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Plasmin and urokinase-type plasminogen activator (uPA) are ubiquitous proteases regulating the extracellular environment. They can 
activate each other via proteolytic cleavage, suggesting the potential for complex dynamic behaviors that could be elucidated by 
computational modeling.  Ordinary differential equations are constructed to model the activation dynamics of plasminogen into 
plasmin, and single-chain uPA (scUPA) into two-chain uPA (tcUPA).   Computational simulations and phase plane analysis reveal 
two stable steady states for the activation of each protein.  Bifurcation analysis shows the in silico system to be bistable.  Cell-free 
experiments verify the system to have ultrasensitive activation behavior, where scUPA is the stimulus and plasmin the output.  
Furthermore, two significantly different steady states could be seen in vitro for the same stimulus levels, depending on the initial 
activation level of the plasmin.  The switch-like dynamics of the uPA-plasmin system could have potential relevance to many normal 
and disease processes including angiogenesis, migration and metastasis, wound healing and fibrosis.    
 Keywords: Urokinase-Type Plasminogen Activator, Computational modeling, Nonlinear Dynamics   

1. INTRODUCTION 

Mathematical modeling of molecular interaction kinetics can give insight into dynamic characteristics and time-
dependent functions of molecular networks [1-3].  The nonlinearity inherent in such networks can cause dynamical 
effects that play a transformative role in converting signals into biological functions. Qualitative changes in the 
outcome of pathway behavior, called bifurcations, arise from nonlinearity of interaction networks and are dependent 
on the parameter values. Analysis of transitions in system outcome due to changing parameters is called bifurcation 
analysis [4, 5]. Bifurcation analysis has been used on biological models like the cell-cycle [10, 11]. A common 
bifurcation in biology is bistability, or existence of two steady states, which transforms a gradual input change into 
an “all-or-none” switch.  Bistability can explain the switch-like nature of apoptosis [6-9] and cell-cycle progression 
[10-13].  

Bistability is most often studied in reversible pathways, especially those involving phosphatases and kinases 
[14]. Proteases, well known for their importance in the homeostasis of the extracellular matrix (ECM), are enzymes 
that catalyze the irreversible cleavage of a protein backbone.  Some previous work has examined the systems-level 
dynamics of protease networks [15].  Plasmin (PLS) is a ubiquitous serine protease activated from the secreted 
protein plasminogen (PLG). Irreversible conversion of PLG to PLS is facilitated by plasminogen activators (PA) 
which nick at the Arg560-Val561 bond of PLG to release the active PLS protease [16]. Tissue Plasminogen Activator 
(tPA) mediates PLG activation in connective tissues, while urokinase Plasminogen Activator (uPA) mediates PLG 
activation in the tissue context [17].  

PLS is crucial in haemostasis and blood clotting where it converts inactive fibrinogen to fibrin, causing 
degradation of clots [18]. In tumor angiogenesis, PLS has been confirmed as a pro-angiogenic activator causing 
dissolution of ECM components to allow for development of new blood tissues [19]. In wound healing, PLS 
contributes to remodeling of injured/wounded ECM by activating the proteases that dissolve scars [20]. In addition, 
PLS can activate TGF-β1 from its inactive latent LTGF-β1 form [7, 8, 14] and TGF-β1 is an essential factor in the 
production of the ECM.  

In this paper, we use mathematical modeling to investigate the dynamics of PLS activation by urokinase, and 
our modeling shows the system to be bistable.  The model and its construction are described in Section 2.  
Simulations and bifurcation analysis of the model follow in Section 3.  Finally in Section 4 we show experimental 
results that validate the mathematical predictions, confirming that uPA-mediated PLS activation is ultrasensitive and 
bistable.  
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2. MODEL CONSTRUCTION 
 
