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Biological pathways are seen as highly critical in our understanding of the mechanism of biological functions. To collect information 
about pathways, manual curation has been the most popular method. However, pathway annotation is regarded as heavily time-
consuming, as it requires expert curators to identify and collect information from different sources. Even with the pieces of biological 
facts and interactions collected from various sources, curators have to apply their biological knowledge to arrange the acquired 
interactions in such a way that together they perform a common biological function as a pathway. In this paper, we propose a novel 
approach for automated pathway synthesis that acquires facts from hand-curated knowledge bases. To comprehend the 
incompleteness of the knowledge bases, our approach also obtains facts through automated extraction from Medline abstracts. An 
essential component of our approach is to apply logical reasoning to the acquired facts based on the biological knowledge about 
pathways. By representing such biological knowledge, the reasoning component is capable of assigning ordering to the acquired facts 
and interactions that is necessary for pathway synthesis. We demonstrate the feasibility of our approach with the development of a 
system that synthesizes pharmacokinetic pathways. We evaluate our approach by reconstructing the existing pharmacokinetic 
pathways available in PharmGKB. Our results show that not only that our approach is capable of synthesizing these pathways but also 
uncovering information that is not available in the manually annotated pathways. 

1. Introduction  

Developing systems and algorithms to assist and guide biological researchers in reverse engineering and synthesis of 
biomolecular systems has been a long term goal for the fields of computational biology and bioinformatics. An 
important task of modeling biomolecular systems is the building of pathways for various biological processes. In 
building pathways for processes such as pharmacokinetics, the ability to collect and integrate information contained 
in existing databases and the literature is important so that partial pathways can be built. With the partial pathways, a 
researcher can identify what gap in knowledge needs to be filled. 

Several knowledge bases have been created for the need of pathway information, focusing on different aspects 
of networks and pathways. Reactome [1], KEGG [2] and HumanCyc [3] are examples of knowledge bases for 
metabolic pathways, while Biocarta1 and Panther [4] consist of knowledge bases for signaling pathways. PharmGKB 
[5] is a knowledge base for drug-oriented genomic information that includes pharmacokinetic and pharmacodynamic 
pathways. These knowledge bases rely on manual curation by experts and the pathway information is very precise 
but far from being complete due to the intensive process required in the annotation of pathways. It is therefore 
necessary to investigate another paradigm for the curation of pathways to speed up the annotation process.  

In this paper, we propose a novel approach for the automated synthesis of pharmacokinetic pathways by first 
acquiring the necessary pharmacokinetic facts and interactions of the target drug from existing curated knowledge 
bases. As the curation effort of these knowledge bases is yet to be completed, our approach includes an automated 
text extraction component that extracts facts and interactions from Medline abstracts. The inclusion of knowledge 
extracted from Medline abstracts can lead to the synthesis of more comprehensive pathways, as compared to using 
only the curated knowledge bases for building pathways. In the synthesis of pathways, it is essential to indicate the 
ordering of the interactions in a pathway, as a pathway is a series of interactions that are triggered by one another, in 
which the consequences of the interactions include the activation of certain biological functions or generation of 
products such as metabolites as a result of drug metabolism. To assign the ordering of the interactions, our approach 
includes the logical representation of the general properties and behavior of pharmacokinetic pathways. Automated 
reasoning can then be applied to the acquired knowledge so that ordering of the interactions can be assigned to 
synthesize pathways. The inclusion of such reasoning capabilities on top of mining relevant knowledge distinguishes 

                                                           
1 Biocarta – http://www.biocarta.com  
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our approach from typical data-driven and knowledge-driven approaches in pathway curation. Data can be collected 
by means of large-scale protein-protein interaction networks from experimental sources such as two-hybrid screening 
(Y2H) [6]. On the other hand, knowledge can be extracted by automated text extraction techniques to produce large-
scale interaction networks and pathways [7-10]. While these networks of interactions provide insights to biological 
discovery, it is not always straightforward to identify which interactions are indeed biologically related within a large 
network of interactions. To determine which parts of the interaction networks indeed correspond to pathways, 
pathway curators rely on visualization and pathway building tools to synthesize pathways [11]. Pathway building 
tools such as CellDesigner [12] or proprietary tools such as Ingenuity IPA2 and ActiveMotif3 based on manually 
curated databases allow curators to visualize and assemble pathways from an interaction network. Such methodology 
still heavily depends on the biological knowledge of the expert curators for pathways synthesis. An alternative is the 
use of graph-theoretic methods on interaction networks (see [13] for a survey) or network alignment methods over 
interaction networks of multiple species to uncover conserved modules as pathways [14, 15]. 

