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A critical goal of pharmacogenomics research is to identify genes that can explain variation in drug response. We have previously 
reported a method that creates a genome-scale ranking of genes likely to interact with a drug.  The algorithm uses information about 
drug structure and indications of use to rank the genes.  Although the algorithm has good performance, its performance depends on a 
curated set of drug-gene relationships that is expensive to create and difficult to maintain. In this work, we assess the utility of text 
mining in extracting a network of drug-gene relationships automatically. This provides a valuable aggregate source of knowledge, 
subsequently used as input into the algorithm that ranks potential pharmacogenes. Using a drug-gene network created from sentence-
level co-occurrence in the full text of scientific articles, we compared the performance to that of a network created by manual curation 
of those articles. Under a wide range of conditions, we show that a knowledge base derived from text-mining the literature performs as 
well as, and sometimes better than, a high-quality, manually curated knowledge base. We conclude that we can use relationships 
mined automatically from the literature as a knowledgebase for pharmacogenomics relationships. Additionally, when relationships are 
missed by text mining, our system can accurately extrapolate new relationships with 77.4% precision.  

1. Introduction 

Individuals have variable response to drug treatment1,2. The assumption underlying personalized medicine and 
pharmacogenetics is that an individual’s genotype can be used to predict variable drug response3. Understanding and 
describing this variation is an essential first step of personalized medicine2,4,5.  Pharmacogenomics investigates how 
genes and their variation impact drug response. Such research has historically been pharmacogenetic, focusing on 
smalls set of genes or proteins6.  However, in this new age of high throughput technologies, the research has become 
increasingly pharmacogenomic, involving multiple genes. Pharmacogenomics (PGx) knowledge has expanded 
rapidly, as we uncover new connections between genes and the effects of their variants on drug response. Simply 
determining the genes that are important for drug response is a critical requirement. Recently, high throughput 
technologies such as genome wide association studies have yielded important new insights, however these 
technologies are plagued with high false positive rates, and statistical analysis of the data does not take advantage of 
existing biomedical knowledge7,8.  Hansen et al. recently described an algorithm that uses existing knowledge in 
order to rank 12,460 genes in the genome on the basis of their potential relevance to a specific drug of interest9. This 
algorithm can prioritize genes in high throughput data sets, thus removing some false positives.   The Hansen 
algorithm, called PGxPipeline, uses two knowledge bases of known drug-gene relationships, the Pharmacogenomics 
Knowledge Base (PharmGKB)10 and DrugBank11. While these knowledge bases are extremely useful for 
pharmacogenomics they are also created manually by a staff of curators, who read the literature and annotate the 
PGx information. Thus, they are expensive to maintain and difficult to update, particularly as the volume of 
pharmacogenomic literature increases.  

 
Therefore, there is a need for a scalable, inexpensive way to generate a comprehensive knowledge base of drug-

gene relationships that can be used as input to the PGxPipeline algorithm. PharmGKB contained knowledge about 
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404 drugs and 585 genes at the time of download, however the literature contains an order of magnitude more of 

both drugs and genes10. Automatic methods of monitoring this space are necessary. 
 
Text mining techniques allow us to survey the literature in an automated fashion, and extract information from 

the unstructured scholarly literature12, into a structured format in a database. As described by Hunter and Cohen, 
today’s interdisciplinary research scientist has an increasingly overwhelming amount of literature to assimilate13.  
Only through efficient text mining techniques can the data in the literature be extracted and rendered most useful. 
We previously described Pharmspresso14, which performs the task of extracting pharmacogenomic relationships 
from sentences.   In this work we combined Pharmspresso and PGxPipeline to assess the suitability of automatically 
derived knowledge in training a gene-ranking algorithm. Thus, we can compare the performance of the text-mining-
based knowledge source to the curation-based knowledge source utilized by Hansen, et al. If successful, we can 
contemplate using a continuously updated and expanded network of drug-gene relationships as the literature 
expands. This will clearly improve the results as Hansen et al. showed that the performance of the ranking algorithm 
depends critically on the size of the set of input drug-gene relationships9. Additionally, this work also serves as an 
external validation for the Pharmspresso automated text-mining algorithm, which, until now, has only been validated 
on a small set of relationships. 

