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Personal genome resequencing has provided promising lead to personalized medicine. However, due to the 
limited samples and the lack of case/control design, current interpretation of personal genome sequences has 
been mainly focused on the identification and functional annotation of the DNA variants that are different 
from the reference genome. The reference genome was deduced from a collection of DNAs from anonymous 
individuals, some of whom might be carriers of disease risk alleles. We queried the reference genome against 
a large high-quality disease-SNP association database and found 3,556 disease-susceptible variants, including 
15 rare variants. We assessed the likelihood ratio for risk for the reference genome on 104 diseases and found 
high risk for type 1 diabetes (T1D) and hypertension. We further demonstrated that the risk of T1D was 
significantly higher in the reference genome than those in a healthy patient with a whole human genome 
sequence. We found that the high T1D risk was mainly driven by a R260W mutation in PTPN22 in the 
reference genome. Therefore, we recommend that the disease-susceptible variants in the reference genome 
should be taken into consideration and future genome sequences should be interpreted with curated and 
predicted disease-susceptible loci to assess personal disease risk. 
 

  



 
 

1.  Introduction 

With the advance of sequencing technology and assembling tools, whole genome sequencing has 
become a commodity with 10,000 personal genomes being sequenced in the next two years. An 
urgent question is how to interpret personal genome sequences to comprehensively assess disease 
risk and optimize personalized treatment. Sixteen personal genomes (1-13) have been fully 
sequenced and described in the literature, while companies state they are sequencing as many as 
500 individuals per month. However, due to the limited samples and lack of case/control design, 
the current interpretation of these genomes had been mainly focused on the identification and 
functional annotation of the DNA variants that are different from the reference genome sequence, 
with an aim to find interesting genomic features. The reference genome was not from a single 
normal individual; instead, the reference was deduced from a collection of DNAs from anonymous 
individuals with primarily European origins and assembled into a mosaic haploid genome (14, 15). 
To our knowledge, the clinical and phenotypic information of the participants had never been 
published. Although they were very likely to be healthy at the time of study, some of them might 
be carriers of disease risk alleles. The identification of biologically and clinically important rare 
and common disease variants in the reference genome and a comprehensive disease risk 
assessment will improve our understanding of the reference to better assemble and interpret future 
genome sequences. 
 

We have previously developed a method to assess the risk of a patient for 55 diseases using a 
quantitative human disease-SNP association database, and showed that we could suggest useful 
and clinical relevant information using his personal genome sequence (16). Here, we queried the 
reference genome sequence against our database and identified 3,556 disease-susceptibility 
variants, including 15 rare variants. We comprehensively assessed the risk of the reference 
genome for 104 diseases and found high risk for type 1 diabetes (T1D) and hypertension. We 
further demonstrated that the risk of T1D was also significantly higher in the reference genome 
than in the genome of the healthy male we previously described (16). Comparing all contributing 
alleles, we found that the high T1D risk was mainly driven by a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22) in the reference genome. 

2.  Methods 

2.1 Identifying the disease susceptible/protective alleles in the reference genome 
 
We downloaded the alleles at 24.5 million SNPs (dbSNP 131 on hg19) of the reference genome 
from the UCSC genome browser (17, 18), and removed all SNPs that were mapped to multiple 
locations.  
 

As described previously (16), we manually curated quantitative human disease-SNP 
associations from the full text, figures, tables, and supplemental materials of 3,333 human genetics 
papers, and recorded more than 100 features from each paper, including the disease name (e.g. 
coronary artery disease), specific phenotype (e.g. acute coronary syndrome in coronary artery 



 
 

disease), study population (e.g. Finnish individuals), case and control population (e.g. 2,508 
patients with coronary artery disease proven by angiography), gender distribution, genotyping 
technology, major/minor risk alleles, odds ratio, 95% confidence interval of the odds ratio, 
published p-value, and genetic model. Studies on similar diseases were categorized and mapped to 
the Concept Unique Identifiers (CUI) in the Unified Medical Language System (UMLS) (19). For 
each study, the frequency of each genotype and allele in the case and control populations was 
recorded. 
 

