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Current methods for high throughput sequencing (HTS) for the first time offer the opportunity to investigate the
entire transcriptome in an essentially unbiased way. In many species, small non-coding RNAs with specific secondary
structures constitute a significant part of the transcriptome. Some of these RNA classes, in particular microRNAs
and snoRNAs, undergo maturation processes that lead to the production of shorter RNAs. After mapping the
sequences to the reference genome specific patterns of short reads can be observed. These read patterns seem to
reflect the processing and thus are specific for the RNA transcripts of which they are derived from. We explore here
the potential of short read sequence data in the classification and identification of non-coding RNAs.
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1. Introduction

Whole-Transcriptome analysis of many species and cell types reveals massive expression of non-coding RNA.

It is widely believed that non-coding RNAs act as regulators upon transcription and translation. Recent

investigations of whole RNA cDNA-Libraries based on high throughput sequencing (HTS) have shown that

these libraries contain both primary and processed transcripts. Over the last years, several classes of small

RNAs with a length of about 20nt have been discovered. The most prominent classes are miRNAs, piRNAs,

and various variants of endogenous siRNAs.1,2 In addition, small RNAs have been found to be associated

with transcription start and stop sites of mRNAs.3–5 Several studies reported that well-known ncRNA loci

are also processed to give rise to small RNAs. MicroRNA precursor hairpins, for instance, are frequently

processed to produce additional “off-set RNAs” (moRNAs) that appear to function like mature miRs. These

moRNAs were discovered in Ciona intestinalis ,6 where they form an abundant class of processing products.

At much lower expression levels they can also be found in the human transcriptome.7 Specific cleavage

and processing of tRNAs was observed in the fungus Aspergillus fumigatus8 and later also found in human

short read sequencing data.9 Small nucleolar RNAs (snoRNAs) are also widely used as a source for specific

miRNA-like short RNAs.10–12 The same holds true for vault RNAs.13,14 Little is known, however, about

the mechanisms of these processing steps and their regulation. Here, we show that the production of short

RNAs is correlated with RNA secondary structure and therefore exhibits features that are characteristic for

individual ncRNA classes. The specific patterns of mapped HTS reads thus may be suitable to identify and
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Fig. 1. Non-coding RNAs exhibit specific block patterns. (a) Distribution of short reads at the hsa-mir-370 locus. There
are three clearly distinct blocks of reads: they correspond to moR (5’-end), miR* (center) and miR (3’-end) transcripts. The
conservation pattern is shown below. (b) The class of miRNAs often shows a block pattern of two or three separated blocks.
(c) snoRNAs tend to have miRNA-like mature and star blocks at their 5’ and 3’ hairpins with minor overlaps, while a series of
overlapping blocks is striking for the tRNA class (d).

classify the ncRNAs from which they are processed. We explore here to what extent such an approach is

feasible in practise.

The first step towards this goal is the identification of ncRNA loci from a collection of mapped HTS

reads. We have recently developed the tool blockbuster7 to simplify this task in genome-wide analyses. The

program merges mapped HTS reads into blocks based on their location in the reference genome (Fig. 1a).

After the assembly of blocks, specific block patterns for several ncRNA classes can be observed. For example,

miRNAs typically show 2 blocks corresponding to the miR and miR* positions (Fig. 1b). A similar processing

can be observed for snoRNAs (Fig. 1c). On the other hand, tRNAs show more complex block patterns with

several overlapping blocks (Fig. 1d).

2. Methods

The dataset analyzed here was produced according to standard small RNA transcriptome sequencing proto-

cols in the context of other projects and will be published in that context. In brief, total RNA was isolated

from the frozen prefrontal cortex tissue using the TRIzol (Invitrogen, USA) protocol with no modifications.

