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We describe several dynamic programming segmentation algorithms to segment RNA secondary and tertiary struc-
tures into distinct domains. For this purpose, we consider fitness functions that variously depend on (i) base pairing
probabilities in the Boltzmann low energy ensemble of structures, (ii) contact maps inferred from 3-dimensional
structures, and (iii) Voronoi tessellation computed from 3-dimensional structures. Segmentation algorithms include
a direct dynamic programming method, previously discovered by Bellman and by Finkelstein and Roytberg, as well
as two novel algorithms – a parametric algorithm to compute the optimal segmentation into k classes, for each value
k, and an algorithm that simultaneously computes the optimal segmentation of all subsegments.

Since many non-coding RNA gene finders scan the genome by a moving window method, reporting high-scoring
windows, we apply structural segmentation to determine the most likely 5′ and 3′ boundaries of precursor microR-

NAs. When tested on all precursor microRNAs of length at most 100 nt from the Rfam database, benchmarking
studies indicate that segmentation determines the 5′ boundary with discrepancy (absolute value of difference be-
tween predicted and real boundaries) having mean −0.640 (stdev 15.196) and the 3′ boundary with discrepancy
having mean −0.266 (stdev. 17.415). This yields a sensitivity of 0.911 and positive predictive value of 0.906 for
determination of exact boundaries of precursor microRNAs within a window of approximately 900 nt. Additionally,
by comparing the manual segmentation of Jaeger et al. with our optimal structural segmentation of 16S and 16S-
like rRNA of E. coli, rat mitochondria, Halobacterium volcanii, and Chlamydomonas reinhardii chloroplast into 4
segments, we establish the usefulness of (automated) structural segmentation in decomposing large RNA structures
into distinct domains.

Availability: Source code for all algorithms is available at http://bioinformatics.bc.edu/clotelab/.

Keywords: non-coding RNA gene finder, segmentation algorithm,secondary structure, tertiary structure, RNA do-
main

1. Introduction

Several groups, such as Benaola-Galván et al.,3 Román-Roldán et al.,16 and Li et al.,10–12 have developed

recursive segmentation algorithms with the goal of segmenting chromosomal regions in order to detect iso-

chores, CpG islands and other broad genomic features. The underlying idea of such divide-and-conquer

recursive segmentation algorithms is similar to that of C4.5 decision trees, cf. Quinlan,15 and depends on

repeatedly splitting a segment into left and right halves in order to maximize the Jensen-Shannon divergencea

JS(L, R) = H(W ) −
m

n
H(L) −

n − m

n
H(R). (1)

aSee Lin13 for more on the Jensen-Shannon divergence, Kullback-Liebler distance, etc.
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Here L, R are the left and right segments of the whole segment W , the lengths of L, R, W are respectively

m, n−m, n, and H(X) denotes the Shannon entropy of segment X .b Figure 1 depicts the pseudocode corre-

sponding to this approach, where it should be noted that the main weakness of the recursive segmentation

method is to determine when to discontinue segmentation. See Clote and Backofen4 for detailed explanation

and full pseudocode of this algorithm.

While this method has been applied to the detection of broad features of chromosomal DNA,3,10–12,16

other segmentation algorithms in the literature have been introduced by Finkelstein and Roytberg5 (dy-

namic programming), and Schmidler et al.17 (Bayesian a posterior method).c Applications of the dynamic

programming segmentation algorithm of Finkelstein and Roytberg5 have been given by Sunyaev et al.18 for

multiple alignments of proteins, while applications of the Bayesian a posterior method have been presented by

Schmidler et al.17 to predict protein secondary structure α-helices and β-sheets given the primary sequence

information.

In this paper, we describe a dynamic programming segmentation algorithm, previously discovered by

Bellman2 and by Finkelstein and Roytberg,5 as well as several novel algorithmic extensions. The segmen-

tation algorithms are applied to segment 3-dimensional RNA structures into domains, and use to detect

the boundaries of certain non-coding RNA genes within high scoring windows, as determined by many

moving-window genome scanning algorithms.