We queried the reference genome against this disease-SNP database using dbSNP identifiers 
(17), and identified all disease susceptible or protective alleles in the reference. We then retrieved 
the Minor Allele Frequency (MAF) from the HapMap II and III projects (20) and identified rare 
disease-susceptible alleles in the reference that had an MAF<1% in the CEU population. 
 
2.2 Assessing the risk of the reference genome on 104 diseases 
 
We had previously reported the medical assessment of a personal genome sequence from a healthy 
40-year-old male by calculating his pre-test probability, likelihood ratio (LR), and post-test 
probability across 55 diseases (16) using a curated high-quality quantitative human disease-SNP 
association database. Similarly, for each of 104 diseases, we queried the reference genome 
sequence against our database, identified all independent disease-associated loci, treated the 
genotype at each locus as an independent genetic test, and calculated the LR as the increased 
disease odds from all tests. 
 

For each disease, we identified all SNPs that had been significantly associated with the disease 
with a p value of ≤10 -6 in Genome-Wide Association Studies on more than 5000 individuals, or 
with a p value of ≤0.01 in candidate gene studies on more than 1000 individuals. We estimated 
genetic risk using a likelihood ratio for each SNP defined by the relative frequency of the 
individual’s genotype in the diseased vs. healthy control populations (e.g., given an allele “A”, LR 
= Pr(A|diseased)/Pr(A|control)). The LR incorporates both the sensitivity and specificity of the test 
and provides a direct estimate of how much a test result will change the odds of having a 
disease (21).  In addition, the likelihood ratio is taught to medical students and physicians in 
training(22).  

 
We excluded studies with diseased patients in the control group, and included studies across 

all ethnicities and genders, because the reference genome was deduced from a mixture of people 
with different ethnicities and genders. For each allele, we averaged the LRs from multiple studies 
with a weight of the square root of the sample size to give higher confidence to studies with larger 
sample size. After removing SNPs in high linkage disequilibrium (R2≥0.8 in HapMap CEU 
populations), we assumed each locus as an independent genetic test and multiplied LRs to report 
the combined LR or risk.  
 
2.3 Comparing the disease risk between the reference genome and a healthy patient 



 
 

 
We plotted the log(LR) of a 40-year-old healthy male (16) against the log(LR) of the reference 
genome across 62 shared diseases to identify the diseases where the reference genome had 
significantly higher risk. All contributing SNPs were plotted for the disease to identify SNPs that 
drove the observed risk difference between the two genomes. For each SNP, its associated gene 
was identified using the NCBI Entrez dbSNP (17), and annotated using the UCSC genome 
browser (18) for its functional type and chromosome location. 

3.  Results: 

3.1 Disease susceptible and protective alleles in the reference genome 
 
The reference genome (hg19) contains 21.8 million SNPs, with 17,429 of them known to associate 
with human disease and other phenotypes, and 12,190 of them known to associate with human 
diseases (Table 1). It contains slightly more diseases-protective alleles and genotypes (4,052 SNPs 
for 381 diseases) than disease-susceptible alleles and genotypes (3,556 SNPs for 349 diseases).  
 

Table 1: Number of disease susceptible and protective alleles in the reference genome 
 SNPs Phenotypes PubMed count 
Disease/traits# 17,429 1,026 3,333 
Associated with disease 12,190 561 2,695 
Susceptibility to disease 3,556 349 1,416 
Protection from disease 4,052 381 1,600 

# Non-disease phenotypes included drug response and clinical measurements 

 
3.2 Rare disease-susceptible variants in the reference genome 
 
The reference genome carries minor alleles at 0.93 million SNPs in the CEU population, and 0.15 
million of them were rare variants with MAF<1% in the HapMap II and III projects (20). We 
found that 15 rare alleles in the reference genome are known to increase the risk of a variety of 
diseases (Table 2). For example, rs10849033 is close to the 5’ end of C12orf5, a TP53-induced 
glycolysis and apoptosis regulator. The reference genome has a rare G allele at rs10849033 with 
an MAF of 0.8%. The G allele had been found to significantly increase the risk of acute 
lymphoblastic leukemia (ALL) by 2.55 fold, with a p value of 8.5×10-6 in a study on 317 children 
with ALL and 17,958 non-ALL individuals in a control group (23). This rare ALL-susceptibility 
variant would likely be missed by recent personal genome resequencing efforts focusing on 
reporting and studying only those variants different from the reference genome.  
 