It becomes apparent that fully-automated systems for pathway synthesis are required to have the capabilities of 
acquiring various kinds of information from multiple sources, as well as assigning appropriate order to the acquired 
interactions. To automatically arrange the interactions for pathway synthesis, our work includes a reasoning 
component for this purpose. With proper representation of pathways for a particular biological process such as 
pharmacokinetics, reasoning can be applied to the acquired knowledge and automatically assigned the appropriate 
ordering of the interactions to synthesize pharmacokinetic pathways. The approach of utilizing biological domain 
knowledge has been applied to various applications, such as the generation of metabolic networks based on 
stoichiometric constraints [16] and hypothesis generation in signaling pathways [17]. The need of formulating 
biological domain knowledge and applying reasoning to infer pathways from text is highlighted as new challenges in 
[18]. In pharmacokinetic pathways, an example of a biological property is that drug metabolites are generated as a 
result of drug metabolism. In other words, a metabolized drug is a precondition for the generation of drug 
metabolites to occur, and the effect of the interaction is the production of drug metabolites. By encoding the logic 
representation in the form of pre- and post-conditions of pharmacokinetic properties that describe the course of drug 
disposition in the body, which includes drug absorption, distribution, metabolism and excretion, reasoning can be 
applied to the interactions in order to find a sequence that satisfies the pharmacokinetic properties. Finding a 
sequence of actions is known as planning in the field of artificial intelligence, and planning is considered as one kind 
of reasoning. More specifically, planning can be described as given the initial states and the goals of the problem, 
find a sequence of actions such that the goals can be achieved from the initial states. In the case of the 
pharmacokinetics effects of drugs, the initial state is when a drug is administered and the goal state is when the drug 
is eliminated after being metabolized. The expected plan is the actions required for the administered drug to be 
delivered to the systemic circulation for drug consumption. With the acquired facts and interactions and the 
biological properties of pharmacokinetics in logical representation, the reasoning component of our proposed system 
arranges the interactions so that a series of interactions is generated as a pathway model. 

The rest of the paper is outlined as follows. We describe the basic properties of pharmacokinetics that we 
encode in our system in Section 2. In Section 3, the processes of acquiring the necessary facts and interactions from 
existing knowledge bases and Medline abstracts are described. In addition, the reasoning component is illustrated in 
how the pharmacokinetic properties and behavior are encoded in order to synthesize pathways. In Section 4, we 
demonstrate the feasibility of our approach by illustrating the precision and recall of generated pathways. We 
concluded in Section 5. 

2. Pharmacokinetics 

Pharmacokinetics is concerned with the relationships between various processes during the course of the drug 
consumption in the body. The study of pharmacokinetics is important to biologists and drug designers, as the 
bioavailability of a drug, i.e. the effectiveness of a drug when it is absorbed into the systemic circulation, is heavily 
                                                           
2 Ingenuity Pathway Analysis Tool: http://www.ingenuity.com 
3 Active Motif: http://www.activemotif.com 
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dependent on the processes involved in pharmacokinetics. When a drug is taken orally, the drug is absorbed in the 
intestine, and the corresponding drug transporters distribute the drug to the appropriate cellular locations of the 
intestinal cells. The drug is then delivered to the liver through the bloodstream, and the relevant drug transporters in 
the liver cells distribute the drug for metabolism by the enzymes. Drugs that are taken intravenously would bypass 
the drug absorption phase. The pharmacokinetics of a drug includes several processes such as the distribution of a 
drug through different tissues, the metabolism of a drug, the excretion of a drug, and the absorption of a drug into 
the systemic circulation [19]. Several essential elements are involved in different processes of pharmacokinetics, 
namely drug transporters, enzymes and metabolites. The typical processes involved in pharmacokinetic pathways are 
shown in Figure 1. Drug transporters are responsible for drug distribution for absorption (as in Region B1 in Figure 1 
(left)), metabolism (Region B2 in Figure 1 (left)) and excretion (Region B3 in Figure 1 (left)), and they can be 
expressed in many tissues such as intestine and liver [20]. Once the target drug is distributed into an appropriate 
cellular location, the enzymes play the role of metabolizing the drug (as in Region A in Figure 1 (left)), which take 
place mainly in the liver. Metabolites are produced as a result of the metabolism of the drug, shown in Region C. 

Identifying the pharmacokinetic mechanism of a drug is essential in avoiding potential side effects of drug-drug 
interactions, even though in most cases the processes of drug disposition for co-administered drugs typically do not 
affect one another. However, drugs that are strong inducers or inhibitors of certain enzymes can influence the 
bioavailability of drugs that are metabolized by these enzymes [21]. The drug ketoconazole is an example of a 
powerful inhibitor that is known to inhibit CYP3A enzymes, which are responsible for the metabolism of a wide 
variety of drugs, such as midazolam. Such inhibition of CYP3A enzymes can affect the drug-metabolizing activity 
and lead to the increase of the bioavailability CYP3A substrates. On the other hand, drugs that are potent inducers of 
CYP3A enzymes, such as carbamazepine, can cause a reduction of the effect of CYP3A substrates. With the 
increasing availability of clinical drugs that are inducers or inhibitors of enzymes, the study of pharmacokinetic drug 
interactions becomes more critical [21]. While a drug can be involved in various parts of the body, our focus in the 
synthesis of pharmacokinetic pathways is on the processes involving drug absorption, distribution, metabolism and 
elimination in the intestine and liver. 