1 void segment( int i, int j, double s) {
2 max=0

3 for k=i to j-1{
4 L = wi · · ·wk

5 R = wk+1 · · ·wj

6 if statistical significance of splitting L, R exceeds s then

7 if JS(L, R) > max then

8 max = JS(L, R)
9 x = k
10 }
11 print x

12 segment(i,x,s)

13 segment(x+1,j,s)

14 }

Fig. 1. Pseudocode for recursive segmentation algorithm of Román-Roldán et al.16 Note that one of the difficulties of this
approach consists in determining a minimum threshold s, below which segmentation is discontinued.

2. Methods

The problem we consider consists in segmenting a sequence S = 〈s1, . . . , sn〉 into a number of consecutive

subsequences (called segments) S1, . . . , Sk. (The sequence S is thus the concatenation of S1, . . . , Sk.) Each

segment Si is associated with a base fitness function value f(Si, S) which only depends on the elements in

Si and those in S \ Si, not on the segmentation itself. In this paper, such a function will be expressed in

terms of two functions g and h as follows:

f(Si, S) =

∑

x,y∈Si,x 6=y g(x, y) −
∑

x∈Si,y∈S\Si
h(x, y)

|Si|
(2)

bIn general, if X is a sequence in the k-letter alphabet Σ, then H(X) equals −
Pk

i=1 pi · ln pi, where pi is the relative frequency
of the ith letter of Σ. Typical applications of entropy in genomic segmentation consider the 2-letter alphabet {R, Y } of purines
(A,G) and pyrimidines (C,T), the 2-letter alphabet {S, W} of strong (C,G) and weak (A,T) nucleotides, etc.
cAn anonymous referee kindly pointed out the pertinence of the much earlier paper by R. Bellman.2
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where |Si| denotes the number of elements in Si. This contrasts with previous methods16–18 where base

fitness function f(Si, S) depends only on Si, but not on S \Si. Our goal is to find a segmentation S1, . . . , Sk

that maximizes the sum of the fitness values, i.e.,

k
∑

i=1

f(Si, S). (3)

Observe that the number of segments k is not fixed and is chosen to maximize the overall fitness. In the

following, we also use fi,j to denote f(〈si, . . . , sj〉, S).

2.1. Dynamic programming using quadratic time and quadratic space

We now present an O(n2) algorithm to solve this problem. The key idea underlying the algorithm is to reason

about partial segmentations which cover prefixes (s1, . . . , sk) but whose fitness values are computed with

respect to the entire sequence S. Obviously, when k = n, we obtain a solution to the original problem.

The algorithm is based on a recurrence relation on the starting positions and lengths of the last segment in

an optimal (partial) segmentation. More precisely, V (ℓ, x) denotes the fitness value of the best partial segmen-

tation whose last segment has length ℓ and starting position x; i.e. V (ℓ, x) equals the fitness of 〈s1, . . . , sx+ℓ−1〉

when segmented into S1, . . . , Sk for arbitrary k, where the rightmost segment Sk = 〈sx, . . . , sx+ℓ−1. The base

case corresponds to x = 1 and is given by

V (ℓ, 1) = f1,ℓ (4)

for 1 ≤ ℓ ≤ n. The recursive case for 1 < x is given by the formula

V (ℓ, x) = fx,x+ℓ−1 + max{V (i, j) : j + i = x} (5)

The left part of the sum is the fitness value of the last segment. The right part is the fitness value of the

best partial segmentation that ends at x− 1. It is obtained by considering the fitness values of all the partial

segmentations of 〈s1, ..., sx−1〉. By induction, these fitness values are associated with their last segments, i.e.,

segments that start at some position j, have some length i, and end at position x − 1. The fitness value of

the optimal segmentation of S is then given by

max{V (ℓ, x) : ℓ + x = n + 1, ℓ > 1, x ≥ 1}. (6)

Given the entry (ℓ∗, x∗) with maximal fitness value V (ℓ∗, x∗), the set of starting positions st[ℓ∗, x∗] of the

segments in the best segmentation can be traced backwards from using the following recurrence

st[ℓ, x] = {x} ∪ st[x − p, p]

where p = max{p′ : V (x − p′, p′) = max{V (i, j) : j + i = s}};

st[ℓ, 1] = ∅

(7)

which, at each step, retrieves the last segment 〈sx−p, . . . , sx−1〉 of the optimal partial segmentation.