2. Methods 

 
2.1. Generation of corpus for text mining algorithm 

We used the QUOSA desktop 
application15 to automatically download 
the full text PDFs of all articles that 
were manually curated by PharmGKB 
curators.  At the time the PharmGKB 
relationships were extracted from the 
database, 2202 articles had been 
curated. Of these, 1731 articles had 
available full text and this set was used 
as our corpus. 
 
2.2.  Generation of PharmGKB 

set of drug-gene relationships 
for training 

We extracted drug-gene relationships 
from the core tables of PharmGKB10, 
for all 1731 articles for which we had 
full text. Of these articles, 964 
contained drug-gene relationships (the 
remaining 767 contained drug-disease 
or gene-disease relationships). A total 
of 1782 unique drug-gene relationships 
are found in these 1731 articles. For 
articles that contain more than one gene 
or more than one drug we relate all 
possible combinations of genes and 
drugs. 
 

Figure 1. Methods overview: A knowledge base of drug-gene relationships is extracted 
from a curated source (PharmGKB and DrugBank) as well as from an automatic text-
mining source (Pharmspresso). One classifier is trained using each of the two types of 
knowledge sources and then validated against a gold standard set of drug-gene 
relationships to allow comparison of the two sources. 
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2.3.  Generation of gold standard drug-gene relationships 

The PharmGKB staff curate the literature at the article level, annotating the genes and drugs discussed in the article. 
In order to obtain a gold standard of manually curated relationships at the single relationship level, we used only 
those articles that mention at most one gene and one drug, to ensure a direct pharmacogenomic relationship between 
gene and drug. There were 916 such articles, containing a total of 682 unique drug-gene relationships. This was used 
as our gold standard for evaluation. We use this validation set derived from PharmGKB data to compare the 
performance of a classifier trained on PharmGKB data and a classifier trained on text-mined data; it is important to 
note that this validation set is not 
included when training either 
classifier. 
 

2.4. Extraction of drug-gene 
relationships from text by 
Pharmspresso  

We used the Pharmspresso system 
described previously14 to extract the 
drug-gene relationships from the 
corpus. Pharmspresso extracts all 
sentences that contain co-occurrences 
of a gene and a drug (see Figure 2). To 
allow direct comparison of 
performance of the PGxPipeline using 
the text-mining-based drug-gene 
network to the curation-based drug-
gene network, we used only genes and 
drugs found in the PharmGKB 
database when running the 
Pharmspresso algorithm: a total of 585 
genes and 404 drugs. 

 
 

2.5. Generation of scores for drug-gene relationships by PGxPipeline algorithm  

The PGxPipeline algorithm, as presented by Hansen et al., assigns scores to 12,460 genes representing their 
propensity to modulate drug response for a query drug. Figure 3 illustrates this method. Briefly, the algorithm 

derives the scores by using two  knowledge bases, 
(1) a gene-gene interaction network and (2) a 
drug-gene relationship network. These two 
networks are combined to make a gene-gene-drug 
network. For a query drug, the PGxPipeline scores 
each gene by comparing the query drug to drugs 
connected to that gene in the gene-gene-drug 
network, and assigning a score based on this 
similarity. Drug similarity is measured by both 
structural similarity and similarity of indications. 
As described in Hansen et al. structural drug 
similarity is defined as the Tanimoto coefficient 
of 166 structural features. The Tanimoto 

Figure 3. The Pharmacogenomics Pipeline.  Given a drug, D, each gene in 
the genome is scored based on the similarity of the neighboring drugs to the 
query drug. A neighboring drug may interact directly with the gene (D2) or 
indirectly (D1, D3, D4) through neighboring genes (G1, G2). 

Figure 2. Description of Pharmspresso system for relationship extraction at the sentence 
level. A corpus of full-text articles is first tokenized into sentences. Pharmspresso then 
marks up the sentences by identifying terms associated with genes and drugs. A drug-gene 
network is then created by drawing edges between genes and drugs that co-occur at the 
sentence level. The width of the edge corresponds to the number of articles that support 
the relationship.  
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coefficient is also used as a metric to compare the similarity of the indication sets of two drugs. We trained a 

logistic regression classifier on the input positive examples and random negative examples using these two types of 
features, structural similarity and indication set similarity. The more similar the drugs in the local network of the 
gene are to the query drug, the higher the score the gene will receive. 
 