                
Figure 1 – (left) Pharmacokinetic pathway of fluvastatin. Region A: metabolism of the drug by the enzymes; Region B: drug transporters 
distribute the drug for absorption in intestine in B1, for metabolism in B2 and for elimination in B3; Region C: the drug is metabolized to 
metabolites by the enzymes. (Diagram source: PharmGKB); (right) A network representation of the drug-protein interactions for fluvastatin. 

3. Methods 

The goal of our system is to synthesize the pharmacokinetic pathway of a given drug. Our approach in constructing 
pathways can be described as a two-stage approach: (i) fact and interaction extraction from knowledge bases and 
text; (ii) inferences of pathways through reasoning with the extracted facts and interactions based on the biological 
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knowledge of pharmacokinetic pathways as described in Section 2. Figure 2 illustrates how the facts and interactions 
extracted in step (i) are utilized together with the biological background knowledge to construct pathways. 

 
Figure 2 - An overview of the system architecture. Facts and interactions are acquired from knowledge bases such as Drugbank, PharmGKB and 
Gene Ontology annotations, as well as our PTQL framework for text extraction from Medline abstracts. The shaded components correspond to 
the novel features of this paper. The facts and interactions are translated into logic facts so that together with the background knowledge, the 
logic program solver (AnsProlog solver) assigns ordering to the interactions for the synthesis of pharmacokinetic pathways. 

 
The first stage involves various kinds of fact extraction, such as identifying which proteins are drug transporters, as 
well as interaction extraction, such as finding which enzymes play a role in metabolizing the drug of interest. 
Fetching the facts and interactions alone leads to the formation of a network of interactions, but the resulting network 
lacks the information that describes which of the interactions appear ahead of the others. Using the gene-drug 
interaction network in Figure 1 (right) as an example, the outcome of the extraction process is the interactions 
between the drug fluvastatin and the proteins, such as SLCO1B1 and CYP3A4. However, with the extracted 
interactions alone, it is unclear whether the interaction between SLCO1B1 and fluvastatin should precede or follow 
the interaction between CYP3A4 and fluvastatin. In the synthesis of pathways, ordering of the interactions is 
essential, as a pathway is a series of interactions, in which the consequence of an interaction affects the subsequent 
interactions. For instance, the CYP and UGT enzymes in Figure 1 (left) are able to metabolize fluvastatin in the liver 
cells only if the drug is distributed by the drug transporters SLCO1B1, SLCO2B1 and SLCO1B3. In other words, 
distribution of the drug in the liver cells is a prerequisite for the drug metabolizing interaction to take place. In our 
approach, such kind of preconditions and postconditions of interactions are encoded as logic rules so that the 
reasoning component in step 2 assigns an ordering to the interactions extracted in step 1. We describe the details of 
each of the steps in the rest of the section. 

3.1. Fact and interaction extraction from knowledge bases 

The first stage of pathway synthesis is to identify and recognize the facts involved in the pharmacokinetic pathways 
of the drug of interest. As the pharmacokinetics of drug behaves differently depending on its dosage form, it is 
essential to obtain such information in order to synthesize pathways correctly. Drug metabolism can take place in 
different organs, and a drug that is known to be metabolized in the liver cells would have a different pathway from a 
drug that is metabolized in other cells such as the intestinal cells. DrugBank [22] is a rich resource to obtain such 
kind of facts about drugs. The field “dosage form” in DrugBank provides information such as whether a drug is 
taken orally or intravenously, and the metabolism of a drug can be obtained from the field “biotransformation”. With 
DrugBank, logic facts in the form of is_taken(Drug, Method) and metabolism(Drug, Organ) are 
generated, in which Drug is the name of drug of interest, Method is either orally or intravenously and Organ 
can be liver or intestine. Using the drug fluvastatin as an example, the facts are written as logic facts 
is_taken(fluvastatin, orally) and metabolism(fluvastatin, liver).  

To construct pharmacokinetic pathways, it is important to identify the interactions between drug and enzymes. 
Several resources are used to obtain interactions between drugs and enzymes. The DrugBank knowledge base 
provides the metabolizing enzymes as well, but the list of enzymes for each drug is not comprehensive as only the 
main enzymes are included. Other than DrugBank, PharmGKB [5] is another rich resource that provides information 
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about genes, drugs and diseases. An extensive list of interactions between drugs and proteins can be found in 
PharmGKB relationships. The interactions are categorized into several types namely “pharmacokinetics” (PK), 
“pharmacodynamics” (PD), “molecular and cellular functional assays” (FA) and “clinical outcome” (CO). For the 
purpose of the pharmacokinetic pathway synthesis, the interactions labeled as pharmacokinetics (“PK”) are utilized. 
However, obtaining the pharmacokinetic interactions is not sufficient for pathway synthesis, as it is important to 
realize whether the proteins involved in the interactions are enzymes or transporters. Such kind of information can be 
inferred from the Gene Ontology (GO) annotations [23]. 