We now argue that these recurrence relations can be computed by an O(n2) dynamic programming

algorithm. First observe that the expression

max{V (i, j) : j + i = x} (8)

must only consider x−1 segments since j ≥ 1 and i ≥ 1, i.e., there are only O(x) pairs to consider. Moreover,

observe that this expression does not depend on ℓ in the recurrence relation and hence can be computed

once for all entries V (1, x), . . . , V (n− x, x). As a result, the dynamic programming algorithm runs in O(n2)

provided that the expression is computed once at the beginning of each column. Note also that the index p in

the recurrence for st can be computed during the forward computation, so that the backward computation

takes only O(n) time.

Note that this algorithm can yield the maximum, minimum, and average fitness of all segments; however,

the space required is quadratic. In the next section, we describe a linear space algorithm.
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1 int[n][n] parametricSegmentation(rna,f,numSegments){
2 /*-------------------------------

3 rna is RNA sequence, f is base fitness function.

4 ----------------------------------------------------*/

5 n = len(rna); SplitPoints = ∅
6 for d = LOWER to n
7 for num = 2 to min(numSegments, d/LOWER)
8 for m = (num − 1) · LOWER + 1 to d − LOWER − 1
9 val = PF (m,num − 1) + fm+1,d

10 if val > max
11 splitPoint = m
12 max = val
13 PF (d, num) = max
14 SplitPoints[d,num] = splitPoint

15 return SplitPoints //Using SplitPoints array, one can perform traceback

16 }

Fig. 2. Pseudocode for parametric segmentation algorithm to compute optimal parametric fitness PF (d, k) over all segmen-
tations of [1, d] into k segments. Note how bounds for minimum segment size (LOWER) and maximum segment size (UPPER)
can easily be accommodated within such segmentation algorithms.

2.2. Dynamic programming using quadratic time and linear space

Given the complete segment S = s1, . . . , sn, let F (i) designate the maximum fitness over all segmentations

of s1, . . . , si. Straightforwardly,

F (i) =

{

0 if i = 0

max(f1,i, max1≤k<i F (k) + fk+1,i) else.
(9)

It can be seen how the maximum fitness of S is given by F (n), and by means of tracebacks, we obtain the

obtimal segmentation. Computation time is obviously quadratic in n, while space is linear in n. This latter

version of the segmentation algorithm turned out to be equivalent to that of Finkelstein and Roytberg,5

displayed in equation (9).

We can extend equation (9) by computing the partition function over all segmentations, defined by

Z = Z(n), where by induction on i we define

Z(i) =

{

1 if i = 0

exp(f1,i) +
∑

1≤k<i Z(k) · exp(fk+1,i/RT ) else
(10)

where R is the universal gas constant and T absolute temperature.d Using the partition function, one can

sample high fitness (suboptimal) segmentations to determine the maximum expected accurate segmentation, in

analogy to the maximum expected accurate RNA secondary structure, denoted McCaskill-MEA, as described

in Kiryu et al.7 For reasons of space, we do not further describe the partition function, sampling, or MEA

segmentations in this article.

2.3. Parametric dynamic programming method

In this section, we describe a new algorithm that computes, given an RNA sequence (structure) and integer

K, the optimal segmentation into k segments, for each 1 ≤ k ≤ K. This algorithm runs in time O(n2K) and

space nK.

The underlying idea of the algorithm described in this section is to maintain separately indexed tables

PF (m, i) for the parametric optimal fitness over all segmentations of [1, m] into i segments; i.e. we inductively

define PF (m, i) = max1≤k<m PF (k, i− 1)+ fk+1,m. (See Figure 2 for pseudocode of algorithm.) Clearly the

dIn this setting, RT is simply a constant and can be taken to be equal to 1.
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1 int[n][n] segmentation(rna){
2 // rna is RNA sequence, f is pre-computed base fitness function.

3 n = len(rna); SplitPoints = ∅
4 for d = 1 to n − 1
5 for i = 1 to n
6 j = i + d
7 if (j > n) then break

8 max = fi,j

9 for k = i to j − 1
10 val = F (i, k) + fk+1,j

11 if val > max then

12 max = val
13 splitPoint = k
14 F (i, j) = max
15 SplitPoints[i,j] = splitPoint

16 return SplitPoints

17 }

Fig. 3. Algorithm to determine optimal segmentation of each subsequence [i, j], with run time O(n3) and space O(n2). This
algorithm is inspired by the Nussinov-Jacobson algorithm,14 which determines the secondary structure having maximum number
of base pairs. Assuming the base fitness function f has been precomputed, this algorithm computes the fitness F (i, j) for the
optimal segmentation of each subsequence [i, j]. The optimal segmentation can be computed by traceback using the information
from SplitPoints.

run time of parametric segmentation is O(n2 · K) and the space requirement is O(n · K), when computing

optimal segmentations of [1, n] into k segments, for all k ≤ K.

