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Despite the importance of protein-RNA interactions in the cellular context, the number of available protein-RNA complex structures is 
still much lower than those of other biomolecules. As a consequence, few computational studies have been addressed towards protein-
RNA complexes, and to our knowledge, no systematic benchmarking of protein-RNA docking has been reported. In this study we 
have extracted new pairwise residue-ribonucleotide interface propensities for protein-RNA, which can be used as statistical potentials 
for scoring of protein-RNA docking poses. We show here a new protein-RNA docking approach based on FTDock generation of 
rigid-body docking poses, which are later scored by these statistical residue-ribonucleotide potentials. The method has been 
successfully benchmarked in a set of 12 protein-RNA cases. The results show that FTDock is able to generate near-native solutions in 
more than half of the cases, and that it can rank near-native solutions significantly above random. In practically all these cases, our 
propensity-based scoring helps to improve the docking results, finding a near-native solution within rank 100 in 43% of them. In a 
remarkable case, the near-native solution was ranked 1 after the propensity-based scoring. Other previously described propensity 
potentials can also be used for scoring, with slightly worse performance. This new protein-RNA docking protocol permits a fast 
scoring of rigid-body docking poses in order to select a small number of docking orientations, which can be later evaluated with more 
sophisticated energy-based scoring functions.   

1. Introduction  

Understanding the molecular mechanism of protein-RNA recognition in order to understand and predict such 
interactions is one of the grand challenges in structural biology. In recent years, the growing awareness for the 
importance of RNA in the context of protein-RNA interactions, together with the publication of the 50S and 30S 
ribosome subunits,1,2 have increased the volume of data on these complexes. However, in spite of this, the level of 
structural knowledge of protein-RNA association is quite poor in comparison to that of other biomolecules. 
 Given that experimental determination of protein-RNA complexes at high resolution is challenging (being 
crystallization one of the main bottle-necks), computational approaches for structural modeling at different 
resolution levels are increasingly needed in order to complement existing experimental data on protein-RNA 
interactions of interest. One promising tool is computational protein-RNA docking, which can provide structural 
models at residue and even atomic resolution level, but there are still very few reported methods as compared to 
protein-protein or protein-ligand docking, and certainly there are no systematic studies on large data sets. To our 
knowledge, the largest reported benchmark set for protein-RNA docking consisted on five cases.3 In this context, 
the Critical Assessment of PRediction of Interactions (CAPRI) experiment (http://www.ebi.ac.uk/msd-srv/capri), a 
blind international docking competition to evaluate the performances of protein-protein computational docking 
methods, proposed recently the first protein-RNA complex target. The experiment nicely showed how some 
docking methods can be adapted to predict the tridimensional structure of a protein-RNA complex. Indeed, our 
pyDock scoring protocol,4 which achieved excellent results for protein-protein docking in past CAPRI tests,5 
identified the second best model among all participants in the scorer experiment, with excellent ligand RMSD of 3.8 
Å with respect to the X-ray structure of the complex. However, this experiment also highlighted the limitations of 
current methods. In addition to better treatment of flexibility, new scoring parameters specifically adapted for 
protein-RNA binding are needed. 
 In this sense, a number of studies have used available structural data of real protein-RNA interfaces in order to 
understand this type of interaction and extract better parameters for predictions.6-16 Some of these studies reported 
individual propensities and all-atom statistical potentials for the characterization of modeled protein-RNA 
interactions at atomic level. For instance, all-atom hydrogen-bond statistical potentials have been applied to identify 
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near-native docking solutions.3 Other all-atom statistical potentials found interesting details of the protein-RNA 
interaction.12-16 However, coarse-grained statistical potentials at residue-nucleotide level have the advantage of low 
computational cost for their application to larger benchmark sets in order to develop new docking methods 
(something that is needed before considering more detailed functions). In a previous work,6 we extracted and 
successfully used single residue interface propensities for protein-RNA to identify RNA-binding sites in proteins. In 
the present study, we have extracted new pairwise residue-ribonucleotide propensities for protein-RNA with the 
goal of being of predictive value for docking. For that, we have used a standard FFT-based approach to generate 
protein-RNA rigid-body docking poses, and then we have used the new propensities to successfully score these 
docking poses. We have also tested other reported single residue or residue-ribonucleotide propensities,6,9,15,16 in 
order to check the capability of these statistical potentials for the scoring of rigid-body docking poses. 
      