Although an integral part of many pathways, proteases have not been as extensively modeled and studied as their 
kinase-phosphatase counterparts.  A protease reaction is generally irreversible, as the cleaved fragments of the 
substrate diffuse apart and/or the substrate is consumed.  Proteases are usually broad-spectrum reactors, meaning 
they are capable of cleaving different protein substrates having similar target sequences. The simple, classical 
manner of protease activation is auto-activation (Figure 1a), in which an active protease X cleaves its inactive 
precursor form.  An alternative manner of activation (Figure 1b) operates via regulation of an intermediate 
regulatory enzyme (Y), which also has active and precursor forms.  This is a common type of positive feedback 
imposed by the activated protease and is seen in pathways such as caspase activation, MMP activation and blood 
clotting.  Figure 1c displays a variant in which the “inactive” precursor Y has some low level of catalytic activity 
which can by itself initiate activation of the protease.  

d.) 

 

ODEs Reaction Rates 

d[scUPA]/dt=-v2+α1-µ1*[scUPA] 
 
d[PLG]/dt=-v1-v3+α2-µ2*[PLG] 
 
d[PLS]/dt=+v1+v3-µ4*[PLS] 
 
d[tcUPA]/dt=v2-µ3*[tcUPA] 

v1=keff1*[scUPA]*[PLG] 
 
v2=keff2*[scUPA]*[PLS]n 

 
v3=keff3*[tcUPA]*[PLG] 
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Table 2- Parameter values 

Parameters Values 

keff1 0.0017 µM-1min-1 
keff2 1 µM-1min-1 
keff3 0.03 µM-1min-1 

n 3 
µ1= µ3 0.0001 min-1 
µ2=µ4 0.001 min-1 
α1 0.00009 µM min-1 
α2 0.001 µM min-1 
Table 1- Ordinary Differential Equations (ODEs)
orm (X ). b) Protease feedback through intermediate ina
f PLS activation from PLG mediated by uPA. Table 1 
ve species and α (1 and 2) represent production rates of 
ling. 



 
uPA mediated PLS activation follows the mechanism of Figure 1c with some additional considerations (Figure 

1d, and Table 1).  UPA is secreted as a single chain form (scUPA) having very little intrinsic activity, but it can 
cleave the Glu-PLG form of plasminogen to produce PLS[16]. PLS in turn cleaves scUPA into the two-chain form, 
tcUPA, activating it completely by nicking at the Lys158-Ile159 bond.  tcUPA has 12-fold greater enzymatic activity 
for PLG than the scUPA form [16] . tcUPA creates positive feedback (Figure 1d) by cleaving PLG to form more 
PLS. Being the completely activated form of scUPA, tcUPA has more reactivity to PLG than scUPA. PLS activity 
has been modeled empirically as a co-operative process with a Hill coefficient (n), similar to reference 21.  Substrate 
competition can be a cause for co-operativity in enzyme action, apart from the traditional mode of allosteric co-
operativity [21]. PLS being a broad substrate enzyme could thereby exhibit co-operativity in its activity towards 
scUPA in the ECM. Production and degradation terms are important in this network (figure 1d) because, for 
example, if some production process does not occur to balance degradation, then any amount of degradation would 
even

ating hypotheses, and directing experimental design, but we do not draw 
conc sions from the modeling alone. 

 

3.    MODEL SIMULATION 

n 0.2-0.25 µM, Figure 2b). A system with such high sensitivity to parameter values is called 
ultrasen

ion. A variety of other system parameters are capable of causing similar switches in the steady state 
ot shown). 