The original PGxPipeline9 used PharmGKB as a source of “genetic” drug-gene relationships, DrugBank as a 
source of “physical” drug-gene interactions, and the InWeb interactome16 as a source of gene-gene interactions. 
InWeb is a protein-protein interaction network created with data from experiments. In this work, we explored the 
use of drug-gene relationships mined from the literature, as an alternative knowledge source to the algorithm, in 
place of using the combination of relationships provided by the PharmGKB curation process and the physical 
interactions from DrugBank. 

2.6. Refining the source of negative relationships  

In order to provide negative relationships to the logistic classifier during training, the PGxPipeline matches each 
positive relationship from its gold standard with relationships between that same drug and three randomly selected 
genes. The set of genes it samples from is the entire set of genes in InWeb, PharmGKB, and DrugBank (12,460 
genes). The PGxPipeline knowledge base contains approximately 400 drugs and 12,460 genes.  However, only 
approximately 1,000 of those genes have relationships (genetic or physical) with drugs. Given a gene chosen at 
random from the set 12,460 genes, the chance that the 
gene will have any drug relationships is quite low. The 
consequence of this is that it can be relatively easy to 
differentiate between a positive and negative 
relationship, since most negative examples have no 
important relationships with any drugs.  
In order to make our classification task more 
challenging we select negative examples from among 
known pharmacogenes—genes that in fact have at 
least some known relationship with a drug. Therefore, 
we replaced the pool of genes from which negative 
examples are selected with only the set of genes that 
exists in PharmGKB  (585 genes), a much smaller 
gene set of known pharmacogenes. This allows us to 
more stringently evaluate the classifier while still 
maintaining the power to predict potential drug 
relationships with unknown pharmacogenes. 

2.7. Comparison of the two drug-gene 
knowledge sources: Curated versus Text-
Mined 

To facilitate comparison between the text-mining-based classifier and the curation-based classifier we trained a 
logistic regression classifier in a similar manner, and validated with fivefold cross-validation. Therefore, in each of 
the folds, all knowledge about the relationships in the validation set (1/5 of the data) is dropped from the training set 
(the 4/5 of the data used for training). The performance of each classifier on this task is a metric of how accurate the 
model is in classifying known pharmacogenetic relationships. 

Figure 4. The intersection of drug-gene interactions identified by 
Pharmspresso text-mining or by PharmGKB curators, and those 
interactions receiving high scores when applying the text-mining-
based classifier. Pharmspresso identified 5,312 pharmacogenomic 
interactions, PharmGKB contained 1782 interactions, with an overlap 
of 1,157 between the two sources. 
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2.8. Using text-mining-derived relationships combined with PGxPipeline scores to extrapolate; discovering 

additional drug-gene relationships 

Pharmspresso identified 5,312 pharmacogenomic relationships, PharmGKB contained 1,782 relationships, with an 
overlap of 1,157 between the two sources (Figure 4). As expected and previously described14, Pharmspresso is a 
very sensitive test for pharmacogenomic relationships, while PharmGKB is a highly specific one. There are 625 
relationships in PharmGKB that Pharmspresso does not identify when searching for co-occurrence at the sentence 
level (the lexical names of the gene and drug may not occur in the same sentence). To test whether we can use the 
PGxPipeline scores to recognize true relationships not directly found in literature by Pharmspresso, we did the 
following: We trained the classifier with the 5,132 drug-gene relationships found by text-mining and applied the 
classifier to all of the 625 drug-gene relationships in PharmGKB that were not found by text-mining, to get a 
pharmacogene score for each relationship.  For comparison we also applied the classifier to a randomly generated 
set of drug-gene relationships to get a pharmacogene score for each relationship.  We then investigated our ability to 
use the pharmacogene score to distinguish between the relationships that were in PharmGKB versus the randomly 
created relationships. (To find relationships in region titled “Extrapolated Knowledge” in Figure 4.)  

2.9. External validation: New relationships registered by the PharmGKB staff 

During the time since we first downloaded the pharmacogenomic relationships from PharmGKB an additional 1,462 
articles were curated resulting in an additional 1,636  drug-gene relationships.  This set of relationships was used as 
an external validation set. For each drug-gene relationship we used the trained classifier to score the relationship and 
randomly sampled three more genes to pair with the drug as a source of negative relationships.  
 