2. Methods 

2.1. Pairwise residue-ribonucleotide interface propensities from protein-RNA structural data 

We extracted protein-RNA pairwise interface propensities using the same training data set that we previously used 
to extract individual interface propensities, which was composed of 282 non-redundant protein-RNA interactions.6 
These propensities can be calculated from the observed frequency of the specific residue-ribounucleotide pairs of 
type pq (p = 1...20 for amino acid residues; and q = 1...4 for ribonucleotides) at the protein-RNA interfaces, as 
compared with the expected frequency of these pairs according to the protein and ribonucleotide surface 
composition, as it is shown by equations 1-4: 
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 where NI
pq is the number of pairs between residue type p and ribonucleotide type q at the protein-RNA 

interfaces (the pairs were defined by having at least one atom within 4 Å distance from each other), ΣNI
pq the total 

number of residue-ribonucleotide pairs at protein-RNA interfaces, NS
p and NS

q the number of surface residues and 
ribonucleotides of type p and q respectively (surface residue or ribonucleotide were defined as those with accessible 
surface area ASA > 0.1 Å2), and ΣNS

p and ΣNS
q the total number of surface residues and ribonucleotides, 

respectively.  
 Then, propensities PI

pq were easily converted to free-energy estimates or statistical potentials by equation 2:  
 

stat
pqΔG  = -RTln( I

pqP )                                     (2) 

 
 The statistical potential ΔGstat

pq thus represents the empirical energy of forming a pair between a residue of 
type p and a ribonucleotide of type q at the interface, given their frequencies at the protein and ribonucleotide 
surfaces, being R the gas constant and T the absolute temperature (we have used here RT as 0.59 kcal/mol). 
Therefore, negative statistical potential values indicate favorable binding energies. 
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2.2. Protein-RNA rigid-body docking and scoring by propensity-based statistical potentials 

We used FTDock17 to generate 10.000 protein-RNA docking poses. We used the same FTDock version as we 
previously used for testing our pyDock method for scoring of protein-protein docking, that is, with no electrostatics 
and 1.2 Å grid resolution. 
 We evaluated all generated docking poses by a very fast algorithm that scored solutions based on the existing 
contacts at interface. For every residue-ribonucleotide pair at the interface of the docking pose (that is, those that 
have at least one atom within 4 Å distance from each other), the corresponding propensity value according to its 
type was assigned. The propensity-based values of all pairs were summed and formed the final score of the given 
docking pose i, as in equation 3:  

∑Δ=Δ
pq

stat
pq

stat
i GG                                      (3) 

 Finally, all docking solutions were ranked according to these propensity-based scores. For comparison, we 
also tested other previously described propensity values, either pairwise residue-ribonucleotide or single residue 
propensities. In the case of pairwise residue-ribonucleotide propensities, we converted the reported values (usually 
observed and expected frequencies) to statistical potentials as above described. In the case of single residue 
propensities, we summed the corresponding values of all interface residues according to their types.  
 

2.3. Benchmarking the method on known protein-RNA complex structures 

In order to benchmark our method, we compiled a set of non-redundant protein-RNA complexes of known 
structure, in which there is an available unbound structure for at least one of the two components. This produced a 
total of 12 cases, two of which had available structure for both unbound protein and RNA molecules, five had 
available only the unbound protein structure, and the remaining five had available structure for only the unbound 
RNA (Table 1). In order to avoid redundancy we ensured there was no more than 70% of sequence identity between 
any pair of proteins within the data set. On the other hand, we considered as unbound proteins those with more than 
95% of sequence identity with respect to the bound protein, and as unbound RNAs those with more than 85% of 
sequence identity with respect to the bound RNA structures in the protein-RNA complexes. 