GO is a hierarchy of controlled vocabulary that includes three independent ontologies for biological process, 
molecular function and cellular component. Standardized terms in GO describe roles of genes and gene products in 
any organism. Curators annotate the functions of proteins by assigning GO terms, and such annotation is known as 
GO annotations. The terms “metabolic process” (GO:0008152) and “transporter activity” (GO:0005215) from the 
GO “biological process” and “molecular function” sub-ontologies can be utilized to identify enzymes and proteins. 
Given a drug-protein interaction, a protein is considered as an enzyme if the protein is annotated under the 
subcategories of the term “metabolic process” according to the GO annotation. Similarly, a protein annotated in one 
of the subcategories of the term “transporter activity” is regarded as a transporter. Since the protein is obtained from 
a drug-protein interaction, the transporter is regarded as a drug transporter. With PharmGKB and GO, logic facts in 
the form of enzyme(Protein), metabolizes(Enzyme, Drug), transporter(Protein) and 
distributes(Transporter, Drug)are generated. Using the drug fluvastatin as an example, the facts and 
interactions are written into these logic facts: enzyme(cyp3a4), metabolizes(cyp3a4, fluvastatin), 
transporter(slco1b1) and distributes(slco1b1, fluvastatin).  

3.2. Automated text extraction of facts and interactions 

While the sources provide an extensive amount of information for the synthesis of pharmacokinetic pathways, much 
of the information is resided in the biomedical literature. In particular, drug transporters, drug-enzyme metabolic 
relations and the metabolites produced as a result of drug-enzyme metabolic relations can be found in Medline 
abstracts. Extraction of such facts and interactions requires the utilization of syntactic and lexical clues from 
sentences. One way of extracting metabolic relations between the target drug and enzymes from text can be 
performed based on cooccurrences of drug names, gene/protein names and the word “metabolized”. However, using 
cooccurrences is not sufficient for the precision needed in pathway synthesis. Suppose the target drug for extraction 
is fluvastatin, the relations metabolizes(CYP2C9, fluvastatin) and metabolizes(CYP3A4, 

fluvastatin) are extracted from the sentence “Fluvastatin is metabolized by CYP2C9, while simvastatin, 
lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4).” (PMID:16714062) based on 
cooccurrences, in which the relation  metabolizes(CYP3A4, fluvastatin) is an incorrect relation according to 
the sentence. By utilizing the syntactic pattern that a drug-enzyme metabolic relation is feasible if the word 
“metabolized” and the gene/protein mention appear in the same verb phrase, then only the correct relation 
metabolizes(CYP2C9, fluvastatin) can be extracted from the sentence. This example shows that it is 
important to extract drug-enzyme metabolic relations with the use of syntactic patterns. With the diverse extraction 
needs in the synthesis of pharmacokinetic pathways, it is not feasible to develop individual extraction systems for 
each specific extraction goal. This implies the need of a flexible system that is designed for generic extraction. 

Our PTQL framework [24, 25] provides the flexibility to perform such kind of diverse extraction. A sample list 
of logic facts that are generated through PTQL extraction is described in Table 1. The central piece of our extraction 
framework is the parse tree database, which is composed of the syntactic structures for each of the sentences in the 
entire collection of Medline abstracts. Each of the Medline abstracts is represented as a hierarchical representation 
with the syntactic and semantic information, which includes the recognition of biological entities. BANNER [26] and 
MetaMap [27] were used for gene/protein mentions and drug names, while gene/protein mentions are normalized by 
GNAT [28] for their standardized form in order to avoid name ambiguity. By storing the syntactic and semantic 
information in the database, performing extraction becomes a matter of writing extraction queries. Since standard 
relational database queries such as SQL are not ideal for expressing queries that involve linguistic patterns, we 
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developed a query language called parse tree query language (PTQL) that are used to express linguistic patterns for 
extraction. While PTQL queries are expressive, writing the queries manually for extraction is time-consuming and 
potentially limits the recall of the system. As an alternative, our PTQL framework provides a component that is 
capable of generating PTQL queries from keyword-based queries. For instance, in the extraction of drug-enzyme 
metabolic relations, we simply issue the keyword-based query 

<type:DRUG> and <class:metabolism> and <type:PROTEIN> 

where <type:DRUG> and <type:PROTEIN> correspond to matching any mentions of drug name and gene/protein 
names, and <class:metabolism> corresponds to lexical variants of the word “metabolism”, which includes 
“metabolize”, “metabolized” and “metabolizes”. Using a small corpus of Medline abstracts, the component first 
retrieves sentences that are relevant to the keyword-based query as in a typical search engine. By utilizing the parse 
tree database, grammatically similar sentences are retrieved and their common grammatical patterns are utilized in 
forming PTQL queries automatically. The resulting PTQL queries include the necessary syntactic patterns and they 
are applied to the full parse tree database that includes all Medline abstracts for extraction. This component is used 
for the extraction of (i) drug-enzyme metabolic relations; (ii) proteins responsible for drug elimination; (iii) protein 
expression in liver and intestinal cells. Extraction of these kinds of relations is essential in the synthesis of 
pharmacokinetic pathways, as existing sources such as DrugBank and PharmGKB lack such information or in a 
format that is not easily readable by computers. 