 

tually cause the system to decay to a single steady state at zero. 
Extensive experimental literature on PLS and uPA provides narrow ranges for most rate constants in this model 

[16, 22-24].  Some parameter uncertainty remains and is examined directly in Sections 3.3 and 3.4.  The numerical 
parameters we chose for closer study, explained in Appendix A and listed in Table 2 of Figure 1, represent a 
plausible qualitative model, but not an absolute quantification of all phenomena. Our purpose is to use modeling for 
elucidating possible behaviors, gener

lu

3.1 Steady state behavior of PLS 

To understand the behavior of the system, we simulate the PLS-uPA model from Section 2. Using random initial 
conditions of all the species (Figure 2a), we follow the time progression curves of PLS. Interestingly, we notice that, 
depending on initial concentrations, PLS can attain two different steady states: a lower steady state at 0.02 µM and a 
higher one at 0.27µM. Usually reaction systems tend to converge to one steady state, and the presence of two steady 
states suggests bistability. The steady state behavior of PLS, computed in response to different concentrations of the 
initiator protease, scUPA, shows a sharp change in PLS steady state levels, caused by very little change in scUPA 
concentration (betwee
“ sitive” [14]. 
 Since activation is irreversible, we note that turnover would be necessary for the system to be able to switch 
from activated to inactivated steady states.  Indeed, changes in the production rate (which might reasonably occur in 
vivo when different cell types proliferate or die) can cause the system to switch up or down.  A time-progression plot 
(Figure 2c) of PLS, responding to stepwise changes in the scUPA production rate, shows the dependence of PLS 
steady state on small changes in scUPA production.  In this case, scUPA production less than 9.4 µM min-1 keeps 
PLS in its lower steady state; while a production rate of 9.7µM min-1 is sufficient to maintain a steady state with 
higher activat
(n
 
 
 
 
 
 
 
 
 
 

Pacific Symposium on Biocomputing 15:190-199(2010)



 

a.) 

Pl
as

m
in

 S
te

ad
y 

st
at

e 
[µ

M
] 

b.) 
Pl

as
m

in
  [

µM
] 

Time [seconds] 

scUPA [nM] 

Pl
as

m
in

  [
µM

] 

c.) 

Time [seconds] 

K
pr

od
1 
va

lu
es

 

 
Figure 2.  Steady state simulations.  a) PLS time progression with random initial concentrations. b) Effect of the production rate of scUPA 
(α1) on the time progression of PLS. c) Steady State of PLS for different initial concentrations of scUPA.  

3.2 Phase plane Analysis 

 To investigate the steady states of the system, we used phase plane analysis which projects the full model onto 2 
variables, for visualizing the essential dynamics of a minimized representative system.  The reduction of the system, 
shown fully in Appendix B, decreases the number of degrees of freedom in the system by assuming some quantities 
to have zero derivative, as if at steady state.  The sets of points where the remaining  species are also at steady state 
are called nullclines. Intersections of nullclines are fixed points (equilibrium points) of the overall system. After the 
model reduction of Appendix B, the nullclines of the system are as follows: 

  
pls_ n  =  

a* TP
D2 + a

     (1) 

  
tcupa _ n =  

(pls)n * keff2 * TU
keff2 * (pls)n + D1

   (2) 
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The nullclines are plotted in Figure 3, where the tcUPA nullcline is a dotted light grey, and PLS is a solid line. These 
intersect at three points labeled A, B and C. The solutions of the ODEs are plotted as tiny arrows across the plane, 
pointing in the direction of time evolution.  The trajectory arrows converge towards points A and B, indicating that 
A and B are stable states.  C is an unstable steady state because trajectories near C move the system either towards 
A or B.  Eigen-value analysis confirms the stability, as points A and B have real negative Eigen-values while point 
C has positive Eigen-values. The system therefore exhibits two steady states and is “bistable.” 

 
Figure 3: Nullclines for the two species tcUPA (dotted line) and PLS  (solid line). The points where nullclines intersect are the steady states of the 
system. A and B are stable steady states, while C is unstable. Trajectories are shown as smaller arrows  