 
Table 1. Structural data set of protein-RNA interactions used in this study. For each molecule the PDB and chain identifiers are 
shown. The RMSD in Å between the receptor or ligand used here and the bound structure is also shown in brackets.  

 
Name Complex PDB Receptor PDB 

(RMSD) 
Ligand PDB 
(RMSD) 

Tyrosyl-tRNA synthetase splicing factor / group I intron RNA 2RKJ_a:c 1Y42_x (0.9) 1Y0Q_a (3.0) 

Ct domain of elongation factor SelB / SECIS RNA 1WSU_a:e 1LVA_a  (0.7) 1MFK_a (3.1) 

NF-Kb / anti-NFKb RNA aptamer 1OOA_a:c 1OOA_a (0.0) 2JWV_a (5.4) 

Stnthetic Fab / P4-P6 ribozyme domain 2R8S_l:r 2R8S_l (0.0) 1HR2_a (4.3) 

Elongation factor SelB from E.Coli / SECIS RNA 2PJP_a:b 2PJP_a (0.0) 1MFK_a (3.1) 

SRP 19 / 7S.S SRP RNA  1LNG_a:b 1LNG_a (0.0) 1Z43_a (2.1) 

SRP ribonucleoprotein core Variant 6 / RNA 2PXV_a:b 2PXV_a (0.0) 1CQL_a (8.1) 

RNA-binding protein 15.5 K complexed / RNA 1E7K_a:c 2JNB_a (3.2) 1EK7_c (0.0) 

HutP / Hut mRNA  1WPU_a:c 1WPV_a (0.2) 1WPU_c (0.0) 

Norwakl Virus Polymerase with CTP / RNA 3BSO_a:p 1SH0_b (1.3) 3BSO_p (0.0) 

Pp7 Coat protein dimer in complex / RNA hairpin 2QUX_a:c 2QUD_a (0.8) 2QUX_c (0.0) 

Structure of 9-subunit archaeal exosome / RNA 2JEA_a:c 2JE6_a (0.4) 2JEA_c (0.0) 

 

Pacific Symposium on Biocomputing 15:269-280(2010)



 This set of structures was used to benchmark the docking results. We compared the predicted docking 
poses with the real protein-RNA complex structures by superimposing protein alpha-carbons of predicted and real 
complexes, and then calculating the RMSD between the RNA molecules (considering all atoms). A near-native 
solution was defined as a docking pose with RNA RMSD, calculated as described above, smaller than 10 Å, which 
is in line with the criteria used in the CAPRI experiment. This was calculated for the 10,000 docking poses 
generated by FTDock,17 and we computed success rates as the percentage of cases in which at least a near-native 
solution was found within a given number of docking poses as scored by the docking algorithm. The success rates 
expected by random were calculated by randomly shuffling the scores of the docking solutions (the process was 
repeated 100 times and the average was calculated). 
 
 

3. Results 

3.1. New pairwise residue-ribonucleotide interface propensities for protein-RNA 

We computed pairwise residue-ribonucleotide interface propensities from a set of protein-RNA complex structures, 
and then we converted them to statistical binding potentials (see Methods). The resulting values for all residue-
ribonucleotide types are shown in Figure 1. We found in this analysis that the most populated residue-ribonucleotide 
pairs at protein-RNA interfaces are those composed of the amino acid residues arginine (R), lysine (K) and histidine 
(H). On the contrary, the least favored pairs are composed of the following residues: aspartic acid (D), glutamic acid 
(E), cysteine (C), valine (V), leucine (L) and isoleucine (I). In most of the cases, for a given residue type, we do not 
see significant differences in the pairwise propensity values with regards to the four ribonucleotide types. This can 
be clearly seen in Figure 1, in which the major differences can be found among the residue types and not among the 
ribonucleotide types. These results are consistent with our previously reported single residue propensities for 
protein-RNA,6 and show the important role of electrostatic forces in protein-RNA binding, with negative RNA 
charge playing a determinant role in RNA-binding areas in proteins. Interestingly, the important role of 
electrostatics in protein-RNA binding underlines a major difference with protein-protein association, where 
desolvation and hydrophobic effect seem much more important. 
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Figure 1. Pairwise protein-RNA statistical potentials (favorable pairs are in red; disfavored in blue). 
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3.2. Protein-RNA rigid-body docking and scoring by propensity-based statistical potentials 