Low molecular weight RNA was isolated, ligated to the adapters, amplified, and sequenced following the
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Fig. 2. HTS data reflects structural properties of ncRNAs. Upper panels show the number of 5’-ends of mapped HTS reads
(bars) relative to aligned the 5’-ends (dashed vertical lines) of 27 ACA boxes (left), 81 CD boxes (middle) and 87 tRNAs (right).
The area in the lower panel represents the number of boxes and tRNAs present at the distance relative to their aligned start
sites. In accordance with Taft et al.12 a sudden and sharp increase of 5’-ends is seen just upstream of the snoRNAs’ ACA and
C boxes, resp., indicating that read blocks reflect structural properties of snoRNAs. Similarily, the number of 5’-ends increases
just upstream of the tRNA and the relative start sites of its three loop regions (dotted lines). Downstream the start sites there
is a sudden drop in the number of reads.

Small RNA Preparation Protocol (Illumina, USA) with no modifications. All small RNAs, 17-28nt long,

were mapped to the human genome (NCBI36.50 Release of July 2008) using segemehl,15 a method based

on a variant of enhanced suffix arrays that efficiently deals with both mismatches as well as insertions and

deletions. We required small RNAs to map with an accuracy of at least 80% and only the best hit was

selected. Reads mapping multiple times to the genome with an equivalent accuracy were discarded. After

filtering the effective accuracy was > 97%. Subsequently, all hits were sorted by their genomic position. Two

reads were assigned to the same putative ncRNA locus, i.e. cluster, if separated by less than 100nt. Clusters

consisting of less than 10 reads were discarded because of their low information content.

To detect specific expression patterns, we divided consecutive reads into blocks using blockbuster.7

Here, we used a width parameter of s = 0.5, a value that requires blocks to be well separated to be

recognizedas distinct. We required a cluster to have at least 2 blocks. In the following we refer to the number

of reads comprised in a block as the block height. Using blockbuster, we identified 852 clusters across the

whole human genome. This set comprises 2,538 individual blocks and 85,459 unique reads. 434 clusters were

found within annotated ncRNA loci [miRBase v12 (727 entries), tRNAscan-SE (588 entries) and snoRNAbase

v3 (451 entries)], see Tab. 1.

We then computed secondary structures (using RNAfold16) to assess the relationship of reads and struc-

ture. For each read, the base pairing probabilities were calculated for the sequences composed of the read

itself and 50nt of flanking region both up- and downstream. These data were also collected separately for

reads found within annotated miRNA, tRNA, and snoRNA loci, respectively.

In order to investigate whether the short reads patterns carry information on the particular ncRNA

class from which they orginate, we selected three distinct ncRNA classes and performed a random forest

Table 1. In total 434 of 852 clusters were found within regions of annotated miRNA, tRNA
and snoRNA loci. While the average number of blocks is similar for all three ncRNA classes, the
number of reads differs significantly among the classes.

RNA class source loci found blocks/cluster (mean) reads/cluster (median)

microRNAs miRBase v12 218 2.42 ± 1.04 4535.33
tRNAs tRNAscan SE 87 3.22 ± 1.92 183.95
snoRNAs snoRNAbase v3 129 2.60 ± 1.66 127.5
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Fig. 3. Base pairing probabilities increase at the 5’-end and decrease at the 3’-end of reads mapped to ncRNA loci. (a) The
3’- and 5’-ends are indicated by dashed lines. The median base pairing probability increases sharply at the 5’-ends (upper left)
and drops again at the 3’-ends of reads mapped to miRNA loci (upper right). A similar – but attentuated – effect is observed
for snoRNAs (middle panel) and tRNAs (lower panel). (b) The median base pairing probabilities at 5’- (left panel) and 3’- ends
(right panel) for all reads within the 852 clusters. The 5’- and 3’-ends are indicated by dashed vertical lines.

classification:17,18 tRNAs (n = 87), miRNAs (n = 218) and snoRNAs (n = 129). Based on a visual inspection

of the mapped reads, ten features were selected to train the random forest model: the number of blocks within

a cluster (blocks), the length of a cluster (length), the number of nucleotides covered by at least two blocks

(nt overlap), the number of overlapping blocks (block overlap), the maximum, minimum and the mean block

height (max, min and mean height) in a cluster as well as the maximum, minimum and the mean distance

between consecutive blocks (max, min and mean distance).