3. Results 

3.1. Comparison of the two drug-gene knowledge sources: Curated versus Text-Mined 

To evaluate the use of a text-mining based network as a pharmacogenomic relationship knowledge base we 
compared the performance of the text-mining-based classifier with that of the curation-based classifier (Methods 
2.7) using 5-fold cross validation on the gold standard set of drug-gene relationships (Methods 2.3). We find that the 
text-mining-based classifier out-performs the curation-
based classifier, with receiver operator characteristic 
(ROC) curves with area under the curve (AUC) of 0.701 
and 0.672 respectively (see Figure 5). Besides having an 
overall AUC that is slightly higher, the text-mining-
based classifier achieves high sensitivity in the region of 
high specificity (FPR ≤ 0.2).  Achieving a greater AUC 
in this area alone is often desirable by experimentalists 
as the algorithm can ensure a very low false positive 
rate, even though it may not have high recall. In addition 
we tested the two classifiers under the exact conditions 
described by Hansen (negative set genes selected from 
InWeb and broader definition of gold standard from 
PharmGKB data). This yields ROC curves with AUC 
values of 0.814 and 0.799 for the curation-based 
classifier and the text-mining based classifier 
respectively, and so under those conditions the 
performance of the two classifiers is comparable. The 
0.814 AUC of the curation-based classifier is slightly 

Figure 5. The ROC curves for the curation-based classifier and text-
mining-based classifier validated on the gold standard. The text-
mining-based classifier out-performs the curation-based classifier. 
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lower than the 0.82 as reported by Hansen et al., presumably because the input knowledgebase is smaller—it is 

based on the subset of 1731 articles for which we obtained full text to allow fair comparison with Pharmspresso. 

3.2. Using text-mining-derived relationships combined with PGxPipeline scores to extrapolate; discovering 
additional drug-gene relationships 

We observe that there are relationships in 
PharmGKB that Pharmspresso does not 
discover when searching for co-occurrence 
at the sentence level and thus not used to 
train the text-mining-based classifier. We 
explored whether we can detect these 
relationships by using the scores assigned 
by the classifier. As described in Section 
2.8, we selected a balanced set of positive 
and negative relationships and tested which 
relationships lie in the region titled 
“Extrapolated Knowledge” in Figure 4 
(relationships positively scored by the 
classifier, not found by text-mining, and in 
PharmGKB). We call these “extrapolated” 
since they were not identified by the text-
mining algorithm and so not part of the 
input knowledge base of drug-gene 
relationships. We validated against the 
PharmGKB relationships and found 3.44-
fold enrichment (134/39) with a cutoff 
score of zero. That is, of the set of 173 
relationships that score positively, we have 
134 true positives that are in PharmGKB 
and presumably 39 false positives, a false 
discovery rate (FDR) of 22.5%. 
 

Figure 6 describes the contribution of 
the local network to the score for a given 
pharmacogenomic relationship extrapolated 
from the text-mining-derived relationships 
by the text-mining-based classifier, for 
three examples. These examples represent a 
known pharmacogenetic relationship (they 
appear in PharmGKB) where the drug and 
gene did not co-occur at the sentence level 
in the literature, yet the text-mining-based 
classifier assigns the relationship a high 
score.  

 
Figure 6A shows the underlying 

evidence for the predicted relationship 
between the drug trimipramine and gene 

Figure 6. Examples of extrapolation of drug-gene interactions using the text-mining-
based PGxPipeline classifier. All examples are in fact found in PharmGKB; meaning 
there is literature support for these relationships recorded manually by curators. 
Although Pharmspresso misses them, they are recovered by the PGxPipeline scoring 
mechanism. Zigzag line: suggested, positive-score interaction (left panel). This 
interaction is not found directly in the literature by Pharmspresso, but receives a 
positive PGxPipeline score (score appears on the line). Solid lines: gene-gene 
relationships from InWeb. Dashed/dotted lines: drug-gene relationship found in 
literature by Pharmspresso. Dashed red - indication similarity, Dotted blue - 
structural similarity. The score shown on the edge represents the similarity score of 
the edge’s drug, to the query drug. 
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SLC6A4, based on the text-mining-derived network of drug-gene relationships, and the gene-gene interactions in 
InWeb. SLC6A4 is a sodium-dependent serotonin transporter. The drug trimipramine is a tricyclic antidepressant17. 
The support for the predicted relationship between SLC6A4 and trimipramine stems from the similarity to the two 
drugs directly related to the gene, in the text-mining-derived network (mirtazapine and clomipramine), and from the 
similarity to the drug carbamazapine, which is related in the text-mining-derived network to the CALR gene, found 
to interact with SLC6A4 in the InWeb network. Mirtazapine is an antidepressant used for the treatment of moderate 
to severe depression, and has a very similar set of indications as trimipramine 18. Of the drugs that co-occur in the 
literature with SLC6A4, the one that is most similar in structure to trimipramine is clomipramine. Of the drugs 
related to the CALR gene in the text-mining-derived network, the one that is most structurally similar to 
trimipramine, the query drug, is carbamazapine. It is also the most similar in its indications: both carbamazapine and 
trimipramine are used to treat depression, the indirect connection to carbamazapine via CALR boosts the 
prediction10. 