2.4. Optimal fitness of all segmentations of subwords

In this section, we describe a cubic time algorithm to compute the optimal segmentation, simultaneously for

all subwords [i, j], where 1 ≤ i ≤ j ≤ n. This algorithm is inspired by the Nussinov-Jacobson algorithm,14

which determines the secondary structure having a maximum number of base pairs. (See Figure 3 for the

pseudocode of this algorithm.) By using this algorithm, where the base fitness function f is defined from the

contact map obtained by RNAview,19 one could produce segmentations where low scoring initial portions

[1, i − 1] and low scoring terminal portions [j + 1, n] are dropped, thus leaving a segmentation of subword

[i, j]. The manual segmentations of Jaeger et al.6 described in the Results section appears to be of this type.

2.5. Fitness Functions

We have considered different base fitness functions for RNA secondary structure, all of them fitting in the

following scheme:

fi,j =

∑

i≤x<y≤j w1 · px,y −
∑

x∈[i,j]

∑

y 6∈[i,j] w2 · px,y

j − i + 1
(11)

where fi,j is the fitness function of segment [i, j] and px,y can be the following:

• The base pair probability between nucleotides x and y as computed by RNAfold -p (or by RNAplfold

-p).

• The existence (or not) of a base pair between nucleotides x and y as computed by RNAview.

The pseudocode to compute the fitness function for base pairing probabilities (and equivalently for

contact maps) is depicted in Figure 4.

We have also considered a 3D fitness function (which can also be used for proteins or other molecules)

which consists on minimizing the normalized volume (by computing a tessellation with Qhull1). The fitness
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1 void fitness(rna){
2 using RNAfold -p determine base pairing probabilities pi,j

3 n = len(rna)

4 for d = 0 to n
5 for i = 1 to n
6 j = i + d
7 if j>n then break

8 if i==j

9 sum = 0.0

10 else //i < j
11 sum = fi,j−1

12 for k = 1 to n
13 if i ≤ k < j
14 sum += (w1 + w2) · pk,j

15 else if k < i
16 sum -= w2 · pk,j

17 else if k > j
18 sum -= w2 · pj,k

19 fi,j = sum
j−i+1

20 return f

21 }

Fig. 4. The base fitness fi,j of segment [i, j] is defined by normalizing the sum
P

i≤x<y≤j w1 ·px,y −
P

x∈[i,j]

P

y 6∈[i,j] w2 ·px,y

by segment length, where base pairing probabilities px,y are computed by RNAfold -p. Straightforward implementation of the
formula for fi,j requires O(n4) time. In contrast, this figure depicts pseudocode to compute base fitness function f in time
O(n3).

function of segment [i, j] is thus the negative normalized volume as calculated by Qhull, i.e. fi,j = − vol
diam

,

where vol and diam respectively denote the volume and diameter of the Voronoi polyhedra of residues

i, . . . , j.

3. Results

3.1. Finding Precursor microRNAs

As previously mentioned, we applied our segmentation to help determine non-coding RNA genes within a

window of flanking nucleotides. Many non-coding RNA gene finders use a moving window strategy, where the

likelihood that the fixed-size window contents contain a non-coding RNA gene is represented by a numerical

score. To that end, we tested our segmentation algorithm to detect precursor microRNA within a window

of flanking nucleotides, where the flanking nucleotides were extracted from the EMBL genomic file. Our

experiment can be summarized as follows.

• Download all the accession codes for precursor micro RNA, riboswitches and SECIS (only results

for precursor microRNA are reported here).

• Download the EMBL data for each of the above with 500 flanking nucleotides on each side (when

possible). In some cases, there were fewer than 500 nucleotides to the left, or less than 500 nucleotides

to the right, in which case the sequence was skipped.