3. Results

The 5’-ends of reads arising from known snoRNAs preferentially map just upstream of the C- and ACA-boxes.

This indicates the correlation of mapping patterns with processing steps and thus with structural properties

of snoRNAs (Fig. 2). Based on earlier findings that miRNA-like products are derived from snoRNAs12 and

the observation that miRNA transcripts tend to have higher blocks (Tab. 1), the two peaks shown in the

Figure 2 (left) probably represent small RNAs produced from the 5’- and 3’-hairpins of the HACA (see also

Fig. 1c). CD-snoRNAs show, in contrast to the HACA-snoRNAs, only a single prominent peak at the 5’-end

(Fig. 2, middle). An increased number of 5’-ends of HTS reads is also observed just upstream of loops of

tRNAs (Fig. 2 (right)).

The pairing probabilities of bases covered by HTS reads are significantly increased (Fig. 3b). Just up-

stream the 5’-end of these reads, the median base pairing probability increases sharply and reaches a level of

> 0.9. At the 3’-end the base pairing probability drops again. However, median base pairing probabilities of

bases covered by the center of reads drop down to 70%. Although this effect is boosted by reads found within

miRNA loci, it can also be observed unambiguously for reads within snoRNA and tRNA loci (Fig. 3a).

The observation that blocks reflect structural properties of ncRNAs was exploited to train a random forest

classifier to automatically detect miRNAs, tRNAs and snoRNAs. After visual inspection of block patterns for

some representatives of these classes, ten features were selected. Their evaluation reveals significant statistical

differences among the chosen ncRNA classes (Fig. 4). As expected, the number of reads mapped to miRNA
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Fig. 4. Box plots for 8 different features selected to train the random forest classifier. The number of reads mapped to miRNA
loci alone (max block height and min block height) effectively distinguish miRNAs from other ncRNAs. Likewise, the distribution
of block distances seems to be a specific feature for miRNAs. Compared to other regions, tRNA loci frequently show block
overlaps of two or more blocks. The minimum block distance shows a median overlap of ≈5nt for blocks in within tRNA loci.
SnoRNAs typically have longer block distances than the other classes.

loci (minimum and maximum block height) clearly distinguishes miRNAs from other ncRNA classes. In

contrast to tRNAs and snoRNAs the maximum block distance of miRNAs shows a very narrow distribution

around 40nt, reflecting the distance between miR and miR* transcripts. Furthermore, the class of tRNAs

frequently shows more block overlaps than snoRNAs and miRNAs. The distance of blocks is an important

feature for snoRNAs: the maximum block as well as the minimum block distance is higher compared to both

tRNAs and miRNAs.

The random forest model was repeatedly trained with randomly chosen annotated loci and different

training set sizes in order to determine predictive values (PPV) and recall rates. For the training sets
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Table 2. Positive predictive values (PPV) and recall rates for train-
ing sets of size 150 and 250. For each set size means, medians and
standard deviations are calculated from 20 randomly sampled train-
ing sets.

PPV recall
#loci mean sdev mean sdev

Training size 250

all 852 0.889 0.015 0.799 0.015

miRNA 227 0.932 0.020 0.918 0.023
tRNA 287 0.860 0.040 0.683 0.046

snoRNA 143 0.819 0.032 0.694 0.060
other 195

Training size 150

all 852 0.827 0.020 0.698 0.027

miRNA 236 0.900 0.027 0.847 0.041
tRNA 348 0.755 0.044 0.580 0.062

snoRNA 115 0.733 0.057 0.525 0.071
other 153

comprising 150 clusters the random forest model shows a positive predictive value > 0.7 for all three ncRNA

classes. The recall rate for miRNAs is well above 80%. However, with a rate of ≈ 0.55 the recall of snoRNAs

and tRNAs is relatively poor (Tab. 2). For larger training sets containing 250 clusters, the positive predictive

value (PPV) is > 0.8 for all classes. For miRNAs the classification achieves recall rates and PPVs of > 0.9.