� Protein expression in liver and intestinal cells. In the synthesis of pharmacokinetic pathways, it is essential to 
find out whether a protein is expressed in the liver or intestinal cells. The following keyword-based query is used for 
the extraction of protein expression in liver cells: 

<type:PROTEIN> and <class:liver> 

The keywords “hepatic” and “liver” are used to represent <class:liver>. Similarly, <class:intestine> is 
used for the extraction of protein expression in intestinal cells, in which “intestinal”, “gastrointestinal” are used for 
<class:intestine>. With the keyword-based queries, the generated PTQL queries retrieve the sentences and 
relations as shown in Table 1. 

� Proteins responsible for drug elimination. Among the interactions between the target drug and its drug 
transporters, it is necessary to find out the roles of each of the drug transporters, as drug transporters are known to be 
involved in various roles such as drug distribution, absorption and elimination. Finding the exact roles of transporter 
is essential for the assignment of the ordering of the interactions. For instance, if a drug transporter is responsible for 
drug elimination, we know that the drug transporter cannot distribute the drug until the drug is metabolized. Using 
the keyword-based query  

<type:PROTEIN> and <class:elimination> and <type:DRUG> 

where <class:elimination> is represented by the keywords “elimination” and “excretion”, an example of 
sentences that indicate the role of drug elimination for a drug transporter is shown in Table 1. 

� Drug-metabolites relations. For the extraction of relations, typically named entity recognizers are applied to 
recognize the entities involved in the target relations. However, in the case of metabolites, the lack of dictionaries or 
training data means that we need to rely on lexical hints for the identification of metabolites. For example, the 
sentence “The antioxidative effects of the metabolites of fluvastatin (M2, M3, M4 and M7) …” indicates that M2, 
M3, M4 and M7 are the metabolites of fluvastatin based on the lexical hints “metabolites of fluvastatin”. 

 
Table 1 – Sample logic facts and evidence sentences for each type of relations that are extracted by our PTQL framework. Note that the protein 
names have been replaced with their official gene symbols in the logic facts. 

Logic facts Evidence sentences 
metabolizes(CYP3A4, fluvastatin) Fluvastatin is metabolized by CYP2C9 (PMID:16714062) 
is_expressed(ABCC2, liver) These decreases in hepatic Mrp2 may contribute to cholestasis (PMID:17959626 ) 
is_expressed(SLC15A1, intestine) PPARalpha plays critical roles in intestinal PEPT1 expression. (PMID:16751172) 
eliminates(ABCB1) Colchicine is also a substrate of P-glycoprotein, a transporter involved in cellular 

efflux and elimination of numerous drugs. (PMID:15494379) 
metabolite(desmethyldesipramine, 
desipramine) 
 

 desipramine in rats may be attributed not only to the inhibition of the 
norepinephrine transporter by desipramine but also to the inhibition of serotonin 
transporter by the active metabolite desmethyldesipramine. (PMID: 17850785) 
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3.3. Ordering of interactions through reasoning 

Once the relevant facts and interactions are acquired from knowledge bases and Medline abstracts, the last step is to 
utilize the facts and interactions to generate pharmacokinetic pathways. As the interactions themselves do not reveal 
any kind of ordering, the goal is to represent the fundamental behavior and properties of pharmacokinetics so that the 
representation can be utilized to assign ordering of the interactions through reasoning. Implementation of the 
reasoning component requires a language that is ideal in specifying what kind of reasoning to be performed rather 
than how the reasoning is performed. This is analogous to declarative programming language such as SQL, in which 
the users specify what is intended to be found rather than how the search mechanism of the database system should 
be performed to answer the queries. AnsProlog [29, 30] is a declarative language that is useful for reasoning, as well 
as capable for reasoning with incomplete information. We first describe how AnsProlog is applied to the 
representation of pharmacokinetic properties. 