3.3 Bifurcation analysis   

The steady state behavior of the model seen in Sections 3.1 and 3.2 is dependent on parameter values. In order to 
understand how PLS makes the transition from the lower steady state to a higher one, we did bifurcation analysis. 
Bifurcation analysis relates parameter change with the system response. Figure 4a shows the effect on PLS steady 
state of changing Keff2 , the PLS efficiency parameter.  Values of Keff2 between 0.1-1.3 µM-1min-1 allow PLS to 
exist in two different steady states (Figure 4a), depending on initial conditions. Starting from an initial higher PLS 
concentration (grey curve, “Going Down” of Figure 4a), allows the system to achieve the higher steady state over a 
wider range of Keff2 values before jumping down at Keff2 = 0.1 µM-1min-1.  
 Starting the system with a lower initial concentration of PLS (black curve, “Going Up”, of Figure 4a), shifts into a 
higher steady state at a different threshold, 1.3 µM-1min-1 of Keff2. Such systems exhibiting different thresholds for 
switching between two different steady states are called “hysteretic”[5]. Figure 4b is a bifurcation diagram with 
Keff3, the tcUPA efficiency rate, as the bifurcation parameter. For Keff3 ≤0.02 µM-1min-1, the PLS steady state is 
low, while at Keff3 values higher than 0.053 µM-1min-1, PLS reaches the higher steady state.  The dotted line in 
Figure 4b describes unstable equilibrium states, to which the system will not converge. Changes in two parameters 
Keff3 and µ2 [a degradation parameter, see Appendix B] yield a two-parameter bifurcation diagram (Figure 4c), 
where the area within the shaded cusp represents configurations with 3 fixed points or bistability, and the areas  
outside the cusp represent monostable regions.  
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Figure 4:  Bifurcation analysis: a) Change in steady state of PLS in µM with change in the Keff2 parameter. b) Bifurcation diagram of PLS with 
changing the Keff3 parameter. The dashed black line indicates unsteady states. c) 2-Parameter bifurcation diagram with the dark region being 
bistable. µ2=µ3=D2. d) Bifurcation parameter robustness.  

3.4 Parameter robustness 

The bifurcation diagram results indicate a range of parameters over which the system can be bistable. Parameters in 
a biological system are never known with high confidence, and there are often differences in the same phenomenon 
between different in vivo models. We did a robustness analysis for the presence of bistable behavior in this system 
over a broad range of all the parameters (20% on either side of reference) [9] and noted the number of parameter sets 
which are capable of being bistable using a hysteretic technique similar to [25]. Briefly, each parameter was varied  
+/-20% of its reference value, keeping the other parameters constant, and each was checked for the presence of 
hysteretic behavior, i.e. a different threshold in the two steady states of the system. As shown in Figure 4d, >=30% 
of the varied parameter population is still capable of inducing a bistable response in the system.   
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 4.    EXPERIMENTAL EVIDENCE 

We measured the dynamic behavior of PLS, in an isolated in-vitro cell free system. scUPA and PLG are the inputs 
to the system, which were provided as initial concentrations and also in the form of constant production.   
 For testing the ultrasensitive nature of the model, we measured PLS steady states after providing different 
initial concentrations [26].  Variable amounts of scUPA between 0.1nM and 6nM were given, along with a non-
variable initial concentration of 1µM PLG.  During the progression of the experiments, slight amounts of scUPA and 
PLG were added, at rates of 50pM/min and 1nM/min, respectively.  PLS was monitored using its substrate s-2251, 
which can be measured as absorbance at 405nm.  Figure 5a shows a time profile of PLS activity, which achieves 
steady state 4 hrs after being initiated with 0.5nM of scUPA.  Figure 5b shows the steady state levels of PLS activity 
in response to variable initial concentrations of scUPA.  When initial scUPA levels were 0.9nM or lower, the PLS 
steady state activity level was low at 0.24 O.D.  scUPA levels of 2nM or higher resulted in PLS achieving steady 
state at a high level (0.95 O.D).  Between 0.9 and 2.0nM, the system made a sudden transition in the steady state of 
PLS.  This is a sigmoidal curve, indicative of ultrasensitive behavior, as opposed to a hyperbolic curve typical for 
Michaelis-Menten reactions [26]. 