For seven out of the 12 cases, the FTDock rigid-body docking generated at least a near-native solution within the 
total 10,000 docking poses. The results are shown in Table 2. In two cases, the near-native solutions are ranked 
below 10 by FTDock, but the rest of cases there is no near-native solution ranked below 100. We can also see that 
the propensity-based scoring alone improves the best rank of a near-native solution in three of the cases, as 
compared with the original FTDock scores. As a consequence, in three cases a near-native solution is found with 
rank below 100. Moreover, when the propensity-based scores are used in combination with the original FTDock 
scores (simply by adding the scores, no weight optimization has been attempted here to avoid overfitting given the 
small number of cases), in practically all cases the near-native rank values improve with respect to the original 
FTDock scores  (except 1WPU, which slightly worsens from 159 to 170). Actually, in four cases a near-native 
solution is found with rank below 100. This indicates a clear predictive value of the pairwise propensity scores. 
Interestingly, the FTDock and the propensity values are quite complementary: in three of the cases, a near-native 
solution is found with rank below 10 by either FTDock or propensity-based scoring.  
 
 
 

Table 2. Results of protein-RNA docking and scoring. The total number of near-native solutions in the docking set is shown. The 
best rank of a near-native solution (RMSD < 10Å) is shown, after scoring by FTDock, by propensity-based potentials, and by 
combined score (in brackets is given the RMSD in Å of the near-native solution with respect to the x-ray complex structure, in 
addition to the fraction of native fnat and non-native fnon-nat contacts as defined in CAPRI). 

 
Complex PDB Number of 

near-native 
solutions 

Best near-native rank by 
FTDock scoring 

(RMSD) (fnat; fnon-nat) 

Best near-native rank by 
propensity-based scoring 

(RMSD) (fnat; fnon-nat) 

Best near-native rank by 
FTDock + propensity 

scoring 
(RMSD) (fnat; fnon-nat) 

1WSU 5 2015 (8.9) (0.23; 0.84) 70 (9.0) (0.23; 0.88) 1049 (9.0) (0.23; 0.88) 

2PJP 9 1590 (9.3) (0.43; 0.75) 213 (9.7) (0.43; 0.75) 763 (8.9) (0.43; 0.75) 

1LNG 4 131 (5.3) (0.55; 0.22) 660 (5.3) (0.55; 0.22) 92 (5.3) (0.55; 0.22) 

1E7K 46 7 (9.6) (0.05; 0.90) 778 (8.7) (0.18; 0.67) 7 (9.6) (0.05; 0.90) 

1WPU 44 159 (8.1) (0.35; 0.57) 1989 (9.8) (0.19; 0.74) 170 (8.1) (0.35; 0.57) 

2QUX 14 157 (8.1) (0.45; 0.70) 1 (8.5) (0.45; 0.67) 60 (8.1) (0.45; 0.70) 

2JEA 17 9 (9.1) (0.18; 0.95) 61 (8.3) (0.18; 0.96) 7 (9.1) (0.18; 0.95) 

 
 
 