The core idea of the representation of pharmacokinetics is to encode the pre- and post-conditions of 
interactions, also known as the executability and direct effects of actions. Timepoints are used to define the logical 
ordering of the interactions. Interaction I1 occurs before interaction I2 if I1 is assigned with a timepoint that is smaller 
than the timepoint for I2. Using the interaction that involves the generation of metabolites as an example, the pre-
condition of such generation is that the target drug has to be metabolized. The post-condition of the interaction is the 
production of metabolites. Such mechanism is represented by the following AnsProlog logic rules: 

o(converts(D, M),Loc, T) :- h(metabolized(D),T),    
 metabolites(D, M),  metabolism(D, Loc), not 
h(converted(D),T).   

h(converted(D),T+1) :- o(converts(D, M), Loc, T),  
 metabolites(D,M). 

The first logic rule states that the pre-conditions for the action converts(D, M) occur at timepoint T in location Loc 
(which can be either the liver or intestinal cell), denoted as o(converts(D,M),Loc,T). For instance, 
o(converts(fluvastatin,m2),liver,3) indicates that the drug fluvastatin is converted into the metabolite 
M2 in the liver cells at timepoint 3. The following are the pre-conditions, which are specified to the right of the “if” 
symbol :- in the rule, for the action converts(D, M): 

• the drug D has been metabolized at timepoint T, denoted as h(metabolized(D),T); 
• metabolite M is known to be a metabolite of D, denoted as metabolites(D, M); 
• metabolism of D is known to take place in Loc, denoted as metabolism(D, Loc); 
• it is not known that D has been converted into metabolites in the previous timepoints, denoted as not 

h(converted(D),T). 
Notice that metabolism(D, Loc) and metabolites(D, M) are logic facts that are obtained from the extraction 
of knowledge bases and text. The second logic rule states the post-condition of the action converts(D, M), which is to 
indicate the drug D is converted in the next timepoint T+1 when the action occurs at timepoint T. With the 
timepoints, we can observe that fluvstatin is converted into metabolites with h(converted(fluvastatin),4) 

and this conversion occurs as a result of the action o(converts(fluvastatin, m2), liver, 3) . 
Another example of pharmacokinetic behavior is that a drug can only be metabolized by some enzymes if the 

drug is distributed to the appropriate location in the liver by a drug transporter. In addition, elimination of the target 
drug can only take place when the drug is metabolized and metabolites are produced. Our logical representation also 
includes the fact that an orally-taken drug is transported to the intestines, and drugs that are taken intravenously are 
transported to the liver. To mimic the behavior of typical pharmacokinetic pathways, we include logic rules to ensure 
that all interactions involved in the intestinal cells have to occur ahead of the interactions in the liver cells. By 
encoding rules that represent the pharmacokinetic behavior of drugs, interactions are assigned with timepoints to 
indicate the ordering of the interactions in the pharmacokinetic pathway. With the logic rules and facts, the model, 
known as answer sets in AnsProlog, is computed by an answer set solver called clasp [31]. The resulting answer sets 
correspond to the pharmacokinetic pathway of the target drug. 
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Our approach for pathway synthesis can be summarized in the following steps: 

1. Given the drug of interest, knowledge bases that include DrugBank, PharmGKB and the Gene Ontology 
annotations are utilized to acquire information such as interactions between drug and proteins, as well as the 
enzymes and drug transporters involved in the interactions. 

2. To complement the information fetched from manually curated knowledge bases, information such as protein 
expression in liver/intestinal cells, the roles of drug transporters, drug metabolites are extracted from Medline 
abstracts using our PTQL extraction framework. 

3. With the generic logical representation of pharmacokinetic pathways, facts and interactions acquired in steps (i) 
and (ii) are utilized so that the pharmacokinetic interactions are assigned with timepoints to reveal their ordering 
in the resulting pharmacokinetic pathway. 

4. Synthesis of pharmacokinetic pathways 

In this section, we illustrate our approach with the synthesis of pharmacokinetic pathways for two drugs: repaglinide 
and parvastatin. The pathways of another 18 drugs are synthesized by our system and presented as supplementary 
material in our website: http://www.kbpathway.org/. The pharmacokinetic pathways of these drugs have been 
manually annotated and made available in PharmGKB. Our system provides the output in the form of logic facts, as 
well as GPML files that can be visualized in Cytoscape [32] with the Cerebral plug-in [33], which takes advantages 
of the protein cellular locations in generating the layout of the pathways. We evaluate the performance of our system 
based on the performance of the extraction. 

4.1. Repaglinide pharmacokinetic pathway 

The logical representation of the pathway generated by our system is shown in Table 2. The model indicates that 
repaglinide is administered orally in the initial step, represented as h(is_taken(repaglinide,orally),0). The 
drug consumption leads to the presence of the drug in the intestinal cells (h(is_present(repaglinide, 

intestine),1)), and the drug is transported to the liver cells through the bloodstream 
(o(transports(repaglinide,intestine),liver,1)). The drug repaglinide becomes present in the liver 
cells (h(is_present(repaglinide,liver),2)) and it is distributed by the hepatic drug transporter SLCO1B1 
(o(distributes(slco1b1,repaglinide),liver,2)). Metabolism of repaglinide by the enzymes CYP3A4 
and CYP2C8 (o(metabolizes(cyp3a4,repaglinide),liver,2), o(metabolizes(cyp2c8, 

repaglinide),liver,2)) occurs after the distribution, and repaglinide becomes metabolized 
(h(metabolized(repaglinide,liver),3)). As a result of the drug metabolism, metabolites M1 and M4 are 
generated (o(converts(repaglinide,m1),liver,3), o(converts(repaglinide,m4),liver,3)).  The 
last timepoint indicates that repaglinide is no longer present in the liver, represented by -h(is_present( 

repaglinide,liver),4), in which the symbol “-” corresponds to negation. 
 