 
Figure 6B shows the support for the relationship between doxorubicin and BAK1, a BCL2-antagonist/killer 1. 

The InWeb interactome connects BAK1 to two genes, TP53 and BCL2, each of which has a literature co-mention 
with docetaxel, an anti-mitotic chemotherapy medication. Both doxorubicin and docetaxel are cancer treatments as 
well, and so the similarity of indications plays a role in uncovering the relationship between BAK1 and doxorubicin. 
Doxorubicin is a type of anthracycline, which is the most active group of cytotoxic agents for the treatment of breast 
cancer. Docetaxel with anthracyclines are sometimes used together and share structural similarity19. BAK1 
“borrows” drug relationships from its neighbors to boost the likelihood of sharing a relationship with doxorubicin. 

 
Figure 6C shows the predicted relationship between diltiazem and CYP2C8. Diltiazem is a calcium channel 

blocker, a member of the benzothiazepine class that reduce blood pressure through vasodilation20. It is used to treat 
hypertension and rhabdomyolysis, as is verapamil. InWeb connects CYP2C8 to 3 genes: ALDH7A1, ALDH2, and 
PON1. Each of these interact with drugs that have substantial structural or indication overlap with diltiazem10. 
CYP2C8 itself is found in the literature with 2 drugs; pitavastatin has the highest indications similarity to diltiazem 
and repaglinide has the highest structural similarity to 
diltiazem. 

3.3. External Validation of the text-mining-
based pharmacogene classifier 

As an external validation of the text-mining-based 
classifier 1,636 drug-gene relationships added to the 
PharmGKB after we established the training set as 
well as three times that many randomly chosen drug-
gene relationships were scored. The ROC curve has an 
area under the curve of 0.78, as shown in Figure 7.  
The text-mining-based classifier had comparable 
performance to the curation-based classifier on the 
same external validation set, which produced a ROC 
curve with an AUC of 0.8. 
 

There are relationships found by Pharmspresso 
that do not appear in PharmGKB. We scored each of 
these relationships by leaving out the knowledge about 
the relationship during training of the text-mining 
based classifier. The relationships that receive positive 
scores appear in the intersection of the green and blue 

Figure 7. The ROC curve for the literature-based classifier on the 
external validation set of 1,636 drug-gene interactions not included 
in the training set.  This performance was achieved under the same 
conditions as presented in the Hansen paper. 
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circles of Figure 4 – that is, the intersection of regions “Text-mining relationships” and “Text-mining based high 

scoring relationships”. Within this intersection, those that do not appear in PharmGKB are titled “Putative 
Relationships” and are sent to the curators for potential insertion into PharmGKB. For example, the relationship 
between CYP3A5 and cyclosporine scored highly, was not in the original set of PharmGKB relationships (thus 
appears in region titled “Putative Relationships” in Figure 4), and in fact PharmGKB now has three articles 
supporting this relationship 21-23. 
 

4. Discussion 

In this work, we explored the use of a text-mining-derived network of drug-gene relationships, as a knowledge base 
to replace human-curated literature relationships in the PGxPipeline. The PGxPipeline uses the knowledge base to 
predict pharmacogenes for an input query drug. While the human curated data are high quality, they are much less 
abundant.  In this application, it is apparent that the improved coverage afforded by automatic detection outweighs 
the introduction of noise and errors because of imperfect text-mining extraction.  Of course, the benefits are 
substantial:  curation is a very expensive process (in terms of time and money), whereas text-mining is inexpensive 
and scalable14. In addition, PharmGKB staff curators often only read the abstract of articles because of the large 
volume of papers they must annotate.   Abstracts do not necessarily contain the pharmacogenomic drug-gene 
relationship reported by the article, whereas the Pharmspresso system analyzes the full text of an article. 
 