Likewise, the recall rates for snoRNAs and tRNAs rise to 0.7-level. In summary, for both training set sizes

and all classes the random forest model achieves PPVs and recall rates of ≈ 0.8.

We applied the classifier to unannotated ncRNA loci. A list of miRNA, snoRNA, and tRNA candidates

predicted is available from the supplementary page (http://www.bioinf.uni-leipzig.de/∼david/PSB/).

This resource includes the original reads, their mapping accuracy and their mapping location in machine-

readable formats. Furthermore, the page provides links to the UCSC genome browser to visualize the block

patterns. For microRNAs and snoRNAs, we also indicate whether the candidates are supported by indepen-

dent ncRNA prediction tools.

The 29 miRNA predictions contained 3 miRNAs (hsa-mir1978, hsa-mir-2110, hsa-mir-1974) which have

already been annotated in the most recent miRBase release (v.14), as well as a novel member of the mir-548

family, and another locus is the human ortholog of the bovine mir-2355. In addition, we found two clusters

antisense to annotated miRNA loci (hsa-mir-219-2 and hsa-mir-625). Such antisense transcripts at known

miRNA loci have been reported also in several previous publications,20–22,24 lending further credibility to

these predictions.

For the tRNAs and snoRNAs we expect a rather large false positive rate. The 78 tRNA predictions are

indeed contaminated by rRNA fragments, but also contain interesting loci, such as sequence on Chr.10 that

is identical with the mitochondrial tRNA-Ser. SnoReport,23 a specific predictor for HACA snoRNAs based

on sequence and secondary features, recognizes 44 (20%) of our 223 snoRNAs predictions.

Short RNAs are processed from virtually all structured ncRNAs. Complex read patterns are observed,

for instance, for the 7SL (SRP) RNA and the U2 snRNA. Y RNAs, which have a panhandle-like secondary

structure produce short reads mostly from their 5’ and 3’ ends, see Fig. 5.

4. Discussion

In extension of previous work establishing that various ncRNA families produce short processing products

of defined length,6,9,12 we show here that these short RNAs are generated from highly specific loci. The

dominating majority of reads from short RNAs originates from base paired regions, suggesting that these

RNAs are, like miRNAs, produced by Dicer or other specific RNAases. For example, specific cleavage products

have recently been reported for tRNAs.19 In this work we show that the block patterns are characteristic

for three different ncRNA classes and thus suitable to recognize additional members of these classes. For
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Fig. 5. Short reads are produced from a wide variety of structured ncRNAs. Green arrows indicate the ncRNA gene and its
reading direction, individual short reads are shown as orange lines. The same scale is used for all examples.

instance, the random forest trained with loci annotated in the mirBase v12 predicted five additional miRNAs

reported in the mirBase release 14 as well as two “antisense microRNA”.

The block patterns for the evaluated ncRNAs show some interesting characteristics. Although miRNA

loci accumulate far more reads than tRNAs and snoRNA loci, the reads are extremely unevenly distributed

across the blocks. For tRNAs we observe series of overlapping blocks that are specific enough to separate

this class from other classes with high positive predictive values.

However, the successful prediction of miRNAs heavily depends on the height of the blocks, i.e. the

number of reads that map to a potential locus. In comparision tRNAs and snoRNAs show significantly lower

positive predictive values and recall rates. A relatively large training set is required to achieve PPV’s > 80%.

Obviously, the selection of appropriate features is crucial for the success of the presented approach. Hence,

the random forest classifier is not sufficient as it stands and the identification of other characteristic features

is subject to further research. The integration of secondary structure information of cluster regions is likely

to enhance the prediction quality.

Beyond the classification by means of soft computing methods, this survey shows that HTS block patterns

bear the potential to greatly improve and simplify ncRNA annotation. Given the striking relationship of HTS

reads and secondary structure for some ncRNA classes, block patterns may also be used in the future to

directly infer secondary structure properties of non-coding RNAs from transcriptome sequencing data. In

this context, although not shown here, block patterns may also help to identify new classes of RNAs directly

from transcriptome sequencing data.
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