Table 2: Rare disease-susceptible variants (MAF<1%# in Caucasian) in the reference genome 
Disease Gene SNP Allele Type PubMed 
Acute lymphoblastic leukemia C12orf5 rs10849033 G near 5' 19684603 
Asthma 

 
rs10837012 G unknown 19187332 



 
 

 
rs1335159 C unknown 19187332 

Breast cancer RRP1B rs9306160 T missense 19825179 
Coronary artery disease PON2 rs7493 G missense 12588779 
Focal segmental glomerulosclerosis WT1 rs2234591 T intron 15687485 
Juvenile idiopathic arthritis SLC26A2 rs30832 T missense 17393463 
Malaria FAM53B rs7076268 C intron 19465909 
Obesity 

 
rs7173766 A unknown 19584900 

Parkinson's disease 
ADH1C rs283413 A nonsense 15642852 
NUCKS1 rs823128 G intron 19915575 

Placental abruption F5 rs6025 T coding-synon 18277167 
Prostate cancer GDF15 rs1058587 C missense 16775185 
Schizophrenia 

 
rs4568102 A unknown 18347602 

Type 2 diabetes ARHGEF11 rs861086 G near 5' 17369523 
Venous thrombosis F5 rs6025 T coding-synon 17284699 

# MAF (minor allele frequency) was retrieved from the HapMap II and III projects 

 
We further found two rare variants in the reference genome increasing the risk of Parkinson’s 

disease (Table 2). One of them is rs283413, containing an A allele in the reference genome, which 
leads to the early truncation of ADH1C protein, and has been known to increase the risk of 
Parkinson’s disease by 3.25 fold (p=0.007) in multiple Swedish and Caucasian studies (24).  

 
A large survey across 17,429 disease SNPs in our database showed that the effect sizes or the 

odds ratio of disease SNP associations were consistently and negatively associated with the MAF 
in Caucasian, African, Chinese, and Japanese. This indicated that rare disease-associated SNPs 
conveyed significantly larger effect size to the observed genetic association across human 
diseases. With the discovery of several rare alleles known to be associated with disease in the 
reference genome, we suggest that whole genome resequencing would very likely identify other 
causal SNPs, possibly explaining some of the currently missing genetic heritability of complex 
diseases (25). As such, some of the other 0.15 million rare variants in the reference genome could 
also potentially be associated with disease. Comparing genome sequences against curated disease 
and rare variants would likely discover many causal variants. 
 
3.3 Risk likelihood ratio of the reference genome on 104 diseases  
 
We analyzed the risk likelihood ratio (LR) of the reference genome on 104 diseases using the 
independent test likelihood ratio model. We found that the reference genome had an increased risk 
on 48 diseases (LR>1) and a decreased risk on 56 diseases (LR<1). The LR ranged from 0.14 to 
5.14 with a mean LR close to 1.0 (p=0.39, t-test). Strikingly, T1D demonstrated the highest risk 
with a product LR of 5.14. This LR was calculated from 31 T1D-susceptible alleles and 14 T1D-
protective alleles in the reference genome. 



 
 

 
The reference genome also had a high likelihood ratio of risk for hypertension with 11 risk and 

3 protective alleles. The high risk of hypertension was mainly driven by a G allele at rs3741691 in 
THAP2  with a LR of 1.26 (26), an A allele at rs2106809 in ACE2  with a LR of 1.26 (27), and an 
A risk allele at rs3761987 with a LR of 1.21 (26). Table 3 lists the LR and the number of 
susceptible and protective SNPs on just the 44 diseases with 10 or more SNPs. 

