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a cancer-related transcription factor. These results suggest that subspace DC patterns may aid in developing

new understanding about the mechanisms underlying cancer and other diseases.

5. Limitations and Future Work

In this section, we discuss several limitations of the proposed approach, possible solutions and future work.

(1) Size of patterns: Due to the fixed thresholds imposed on S̃DC in the Apriori framework, there may be

some larger patterns that do not satisfy the thresholds and are split into smaller ones. This limitation of

association analysis is usually addressed by pattern summarization,13 in which smaller size patterns are

merged into larger ones under some criteria. For example, the size-10 pattern in Figure 7 is obtained by

merging three smaller patterns as described in Section 3.5. More sophisticated summarization approaches13

can be exploited in future work.

(2) Enhancing scalability: The scalability of the approach depends on the mining algorithm, as well as the

permutation test. Generally, the algorithm itself takes about ten minutes for 2000 genes, several hours for

4000 genes and more than a day for all the 8787 genesl, which is acceptable. However, the real challenge

comes from the permutation test in which the mining algorithm is called 1000 times, the total time of which is

unacceptable on all the 8787 genes. Thus, to have a comprehensive evaluation of the discovered patterns, we

limited the pattern discovery and the follow-up statistical and biological analysis to the subset of genes that

are known to be related to cancer. In future work, for the efficiency of the mining algorithm, more effective

pruning schemes should be studied together with preprocessing procedures such as standard deviation based

gene filteringm. For the scalability in the context of permutation test, efficiency could possibly be improved

by reusing the calculation over the large number of permutations as studied by Zhang et al.50

(3) Modifying other biclustering algorithms: In this paper, DiffRange is presented as an illustration of

the general approach, S̃DC-Apriori, for modifying a biclusteirng algorithm to its differential version. As

discussed in Section 2.1, S̃DC-Apriori can also be applied to modify other biclustering algorithms24,43,49,51

with the antimonotonicity property, and their corresponding differential versions are expected to complement

DiffRange for discovering differential coexpression patterns.

(4) Differential biclustering: Differential coexpression patterns can essentially be considered as biclusters that

exist mostly in one class but not in the other. Indeed, such type of biclusters have already been observed

in several studies,26,38,51 where a set of biclusters are discovered in the first step and then the ones that

are unique to a single class are selected in the second step. Such a two-step approach can also be used to

discover differential coexpression patterns. However, the general approach proposed in this paper, S̃DC-

Apriori, can be considered as an initial effort towards a more general differential biclustering problem,

where more efficient discovery of differential biclusters are possible by making use of class labels within the

biclustering process. Similar problems can also be formulated as differential/discriminative co-clustering and

differential/discriminative subspace clustering in the data mining community.

(5) Pattern-based classification: Since a subspace differential coexpression pattern explicitly captures the

subgroups of samples it covers, it will also be interesting to investigate the predictive power of subspace

differential coexpression patterns in a pattern-based classification framework,4,42 where the combination of

traditional differentially expressed genes and subspace differential coexpression patterns may provide more

accurate disease diagnosis.
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