3.3. Examples of successful predictions 

It is remarkable that for the 2QUX case (unbound protein vs. bound RNA), the scoring by the new pairwise 
propensities is able to find a near-native solution ranked 1. As can be seen in Figure 2, the predicted RNA 
orientation on the protein surface is very close to that in the x-ray structure. The best rank obtained by FTDock 
scoring was 157, so the effect of using the new propensity-based potentials on the final scoring is dramatic in this 
case.  
 Another example of successful application of protein-RNA docking can be found in a recent CAPRI blind 
experiment. Targets 33 and 34 were a protein-RNA case. In target 33, both molecules (protein and RNA) needed to 
be modeled since there was no available x-ray structure. That was an extremely difficult case for which no group 
was able to submit an acceptable model. Target 34 was the same complex, but with the bound structure of the RNA 
provided by the organizers (although with random orientation). For this target, we generated docking poses with 
FTDock and with RotBUS (and in-house developed program for rigid-body docking; see upcoming publication). 
The docking poses were scored by our protein-protein scoring function pyDock,4 with desolvation parameters for 
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RNA adapted from those used by us in protein-protein docking. In addition, we applied distance restraints to one 
residue-ribonucleotide pair and six ribonucleotides that, according to literature, were likely to be at the interface. 
The result was an acceptable model within the ten submitted models (it was ranked 885 before applying restraints, 
and rank 3 after restraints). Moreover, in the scorers experiment, our method identified the second best model 
among all participants, with excellent ligand RMSD of 3.8 Å with respect to the X-ray structure of the complex. 

 
 

Figure 2. Solution ranked 1 after the new propensity-based scoring in the docking of Pp7 Coat protein dimer with RNA hairpin 
(protein in white CPK; RNA in cyan ribbon). For comparison, the x-ray structure (PDB 2QUX) of the protein-RNA complex is 
shown (RNA in magenta ribbon, after superimposing protein molecules). 

 
 

4. Discussion 

4.1. New pairwise propensities for protein-RNA interaction. Comparison to other reported propensities 

 

We can compare our new propensities with other reported protein-RNA propensities, all of them derived from 
smaller data sets.9,15,16 In practically all of the studies, the favored residues are R and K, but their pairwise 
preferences for the ribonucleotides change. In our work here and in others,9,16 there are no significant differences on 
the preferences of R and K for any ribonucleotide, but in some studies they see preferred pairs as R-U,11,12,15 or K-
A.11,12 Interestingly, in our study we can see H residues with higher pairwise propensities, while this is not observed 
in any of the previous studies. Histidine residue can act as positively charged, depending on the environment, so this 
can explain its high propensities. This was already discussed in our previous study on single residue interface 
propensities.6 On the other side, while in our study the aromatic residues are not amongst the most preferred pairs, 
in other studies they are.9,16 We have seen before that this can strongly depend on the data set used for deriving the 
propensities. For instance, we checked that there are more aromatic residues involved in the interaction with single 
chain RNA molecules, so the proportion of this type of RNA in the data set could modify the propensity values.6 
Interestingly, we see that although the global propensities of pairs involving W and Y residues are small (favorable, 
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but small), they have slightly higher preferences for A and U ribonucleotides (especially in the case of Y residue). 
While all the reported propensities may reflect different characteristics of the protein-RNA interaction, we are more 
confident in the general applicability of the propensities described in this work, given that they were extracted from 
the largest data set so far (282 non-redundant protein-RNA interactions).6 

 

4.2. Use of other reported propensities (single and pairwise) for scoring 

We have seen above that our new pairwise residue-ribonucleotide propensities improve the scoring of rigid-body 
protein-RNA docking poses. In order to check whether this represents an advance over other reported protein-RNA 
propensities, we have also used these other propensities in the same conditions to check their results in docking. For 
this, we selected different protein-RNA propensities from bibliography9,15,16 and from an own previous work.6 We 
used both pairwise residue-ribonucleotide interface propensities6,9,15,16 as well as single residue interface 
propensities.6,9,16 We compiled a total number of seven different protein-RNA propensity matrices, five of which 
were pairwise propensities, and two single residue interface propensities. Because the propensity definition varied 
among the different studies, we considered for all of them the reported expected (Fobs) and observed (Fexp) 
frequency values, which we transformed into propensities (P = Fobs / Fexp) and then into their respective statistical 
potentials  following our definition (eq. 2 and 3). 
 The results of using different propensity values can be seen in Figure 3. In general, the pairwise 
propensities described in this work, especially when is combined with FTDock score, give the best success rates. 
Actually, most of the other propensities give success rates that are not significantly above random. However, the 
pairwise propensities from Westhof laboratory16 had reasonable good results, indeed significantly above random. 
Moreover, it is interesting that single residue propensities from our previous work6 and from Westhof laboratory16 
obtained quite good success rates. Two important conclusions can be derived from this: i) the determinant for 
protein-RNA specificity lies mostly on the protein residues, and ii) the predictive value of the statistical potentials 
depend strongly on the size and composition of the database used to derive the propensities. 
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Figure 3. Success rates of protein-RNA docking after scoring by different propensity-based statistical potentials. 
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4.3. FTDock docking and scoring performance is better than in protein-protein docking 