Bistability was verified using the “going-up” and “coming-down” method [27] for observing hysteresis.  The 
“going-up” experiments were initiated with PLS and PLG concentrations in the ratio 60%PLG: 40%PLS (0.6µM 
PLG: 0.4µM PLS). Varying initial concentrations of scUPA were added, and PLS steady state was monitored.  For 
the “coming-down” experiments, the ratio was reversed (0.4µM PLG: 0.6µM PLS) and parallel values of scUPA 
were used.  Thus we varied the initial activation state of the PLS without varying the absolute amount of the protein.  
If the system were indeed monostable, then the system would converge to the same steady state of PLS activation, 
irrespective of the initial activation ratio.  As seen in Figure 5c, intermediate concentrations between 0.7nM and 
4nM scUPA exhibited two steady states of PLS activation, depending on the initial activation ratio. 
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DISCUSSION  

In this paper, we employed computational and experimental methods to study the activation behavior of 
uPA and PLS, a pair of proteases that are crucial to regulating extracellular environments.  Our work describes PLS 
as the system output, but there are significant downstream biological implications for uPA as well, so that uPA 
activation should also be viewed as an output.  Both enzymes are synthesized in relatively inactive forms and both 
must be cleaved to be activated. They cleave each other in a positive feedback loop, so that any significant 
accumulation of either enzyme is sufficient to switch both towards their activated forms.  Simulations show this 
arrangement is capable of generating behavior that is bistable as well as ultrasensitive.  Simulations also show the 
importance of turnover.  Because degradation causes removal of all forms, but influx affects only the uncleaved 
forms, the synthesis and degradation rates play an important role in determining the steady state.  For example, 
changes in the production rate are alone sufficient to induce the ultrasensitive change in output (Figure 2b).   We 
verified that the PLS activation dynamics resemble the simulations as follows: small changes in scUPA 
concentration were capable of causing large absolute increases in PLS activity; and PLS can exhibit two different 
steady states for the same amount of scUPA protein, depending on the initial activation state of the PLS. 

PLS, PLG and urokinase (uPA) are influential in many physiological processes.  Our discovery that they 
can exhibit bistable activation dynamics could have important repercussions for a number of normal and disease 
processes such as angiogenesis, tumor metastasis, wound healing and fibrosis. Angiogenesis, the process of growing 
new blood vessels, is tightly regulated by a variety of pro- and anti-angiogenic factors[19].  Angiogenesis occurs as 
a switch-like decision [28, 29], the mechanism of which is not known. uPA and PLS play crucial roles in 
angiogenesis [29], and if the PLS-uPA system can exhibit bistable switching, this could contribute to the switch-like 
behavior of angiogenesis.   

Normal cell migration and pathological cell invasion require coordination of proteases and other 
extracellular factors to remodel the extracellular matrix (ECM).  PLS and uPA act directly on the ECM [20], and 
PLS also regulates many members of the canonical ECM-regulating family, the matrix metalloproteinases (MMPs).  
The potential of PLS and uPA to switch between two stable levels of activation may have implications for cell 
migration, such as coordinating diverse, gradual signals into a synchronized cellular function. 

Deficiency of uPA or plasminogen has been shown to lead to reduced healing and to promote progression 
of fibrosis[30].  Fibrosis is often characterized as an overactive wound-healing response [31].  Our observation that 
uPA and PLS are relatively insensitive to stimuli when they are not near the ultrasensitive threshold might aid in 
understanding why the wound healing response fails to switch off in some cases.  The bistability of the uPA/PLS 
subsystem may have far-reaching consequences that should be investigated in future work.   

  

MATERIALS AND METHODS 

Model simulations were done using the ODE15s stiff solver of MATLAB (www.mathworks.com). Pplane7 was 
used for Phase plane analysis and XPPAUT (www.math.pitt.edu/~bard/xpp/xpp.html) used for bifurcation analysis. 