Table 2 – The output of the logical representation of the pharmacokinetic pathway of repaglinide generated by our system. 

Timepoint Events 
0 h(is_taken(repaglinide,orally),0). 
1 h(is_present(repaglinide,intestine),1). o(transports(repaglinide,intestine),liver,1) 
2 -h(is_present(repaglinide,intestine),2). h(is_present(repaglinide,liver),2). 

o(distributes(slco1b1,repaglinide),liver,2). o(metabolizes(cyp3a4,repaglinide),liver,2). 
o(metabolizes(cyp2c8,repaglinide),liver,2). 

3 h(metabolized(repaglinide,liver),3). o(converts(repaglinide,m1),liver,3). o(converts(repaglinide,m4),liver,3).  
4 -h(is_present(repaglinide,liver),4). 

 
The manually annotated pathway and the version synthesized by our system are shown in Figure 3. One 

distinctive difference is that our current approach is not capable of finding which of the enzymes are responsible for 
which metabolites. Here we assume that the enzymes CYP3A4 and CYP2C8 are responsible for the metabolism of 
repaglinide, and metabolites M1 and M4 are generated in the process. In the next illustration, we show that our 
automated pathway synthesis approach is capable of uncovering components that are not described in manually 
annotated pathways. 
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Figure 3 – (left) The manually curated pharmacokinetic pathway of the drug repaglinide from PharmGKB; (right) the pharmacokinetic pathway 
of repaglinide synthesized by our system. 

4.2. Pravastatin pharmacokinetic pathway 

Here we demonstrate that our method is capable of producing extra elements in the pathways compared to the 
manually annotated pathways. We use the synthesis of pravastatin pharmacokinetic pathway as an example. The 
manually annotated pathway in Figure 4 (left) lacks the information that states which enzymes are responsible for 
metabolism and what metabolites are generated as a result of the metabolism. Such information is included in our 
synthesized version of the pathway. As shown in Figure 4 (right), enzymes CYP3A4, CYP2C8 and CYP2C9 
metabolize the drug pravastatin, and it is metabolized into the metabolites SN-38, 3alpha-hydroxy-iso-pravastatin 
and 3’alpha-iso-pravastatin. The drug-enzyme metabolic relations are originated from PMID: 17178259 according to 
the relationships in PharmGKB corresponding evidences. The resulting metabolites are extracted by our PTQL 
extraction framework, and the evidence sentences in Table 3 indicate the correctness of these facts and interactions. 
 
Table 3 – Evidence sentences for the metabolites (underlined) of pravastatin extracted by our PTQL extraction framework. 

PMID Evidence Correctness 
16027406 Plasma concentrations of pravastatin and its active metabolite, 3alpha-hydroxy-iso-pravastatin, 

were measured, and pharmacokinetics was assessed. 
Correct 

10490896 In addition, as in the liver, pravastatin was metabolized in the small intestine by sulfation and 
subsequent degradation to its main metabolite 3'alpha-iso-pravastatin. 

Correct 

16515396 These genetic variants have been shown to lead to altered pharmacokinetics of OATP1B1 
substrates, mainly pravastatin, but also the irinotecan metabolite SN-38 

Incorrect 

4.3. Evaluation and analysis 

We evaluate the performance of our pathway synthesis method by finding how many of the interactions can be 
recovered (i.e. the coverage) with respect to 20 pharmacokinetic pathways available in PharmGBK. Table 4 shows 
the coverage when each of the sources DrugBank, PharmGBK relations and PTQL extraction is utilized for pathway 
synthesis. While the use of PharmGKB relations achieves the best coverage of the three sources with 47.27%, the 
coverage for the three sources combined results in 56.97%. We further manually evaluated the extraction 
performance by our PTQL framework. As DrugBank and PharmGKB do not provide information about drug 
metabolites, it is essential for the PTQL framework to be capable of extracting metabolites. Another important 
evaluation criterion is to determine if such approach in pathway synthesis can uncover more information than 
manually annotated pathways.  Table 5 indicates that our extraction framework achieves a high precision of 84.0% 
and 82.72% for the extraction of enzymes and transporters, and metabolites. In particular, among the enzymes, 
transporters and metabolites uncovered by our method, our system produces 24 extra enzymes and transporters as 
well as 48 metabolites that are correct but not included in the 20 manually annotated pathways. The high quality of 
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extraction suggests that using PTQL framework for extraction is a valuable source to complement the existing 
knowledge bases for pathway synthesis. 