While the number of protein-RNA cases for which a near-native solution is found by FTDock (58%) is inferior to 
that in protein-protein docking (where a near-native solution is found in 77% of the cases), it is interesting that for 
some cases, the number of near-native solutions is quite high (Table 2). Especially in the cases of 1EK7 and 1WPU, 
more than 40 near-native solutions are found, a number clearly above the performance in protein-protein docking. 
Moreover, the success rate of FTDock scoring for the top 10 solutions is well above random (in protein-protein, 
success rates for FTDock scoring, run in the same conditions as here, was always similar to random).4 This could 
indicate that geometry complementarity is more important in protein-RNA than in protein-protein (electrostatics 
should also be important in the interaction, but the FTDock version we are running here has no electrostatics, so this 
should not affect the scoring). This higher importance of surface complementarity is consistent with the fact that no 
statistical preferences are found within the ribonucleotides. That is, while protein residues have different 
preferences derived from their different chemico-physical characteristics, the ribonucleotides are more similar in 
thermodynamic behaviour, and perhaps the contribution of RNA to specificity lies more on conformational aspects. 
Actually, in the cases where FTDock has the best results (1EK7, 2JEA), the RNA molecule is in the bound 
conformation, and thus the rigid-body approach can take full advantage of the geometry complementarity. 
 

5. Conclusions 

In summary, we have proposed here a new protocol for protein-RNA docking, based on FFT rigid-body docking 
followed by scoring with new pairwise residue-ribonucleotide interface propensities derived from protein-RNA 
complex structures. The docking approach and new propensities have been tested in the largest protein-RNA 
benchmark, to our knowledge. The results show that FTDock can be successful if RNA conformation is in the 
bound conformation, and that the new propensities help to improve the rank of the near-native docking poses in 
virtually all cases.  
 From the results shown here and our experience in the blind CAPRI experiment, we can envisage a 
possible strategy for protein-RNA docking. First, rigid-body docking between protein and RNA based on FFT 
algorithms or on any other efficient approach. Then, we can use a combination of geometry-based scoring and 
propensity statistical potentials as a filter to select a few hundred docking poses, which later will be evaluated with 
more complete energy function. Finally, the use of a minimal information that can be integrated as distance 
restraints can dramatically improve the results. One of the main bottlenecks for continuing development in protein-
RNA docking is the lack of cases in which both the unbound protein and RNA structures are simultaneously 
available. Therefore, it seems that future developments will need to focus on the use of homology-based models of 
RNA in docking. 
 Although beyond the scope of current work, it would be interesting in the future to check the capabilities of 
our protein-RNA statistical potentials for the prediction of protein-DNA interactions. However, reported data on 
protein-RNA and protein-DNA propensities highlight the specific differences between these types of interfaces,  
specifically that in DNA-binding the phosphate group is determinant for the interaction, so protein charged residues 
are preferred, while in RNA-binding the ribose and nucleotides are more relevant, being the protein aromatic 
residues key for specificity.7,8,10,12,14 These findings, together with preliminary tests (data not shown) indicate that 
our protein-RNA propensities are specific for protein-RNA binding. As future work, derivation of new protein-
DNA propensities, in the same fashion as that described here for protein-RNA, could be successfully applied for 
DNA-binding interface prediction and docking studies. 
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