on Intelligent Systems for Molecular Biology, 2005.

6. A. Herbert and et. al. A common genetic variant is associated with adult and
childhood obesity. Science, 312:279–284, 2006.

7. M. R. Nelson, S. L. Kardia, R. E. Ferrell, and C. F. Sing. A combinatorial
partitioning method to identify multilocus genotypic partitions that predict
quantitative trait variation. Genome Research, 11:458–470, 2001.

8. K. K. Nicodemus, W. Liu, G. A. Chase, Y.-Y. Tsai, and M. D. Fallin. Com-
parison of type i error for multiple test corrections in large single-nucleotide
polymorphism studies using principal components versus haplotype blocking
algorithms. BMC Genet., 6(Suppl 1):S78, 2005.

9. D. R. Nyholt. Simple correction for multiple testing for single-nucleotide poly-
morphisms in linkage disequilibrium with each other. Am. J. Hum. Genet.,
74(4):765–769, 2003.

10. K. Ozaki and et. al. Functional snps in the lymphotoxin-alpha gene that are
associated with susceptibility to myocardial infarction. Nat. Genet., 32, 2002.

11. M. Pagano and K. Gauvreau. Principles of Biostatistics. Pacific Grove, CA:
Duxbury Press, 2000.

12. M. A. Province, W. D. Shannon, and D. C. Rao. Classification methods for
confronting heterogeneity. Adv. Genet., 42:273–286, 2001.

13. M. D. Ritchie, L. W. Hahn, N. Roodi, L. R. Bailey, W. D. Dupont, F. F.
Parl, and J. H. Moore. Multifactor-dimensionality reduction reveals high-
order interactions among estrogen-metabolism genes in sporadic breast can-
cer. American Journal of Human Genetics, 69:138–147, 2001.

14. A. Roberts, L. McMillan, W. Wang, J. Parker, I. Rusyn, and D. Threadgill.
Inferring missing genotypes in large snp panels using fast nearest-neighbor
searches over sliding windows. In ISMB, 2007.

15. A. Roses. The genome era begins. Nat. Genet., 33(Supp2):217, 2003.
16. P. Sebastiani, R. Lazarus, S. T. Weiss, L. M. Kunkel, I. S. Kohane, and M. F.

Ramoni. Minimal haplotype tagging. PNAS, 100(17), 2003.
17. D. Segr, A. DeLuna, G. M. Church, and R. Kishony. Modular epistasis in

yeast metabolism. Nat. Genet., 37:77–83, 2005.
18. A. Sherriff and J. Ott. Applications of neural networks for gene finding. Adv.

Genet., 42:287–297, 2001.
19. J. Storey, J. Akey, and L. Kruglyak. Multiple locus linkage analysis of

genomewide expression in yeast. PLoS Biology, 8: e267, 2005.
20. D. C. Thomas. Statistical methods in genetic epidemiology. Oxford Univeristy

Press, Oxford, 2004.
21. C. M. Wade and M. J. Daly. Genetic variation in laboratory mice. Nat.

Genet., 37:1175–1180, 2005.
22. H. Zhang and G. Bonney. Use of classification trees for association studies.

Genet. Epidemiol., 19:323–332, 2000.
23. X. Zhang, F. Zou, and W. Wang. Fastanova: an efficient algorithm for

genome-wide association study. In KDD, 2008.

Pacific Symposium on Biocomputing 14:528-539 (2009)