Human scUPA was purchased from American Diagnostica and Glu-PLG was from Merck.  All solutions were 
prepared in Tris buffer (0.05 M Tris-HCL, 0.10 M NaC1, 0.01% Tween 80, pH 7.4).  Chromogenic substrate of 
PLS, s-2251, with chemical formula H-D-Val-Leu-Lys-pNA.2HCl was purchased from Chromogenix. In the 
presence of PLS the following reaction occurs, releasing pNA.  

H-D-Val-Leu-Lys-pNA + PLS → H-D-Val-Leu-Lys-OH + pNA 
The color intensity of pNA can be measured at O.D. of 405nm. A TecanM200 microplate reader was used for 
measuring changes in absorbance.  
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ABBREVIATIONS 

ECM - Extracellular Matrix; PLG - Plasminogen; PLS - Plasmin; TGF-β1 - Transforming growth factor Beta 1; 
LTGFβ1 - Latent Transforming growth factor Beta 1;UPA - Urokinase Plasminogen activators; scUPA - single 
chain Urokinase Plasminogen activator; tcUPA - two chain Urokinase Plasminogen activator; PAI1 - Plasminogen 
Activator Inhibitor -1;ODE - Ordinary differential equations.  
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APPENDIX A  
      Table 3 –Parameter values and references 

 
Parameters Parameter values References Normalized Values Used 

(Values/Keff2 *β) 

Keff1 0.061  µM-1min-1 [16] 0.0017 µM-1min-1 

Keff2 35 µM-1min-1 [8] 1 µM-1min-1  

Keff3 0.978 µM-1min-1 [16] 0.03 µM-1min-1 

n 1<n<5  3 

µ1= µ3  [32], [6] 0.0001 min-1 

µ2=µ4  [33, 34] 0.001 min- 

α1  [35] 0.00009 µM min-1 

α2  [35] 0.001 µM min-1 

 

 

 

 

 

 
 
 
 
 
 
 
 
Table 3 lists the parameter values with references and their normalized values. Although these parameters are consistent with 
data and highly plausible, they are not necessarily unique.  Due to the irreversibility of most of the reactions, production and 
degradation terms are non-trivial. Degradation (µi) and production (αi) terms have been adjusted based on [32, 35], and they may 
contain some bias towards values exhibiting bistable behavior.  The assumption of equal degradation rates for inactive and active 
proteases was made for nullclines, similarly to [15].  To avoid numerical errors from the XPPAUT software, the parameters were 
normalized as follows: all parameter values were divided by Keff2 for rescaling, and multiplied by β for restoring units.  β is  
1µM-1min-1.   
 

APPENDIX B: REDUCTION METHOD FOR BIFURCATION ANALYSIS  

We let TU, the total Urokinase, be defined as scUPA + tcUPA, and TP be defined as PLG + PLS.  For analyzing the 
equilibrium of the system, we assume the following time derivatives to be zero, which would occur if the system is 
at steady state. 

  TU' = scupa' + tcupa'  = 0    (B.1) 

  TP' = plg' + pls'  = 0    (B.2) 

For ease of notation, we assume equal degradation rates of the proteases, µ1=µ4=D1 and µ2=µ3=D2. By solving the 
ODEs at steady state and substituting in (B.1) and (B.2) we get  
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TU' = kprod1 - D1(tcupa + scupa)      (B.3) 

 
TP' = kprod2 - D2 (pls + plg)       (B.4) 

Solving (B.3) and (B.5) further at steady state gives  

 
TU =

kprod1
D1

= scupa + tcupa       (B.5) 

 
TP =

kprod2
D2

= plg + pls       (B.6) 

Substituting PLG=TP-PLS into the ode for PLS and solving for PLS at steady state, we get the PLS nullcine 
(PLS_n) as  

  
pls _ n =

a * TP

D2 + a
    (B.7) 

Where 
.
 Similarly, the tcUPA nullcline (tcUPA_n) is 

 
a = (keff1 * scupa + keff3 * tcupa)

  
tcupa _ n =  

(pls)n * keff2 * TU
keff2 * (pls)n + D1

   (B.8)   
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