 
Table 3: Disease risk profile of the reference genome on 44 diseases with ≥10 SNPs 

Disease LR Susceptible SNPs Protective SNPs 
Type 1 diabetes 5.14 31 14 
Hypertension 2.58 10 3 
Ankylosing spondylitis  1.90 9 6 
Myocardial infarction  1.78 10 3 
Prostate cancer  1.56 22 19 
Breast cancer  1.28 17 17 
Multiple sclerosis  1.25 10 4 
Inflammatory bowel disease  1.21 7 8 
Colorectal cancer  1.20 9 12 
Lung cancer  1.03 6 5 
Parkinson's disease  1.01 14 7 
Alzheimer's disease  0.89 10 8 
Coronary artery disease  0.86 8 9 
Celiac disease  0.83 9 10 
Rheumatoid arthritis  0.76 12 11 
Bipolar disorder  0.75 5 5 
Schizophrenia  0.71 5 10 
Ulcerative colitis  0.70 6 12 
Systemic lupus erythematosus  0.66 26 29 
Type 2 diabetes  0.61 34 37 
Crohn's disease  0.55 12 17 
Glioma  0.53 4 9 
Psoriasis  0.47 11 10 
Obesity  0.43 6 14 
Basal cell carcinoma  0.33 3 8 
Melanoma  0.14 4 11 

We then plotted the histogram of log(LR) across all 198 diseases, and observed a symmetric 
distribution with no significant difference from the mean of zero (p=0.07, t-test). This suggests 
that our method is unbiased towards overcalling susceptibility or protection across all diseases. 

 
3.4 Disease risk comparison between the reference and a personal genome 
 



 
 

We plotted the log(LR) of a 40-year-old healthy Caucasian male against the log(LR) of the 
reference genome across 104 shared diseases (Figure 2). Interestingly, the reference genome 
showed a strikingly increased risk on T1D than the healthy male, and a decreased risk on 
Melanoma. This indicats that the high T1D risk was likely a result of T1D-susceptible alleles in 
the reference genome instead of biased T1D-susceptible alleles in the database. Although the 
reference genome was deduced from a group of healthy persons, some of them might be carriers 
of T1D-sueceptible alleles. Therefore, the reference genome is not free of predicted disease-risk 
and these disease-susceptible alleles in the reference genome need to be taken into consideration in 
interpreting future genome sequences.  

 
Fig. 1: The disease risk comparison between the personal genome of a healthy male and the reference 
genome. Each circle represents the genetic risk of a disease for the patient and the reference genome. 

 
3.5 T1D-susceptible alleles in the reference genome 
To identity the specific alleles that led to the striking difference on predicted T1D risk between the 
reference genome and the healthy male, we plotted all contributing T1D susceptible and protective 
alleles in both the reference genome (Figure 2) and the previously studied 40 year old patient 
(Figure 3).   
 

 



 
 

Fig. 2: Contribution of individual alleles to overall risk LR of T1D of the reference genome. Alleles and 
their associated genes are listed on the left, ordered from top to bottom by the number of studies in which 
each was published and the total sum of cohort sizes across those papers. The LR of each independent 
SNP/allele is listed.  A user of this figure could draw a horizontal line at a given threshold of belief, 
include and exclude alleles, and retrieve the accumulated LR at the right column and shown graphically in 
the middle. The central graph displays the change in accumulated LR, with darker squares representing 
more publications and larger squares representing larger sample size. 



 
 

Fig. 3: Contribution of individual genotypes to the overall risk LR of T1D for a previously published 40-
year-old healthy Caucasian male. See Figure 3 for details on the graphical elements. 