• Run segmentation algorithm by varying the following parameters:

– flanking nts (50, 100, 200, 400)

– max segment size(100, 1000 which translate to not having a maximum size in practice)

– weight combinations w1 w2(10, 01, 11, 21, 12, 51, 15)

– base pairing probabilities, obtained by RNAfold -p

• Report histograms and measures of accuracy.

• Run segmentation with flanking nucleotides replaced by random combination (permutation)

Pacific Symposium on Biocomputing 15:57-68(2010)



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

Table 1. Boundary prediction: precursor microRNA from Rfam of size ≤ 100 nt.

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

w1 = 1, w2 = 0 − 50 9.984 16.193 -9.486 17.115 0.774 0.990
w1 = 1, w2 = 0 − 100 10.032 15.814 -10.035 17.441 0.770 0.992
w1 = 1, w2 = 0 − 200 9.691 15.059 -10.887 17.450 0.765 0.993
w1 = 1, w2 = 0 − 400 10.206 15.899 -11.038 18.063 0.761 0.992

w1 = 0, w2 = 1 − 50 -2.453 14.132 1.891 13.149 0.927 0.888
w1 = 0, w2 = 1 − 100 -1.807 7.102 1.379 11.489 0.969 0.936
w1 = 0, w2 = 1 − 200 -3.331 11.541 4.199 10.462 0.963 0.887
w1 = 0, w2 = 1 − 400 -4.113 11.803 3.351 12.122 0.949 0.876

w1 = 1, w2 = 1 − 50 -0.598 15.612 1.235 14.142 0.922 0.903
w1 = 1, w2 = 1 − 100 -0.701 9.917 1.428 10.856 0.956 0.935
w1 = 1, w2 = 1 − 200 -1.492 11.211 1.624 10.344 0.945 0.916
w1 = 1, w2 = 1 − 400 -1.322 12.006 1.483 12.571 0.935 0.909

w1 = 2, w2 = 1 − 50 -0.524 15.994 0.125 15.654 0.913 0.905
w1 = 2, w2 = 1 − 100 0.376 12.380 1.096 13.667 0.934 0.927
w1 = 2, w2 = 1 − 200 -0.299 15.326 -0.132 14.447 0.920 0.918
w1 = 2, w2 = 1 − 400 -0.640 15.196 -0.266 17.415 0.911 0.906

w1 = 1, w2 = 2 − 50 -1.958 12.122 0.846 11.772 0.933 0.908
w1 = 1, w2 = 2 − 100 -0.846 9.419 1.547 8.970 0.964 0.939
w1 = 1, w2 = 2 − 200 -2.251 10.180 2.080 9.906 0.953 0.911
w1 = 1, w2 = 2 − 400 -2.955 11.547 2.168 11.022 0.944 0.894

w1 = 5, w2 = 1 − 50 0.740 15.887 -0.723 17.444 0.901 0.913
w1 = 5, w2 = 1 − 100 1.968 15.787 -1.572 17.908 0.886 0.921
w1 = 5, w2 = 1 − 200 2.524 16.453 -1.482 16.025 0.886 0.927

w1 = 5, w2 = 1 − 400 2.392 17.011 -2.727 18.053 0.868 0.920

w1 = 1, w2 = 5 − 50 -2.408 13.061 1.129 12.430 0.931 0.899
w1 = 1, w2 = 5 − 100 -1.431 8.053 1.203 10.187 0.966 0.939
w1 = 1, w2 = 5 − 200 -2.997 10.655 3.569 10.482 0.960 0.894
w1 = 1, w2 = 5 − 400 -3.843 11.888 3.297 11.626 0.949 0.878

Tables 1 and 3 show, respectively, the results of our segmentation with and without maximum segment

size limit. The main conclusions that can be drawn are the following:

• Certain weight combinations yield very poor results, specially in the case of w1 = 0, w2 = 1 and

w1 = 1, w2 = 0 which means that both characteristics of inside and cross-segments are necessary.

• Giving a higher weight to cross-segment characteristics does not yield the best results which indicates

that the local structure of the precursor micro RNA is stronger than its lack of potentially base pair

with other regions in other suboptimal configurations.

• Overall, the weight combination w1 = 2, w2 = 1 achieves the best results.

• The algorithm is robust to the size of the flanking nucleotides.