    
Figure 4 – (left) The manually curated pharmacokinetic pathway of the drug pravastatin from PharmGKB; (right) the pharmacokinetic pathway 
of pravastatin synthesized by our system. 

 
Table 4 – Coverage of each of the sources in the pharmacokinetic pathways for the 20 manually annotated pharmacokinetic pathways in 
PharmGKB. 

Sources Coverage 
DrugBank 20.61% 
PTQL extraction 34.23% 
PharmGKB 47.27% 
All 56.97% 

 
Table 5 – Precision and recall for PTQL extraction of enzymes and transporters, as well as metabolites. The ones that are not in the PharmGKB 
annotated pathways are considered as “Extra”, and their correctness is evaluated. 

 Precision Recall Extra (Precision) 
Enzymes and transporters 84.00% 34.23% 19/31 = 61.29% 
Metabolites 82.72% 65.05% 48/62 = 77.42% 

 
We further analyzed the correctness of the placement of the interactions in the synthesized pathways compared 

to 20 pharmacokinetic pathways available in PharmGKB. Our synthesized pathways are generally consistent with the 
annotated pathways. However, our synthesized pathways do not include information that specifies which enzymes 
are responsible for the production of a particular drug metabolite. Such limitation is due to the fact that metabolites 
are not found in DrugBank and PharmGKB relationships, and our current text extraction is limited to the extraction 
from individual sentences. Drug-enzyme-metabolite relations can rarely be found within individual sentences.  

Among the 20 pharmacokinetic pathways we evaluate, 2 of them are taken intravenously according to 
DrugBank, namely imipramine and irinotecan. In our logical representation of pharmacokinetics, we assume that no 
interactions occur in the intestine for drugs that are taken intravenously, unlike the orally-taken drugs that require 
absorption in the intestine. The imipramine pathway in PharmGKB only shows the interactions in liver cells, but the 
irinotecan pathway includes interactions in both the intestinal and liver cells, with the interactions in the liver cells 
appear ahead of the ones in the intestinal cells. Our current modeling of pharmacokinetic properties does not capture 
this behavior. In terms of metabolism, 17 of the drugs we evaluate are known to be metabolized in the liver cells 
according to PharmGKB, so by default we assume the metabolism of the other 3 drugs, namely atorvastatin, 
repaglinide, rosuvastatin, takes place in the liver cells. This assumption is valid except for the atorvastatin, lovastatin 
and simvastatin pathways that indicate the drugs are metabolized in both the intestinal and liver cells. In our current 
modeling, we assume that drug metabolism and drug distribution for elimination take place in the same cell. This is 
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not the case for the drugs clopidogrel, fluvastatin and pravastatin, in which the manually annotated pathways suggest 
that drug transporters take the drug from intracellular to extracellular in the intestinal cells, even metabolism of these 
drugs occur in the liver cells. Our current model also does not capture the transformation of a metabolite to another 
through enzymes, as suggested by the pathways for phenytoin and tamoxifen. 

5. Conclusion 

The study of pharmacokinetics is essential in identifying the effectiveness of drugs in the systemic circulation. In 
particular, variability in drug response is largely influenced by genetics. In this paper, we extend our previous work 
in synthesizing biological networks [25] by including a reasoning component for the synthesis of pharmacokinetic 
pathways.  The use of reasoning distinguishes our approach from existing methods in generating networks of 
interactions so that ordering of interactions can be assigned through reasoning. Such ordering is critical for the 
representation of pathways, in which the effects of interactions trigger the subsequent interactions. Our results show 
that our approach is capable of synthesizing pharmacokinetic pathways in high quality and identifying components 
that are not in the manually annotated pathways. With the partial pathways generated by our approach, curators can 
utilize the synthesized pathways as a first step of curation and add their findings to expand the pathway annotation. 
Through the synthesized pharmacokinetic pathways, drug designers can examine the impact of drug response due to 
the genetic variations of the gene products involved in the pathways. Identifying relations between drug response and 
genetic variations is a critical step in realizing personalized medicines. 

For future work, we will implement a web-based version of our approach so that pharmacokinetic pathways can 
be created based on the drugs specified by the users. Announcements will be made on our website at 
http://www.kbpathway.org when the web-based version of the implementation becomes publicly available. We also 
plan to expand our work to handle close-loop interactions, which cannot be captured in our current approach. 
Information such as drug-drug interactions will be included to identify drugs that inhibit or induce enzymes 
responsible for the metabolism of other drugs. Such information can be useful to drug designers as well as physicians 
to learn the potential side-effects of drugs due to drug-drug interactions. We also plan to apply our approach to other 
kinds of pathways, such as pharmacodynamics and signaling pathways. 
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