The task of Pharmspresso is really to identify relationships between genes and drugs, within the small scope of 
a single sentence. This is not what PharmGKB curators have been tasked with; they curate articles with respect to 
the genes and drugs that are mentioned without specifically asserting which genes and drugs relate.  Therefore, it is 
not surprising that when using the high-quality gold standard the text-mining-based classifier actually performs 
slightly better than the curation-based classifer (0.701 AUC vs. 0.672 respectively, Figure 5).  These results 
demonstrate that the drug-gene network derived by Pharmspresso can be used in place of manually curated data in 
the PGxPipeline algorithm, which may allows us to enlarge the drug-gene network to millions of articles in the 
scientific literature.  Our results also provide an independent, large-scale, external validation of the usefulness and 
accuracy of Pharmspresso. Pharmspresso had previously been validated on a small evaluation set.  Finally, we have 
demonstrated that the scores assigned by the PGxPipeline can be used to detect new relationships.   

 
The Hansen et al. algorithm relied on a manually-curated network of pharmacogenomic drug-gene relationships 

derived from experimental or clinical data, as reported in the literature. Our results show, however, that a text-mined 
sentence co-occurrence drug-gene network can perform as well and even better under some circumstances. We 
acknowledge that the co-occurrence drug-gene network contains noise. Nonetheless, it is more likely that a co-
occurrence is a meaningful relationship than a random one. Text mining allows us to generate a large network of 
relationships, thereby increasing the signal-to-noise ratio. This implies that the likelihood of a pharmacogenomic 
drug-gene relationship increases in proportion to the number of similar drugs that co-occur in the literature with the 
gene or genes in its pathway. We can therefore expect that as our knowledge base increases by mining more 
pharmacogenomic articles, so will our power to predict pharmacogenomic relationships. Additionally, because the 
method is general, this logic may apply to other types of pharmacogenomic relationships such as drug-SNP 
relationships, a hypothesis which we are currently investigating. 

 

4.1. Limitations 

While we have shown that we can predict pharmacogenomic drug-gene relationships based on a corpus of 
pharmacogenomic articles, it not yet clear that this methodology will work for other interesting biological problems, 
such as deriving drug-SNP relationships or gene regulatory networks. The generality of our methodology may be 
limited since our analysis is based on a corpus that is highly enriched for pharmacogenomics articles. We plan to 
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investigate how dependent the performance of the algorithm is on this specialized corpus. One other limitation of 
using simple co-occurrence is the inability to derive the type of drug-gene relationship text-mined from the 
literature24. For example, it would be advantageous to know if a drug and gene have a positive or negative 
relationship or whether the gene is pharmacokinetic or pharmacodynamic for the drug. This type of characterization 
of edges in the network requires more sophisticated text mining. 
 

Our next step is to expand the corpus of articles available to Pharmspresso to include a larger 
pharmacogenomics literature. Methods that classify publications likely to contain pharmacogenomic information, 
such as MScanner, can be used to filter Medline in order to identify pharmacogenomic articles25. This expansion of 
the drug-gene relationship network will greatly improve the performance of the PGxPipeline.  The PGxPipeline 
relies on other types of relationship networks in addition to the drug-gene network, namely a gene-gene network and 
a drug-disease network.  Mining these relationships from the literature may also increase the predictive power of the 
algorithm as well as keep the knowledge base scalable and up-to-date. Finally, we plan to incorporate high-scoring 
predictions into the curation pipeline at PharmGKB, to prioritize these predictions for curator review and subsequent 
insertion into the knowledge base. 

 
Pharmacogenomics is not only concerned with the important genes but also with their particular variations that 

impact drug response.  For example, variations in the VKORC1 and CYP2C6 genes are critical for determining 
warfarin dose, and can be used to predict the optimal dose of warfarin26-29. The Pharmspresso algorithm can detect 
genetic variations, and can be used to create a network linking specific variations to specific drugs14.  Such a 
network might be useful in refining the PGxPipeline to weight pharmacogene predictions based on this additional 
knowledge source.  The text-mining-based PGxPipeline classifier produced a substantial number of high scoring 
drug-gene relationships that were not found to be in PharmGKB.  A high-throughput biological assay could be 
employed to test these relationships for their validity. 
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