• Limiting the maximum size of the segment does impact efficiency. Interestingly, the weight combi-

nation w1 = 5, w2 = 1 performs better in this case. This seems to indicate that a higher weight to

inside base pairings is necessary for larger instances since it reinforces its locality, i.e., if there are

more nucleotides there are potentially more possibilities of cross-segment base pairings which (in

this case), for nucleotides farther away in the primary sequence might not be very significant.

A very useful tool to visualize the quality of the results is to plot the distributions of both left and right

end segments of the calculated precursor micro RNA. This information is depicted in Figure 5. Note that

both distributions are very similar and they clearly show a higher concentration of segmentations in which

the distance from the actual end segment and the calculated one are very close to 0.

It is conjectured that precursor micro RNAs have a very strong local structure with which the flanking

nucleotides cannot compete. To prove that our algorithm is sensitive to that local structure (which is consis-

tent with the fact that a higher weight for inside segment yields better results) we have carried out a set of

experiments in which we permuted the flanking nucleotides before performing the segmentation. Results of
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Table 3. Boundary prediction: precursor microRNA from Rfam, no size limit.

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

w1 = 1, w2 = 0 − 50 9.113 16.578 -8.624 17.574 0.782 0.984
w1 = 1, w2 = 0 − 100 9.325 16.005 -9.341 17.723 0.777 0.989
w1 = 1, w2 = 0 − 200 9.016 15.235 -10.222 17.661 0.772 0.990
w1 = 1, w2 = 0 − 400 9.479 16.141 -10.322 18.314 0.769 0.988

w1 = 0, w2 = 1 − 50 -48.997 0.057 49.994 0.113 1.000 0.467
w1 = 0, w2 = 1 − 100 -98.990 0.098 100.000 0.000 1.000 0.304
w1 = 0, w2 = 1 − 200 -199.000 0.000 200.000 0.000 1.000 0.179
w1 = 0, w2 = 1 − 400 -399.000 0.000 400.000 0.000 1.000 0.099

w1 = 1, w2 = 1 − 50 -37.814 17.105 39.601 17.305 0.993 0.552
w1 = 1, w2 = 1 − 100 -58.402 42.203 62.003 42.980 0.978 0.507
w1 = 1, w2 = 1 − 200 -58.929 72.924 57.685 72.334 0.966 0.604
w1 = 1, w2 = 1 − 400 -60.941 99.448 65.014 99.134 0.957 0.614

w1 = 2, w2 = 1 − 50 -28.331 21.168 28.611 22.686 0.980 0.649
w1 = 2, w2 = 1 − 100 -34.624 39.918 33.177 40.922 0.956 0.666
w1 = 2, w2 = 1 − 200 -22.457 34.832 25.801 39.003 0.960 0.725
w1 = 2, w2 = 1 − 400 -25.801 43.108 30.119 45.335 0.948 0.702

w1 = 1, w2 = 2 − 50 -42.132 13.798 43.605 13.462 0.997 0.514
w1 = 1, w2 = 2 − 100 -76.897 34.990 80.740 33.833 0.990 0.395
w1 = 1, w2 = 2 − 200 -123.775 82.962 120.785 84.169 0.989 0.385
w1 = 1, w2 = 2 − 400 -214.867 169.619 211.993 169.320 0.979 0.343

w1 = 5, w2 = 1 − 50 -11.170 21.748 10.871 21.846 0.943 0.802
w1 = 5, w2 = 1 − 100 -9.219 26.431 9.563 26.815 0.913 0.821
w1 = 5, w2 = 1 − 200 -7.762 22.604 7.460 22.576 0.923 0.836

w1 = 5, w2 = 1 − 400 -6.720 25.015 5.871 24.055 0.905 0.840

w1 = 1, w2 = 5 − 50 -45.601 10.258 46.775 9.366 0.998 0.488
w1 = 1, w2 = 5 − 100 -87.682 25.800 91.077 23.983 0.998 0.341
w1 = 1, w2 = 5 − 200 -174.678 53.153 167.801 62.362 0.999 0.226
w1 = 1, w2 = 5 − 400 -339.252 118.600 352.521 104.862 0.995 0.136

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-80 -60 -40 -20  0  20  40  60  80

nucleotide distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-120 -100 -80 -60 -40 -20  0  20  40  60

nucleotide distance

Fig. 5. Distribution of boundary discrepancy for 5′ end (left panel) and 3′ end (right panel) of precursor microRNAs within
window having 400 nt flanking both on left and right of microRNA. Analysis performed over all precursor microRNAs from
Rfam 9.1 (January 2009, 454 subfamilies). Here, discrepancy is defined as the absolute value of the difference between predicted
boundary and real boundary.

this are shown in Table 5 (where we compare them against the normal seuquence, i. e., that with the actual

flanking nucelotides), and the distributions are depicted in Figure 6. These results are for weight combination

w1 = 2, w2 = 1 with 400 flanking nucleotides and with no maximum segment size limit. As it can be seen,

results are very similar to those for the actual sequence which proves the robustness of our approach.
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Table 5. Boundary prediction: permuted versus unpermuted tails of precursor miRNA

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

Normal − 50 -0.524 15.994 0.125 15.654 0.913 0.905
Normal − 100 0.376 12.380 1.096 13.667 0.934 0.927
Normal − 200 -0.299 15.326 -0.132 14.447 0.920 0.918
Normal − 400 -0.640 15.196 -0.266 17.415 0.920 0.918

Permuted − 50 1.129 14.073 -2.334 15.948 0.899 0.939
Permuted − 100 0.251 11.629 -1.074 14.183 0.928 0.944
Permuted − 200 1.180 14.354 0.113 12.329 0.918 0.933
Permuted − 400 0.287 14.406 -0.955 15.669 0.910 0.924
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Fig. 6. Distribution of boundary discrepancy for 5′ end (left panel) and 3′ end (right panel) of precursor microRNAs within
window having 400 nt flanking both on left and right of microRNA. Analysis performed over all precursor microRNAs from
Rfam 9.1 (January 2009, 454 subfamilies) with permuted flanking nucleotides.

Table 7. Manual and computed segmentations of 16S rRNA.

Organism & method seg 1 seg 2 seg 3 seg 4 fit 1 fit 2 fit 3 fit 4

E. coli (manual) 27 − 509 515 − 857 866 − 1326 1329 − 1476 0.628 0.623 0.462 0.658
E. coli (computed) 1 − 338 339 − 350 351 − 1132 1133 − 1542 0.399 0.635 0.573 0.570
rat mitochondrial (manual) 20 − 279 279 − 509 526 − 829 829 − 953 0.550 0.459 0.559 0.323
rat mitochondrial (computed) 1 − 459 460 − 484 485 − 928 929 − 953 0.551 0.760 0.785 0.6221
H. volcanii (manual) 21 − 495 501 − 857 865 − 1342 1342 − 1474 0.600 0.618 0.597 0.617
H. volcanii (computed) 1 − 84 85 − 405 406 − 433 434 − 1476 0.551 0.760 0.785 0.622
C. reinhardii (manual) 27 − 509 515 − 857 866 − 1326 1329 − 1476 0.632 0.622 0.596 0.647
C. reinhardii chloroplast (computed) 1 − 754 755 − 1350 1351 − 1413 1414 − 1476 0.480 0.466 0.673 .563

3.2. Finding RNA domains

Our initial motivation for developing a segmentation algorithm was to determine an automated method to

decompose large X-ray structures of RNA, such as PDB code 1FFK, into coherent units, or domains. Also,

to segment RNA sequences in which secondary structure is available.

With the intent of benchmarking the accuracy of MFOLD, Jaeger et al.6 performed a manual segmenta-

tion of E. coli 16S rRNA, as well as the 16S-like rRNA domains of rat mitochondria, Halobacterium volcanii,

and Chlamydomonas reinhardii chloroplast into 4 segments.

In Table 7 we present results from the manual and optimal segmentation of 16S rRNA into four seg-

ments. Optimal segmentation is calculated using base pairing probabilities with weights w1 = 2, w2 = 1

(these weights were determined by previous benchmarking experiments). In that table, column headings,

seg abbreviates segment, while fit abbreviates fitness. The manual segmentation was created by Jaeger et

al.,6 while the computed segmentation used the parametric algorithm described in Figure 2. Note that we

could have modified (but did not) the parametric segmentation to discard with no penalty a small initial
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Table 8. Average, min, max fitness over all segments in manual segmentation of 16S rRNA.

Organism & method avg min max fit 1 fit 2 fit 3 fit 4

E. coli 0.308 −1.000 0.857 0.628 0.623 0.462 0.658
rat mitochondrial 0.190 −1.000 0.857 0.550 0.459 0.559 0.323
H. volcanii 0.292 −1.000 0.857 0.600 0.618 0.597 0.617
C. reinhardii 0.299 −1.000 0.916 0.632 0.622 0.596 0.647

Fig. 7. (Left) Segmentation of the riboswitch with PDB code 3F4H:X. This optimal segmentation has 4 segments, respectively
of weights 0.0, 0.913, 1.913, 2.038. Segmentation produced by applying software RNAview,19 which annotates all hydrogen bonds
(canonical base pairs, non-canonical base pairs, single nucleotide stacking). Using the resulting contact map, we determined
an optimal segmentation, where the fitness function used involved a weight of 2 for contacts within the same segment and a
penalty of 1 for contacts between segments. (Right) Three-dimensional display of the same segmentation, where segments of
PDB file 3F4H:X are demarcated in different colors, using Pymol.

and final segment. Since this was not done, all computed segmentations begin at nucleotide 1 and end at the

last nucleotide, unlike that from the manual segmentation. This explains how a manual segmentation can

paradoxically have higher fitness than the computed optimal segmentation.

Even though our optimal segmentation does not always resemble the manual segmentation, from Table

8 (which shows average, minimum and maximum fitness for all segments) it can be seen how all manually

calculated segments have fitnesses higher than the average. This seems to indicate that our fitness function

correlates with reality but that possibly more specific information needs to be added to boost efficiency.

Figure 7 presents two alternative representations of the optimal segmentation of FMN riboswitch

(3F4H:X) with respect to the base fitness function defined from the contact map (base pairing) output

from RNAview. The left panel of Figure 7 depicts the segmentation in text format while the right panel

displays the segmentation as a Pymol image in which different segments appear in different colors. This

latter image shows more clearly the division in domains, which appear to be reasonable in light of its 3D

representation.

Alternatively, the base fitness function can be defined using Voronoi tessellation computed by Qhull.

Segmentations obtained in this manner are applicable to both RNA and protein 3-dimensional structures;

indeed, Figure 8 displays optimal segmentations of the secretin protein with PDB code 1Y9L and of the

metabotropic glutamate receptor protein (mGluR) with PDB code 1EWT. Note that segments determined

by structural segmentation are not simply α-helices or β-strands.

4. Conclusions

In this paper, we present a dynamic programming algorithm that produces an optimal segmentation for

RNA, given either an RNA sequence, or secondary structure, or tertiary structure. Given 3-dimensional RNA

structures, the fitness function can be defined using Voronoi tessellation obtained by Qhull or alternatively

using contact maps produced by RNAview. Given an RNA sequence, the fitness function can be defined
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Fig. 8. (Left) Segmentation of the secretin protein with PDB code 1Y9L. Gram-negative pathogens such as Shigella, Salmonella,
Yersinia and Pseudomonas use a type III secretion apparatus to translocate virulence proteins into host cells. X-ray structure
determined by Lario et al.9 (Right) Segmentation of the metabotropic glutamate receptor (mGluR) with PDB code 1EWT.
X-ray structure determined by Kunishima et al.8 Each segment in the optimal segmentation is displayed in a different color.
Images produced by Pymol.

from base pairing probabilities computed by McCaskill’s algorithm.e

Optimal parametric segmentation, described in Figure 2, as well as simultaneous optimal segmentation

of all intervals, described in Figure 3, both appear to be new. In future work, we plan to describe the dynamic

programming computation of the partition function for segmentations, as suggested in equation (10), and

to stochastically sample (suboptimal) segmentations. Applications of segmentation in the context of RNA

include (i) an automated method to decompose large RNA 3-dimensional structures into domains suitable

for estimating knowledge-based potentials or instead for benchmarking secondary structure algorithms, as

done manually by Jaeger et al.,6 (ii) a method to determine the possible 5′ and 3′ boundary of non-coding

RNA gene found within a window of a genome scanning algorithm. As future work we would like to add

other metrics to our fitness function as well as to perform exhaustive benchmarking on 3D segmentation

using Qhull. Preliminary results on trans-membrane proteins (Figure 8) show the potential of this fitness

function whenever X-ray structures are available.
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