 
Comparing Figure 2 and 3, we found that the increased T1D risk in the reference genome was 

mainly due to a highly T1D-susceptible allele A at rs2476601, causing a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22).  This SNP had been reported to increase the risk of 
T1D by 2 fold in more than nine studies (28-31). Comparing with the patient, the reference 



 
 

genome also has increased risk of T1D due to the lack of two T1D-protective alleles at rs3087243 
in cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (32) and at rs689 in the insulin (INS) 
(28). These three alleles increased the T1D risk for the reference genome by 6.8 fold comparing 
with our previously published patient. Interestingly, for rs2476601 in PTPN22, the T1D 
susceptible allele in the reference genome is the minor allele in most population. The 3,556 known 
disease-susceptible variants and many unknown ones especially rare variants could be potentially 
missed if only variants different from the reference were analyzed. 
 
3.6 Disease-susceptible alleles deleted in the reference genome 
 
The reference genome also contains a deletion at 2.7M SNPs with a dbSNP identifier in the 
dbSNP build 131 (17).  We found that 16 SNPs that are known to associate with human diseases at 
these points of deletion.  The clinical relevance of these missing base pairs is not clear. 

4.  Discussion 

We identified 3,556 disease-susceptible variants including 15 rare variants (MAF<1%) in the 
reference human genome, which provides a useful tool for the annotation of personal genome 
sequences. Using a curated high-quality quantitative human disease-SNP association database, we 
assessed the likelihood ratio of increased risk over healthy population on 104 diseases for the 
reference genome and found the high predictive T1D risk with a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22). It reminded us that the reference genome was not 
from a regular person and was certainly not disease free. Although it had dramatically accelerated 
personal genome sequencing efforts, focusing on variants different from the reference will likely 
miss many disease causal variants including rare variants.  
 

With the likely incoming deluge of 10,000 personal genome sequences arriving within the next 
two years, a method to estimate personal disease risk is urgently needed. Here, we described a 
method to estimate personal genetic risk using a likelihood ratio for each SNP as the relative 
frequency of the individual’s genotype in the diseased vs. healthy control populations. We further 
described a very simple method to treat multiple disease loci outside the linkage disequilibrium as 
independent genetic test, and estimated their combined effect. We acknowledge that assuming 
independence of tests is actually a different assumption than assuming that each variant 
contributes independently to risk.  If each measured variant is viewed as an independent test 
probing disease state, this is arguably closer to our understanding of their use as markers 
associated with disease instead of actual causal variants (22). We admit that it is likely to be too 
simple to accurately model the risk of many common diseases, especially those like T1D, which 
are also influenced by unknown environmental and gene-environmental factors, and we are 
currently investigating different models to estimate combined effects.  

 
The accurate assessment on personal disease risk is also dependent on the quality and coverage 

of the genotype/allele frequency in the disease and control population in the literature. We found 



 
 

that many studies, including genome-wide association studies (GWAS) only reported the odds 
ratio of disease risk between genotypes/alleles, and not their frequencies in the case and control 
population, which were required for the calculation of the likelihood ratio. For studies reporting 
both the odds ratio and the minor allele frequency in the control group, we recalculated their allele 
frequencies. We excluded studies reporting only the odds ratio, and we are investigating the 
possibility of estimating the genotype/allele frequencies in the control group using the data in the 
HapMap III project (33). There have been many debates on whether the aggregated genotype 
frequency data should be published in GWASs (34). Analyses showing association of a single 
biomarker with disease typically report very detailed characteristic of the populations studied; this 
is radically different from typical genetic association studies, which often report almost nothing 
about the subjects (22). Therefore, we strongly recommend the release of the genotype frequency 
in future GWAS studies as it is critical for us to quantitatively evaluate the disease-SNP 
association, enabling an accurate personal risk assessment.  

 
We further found that many disease SNPs had been reported as the genotypes in the negative 

strand without indicating their strand directions. We had identified the strand direction by 
comparing the major/minor alleles in the study with the major/minor alleles in similar population 
in the HapMap projects. However, the identification process became difficult when the C/G or 
A/T alleles share similar frequencies. Therefore, we strongly recommend investigators to report 
the genotype frequencies in the case and control population and their strand direction in the future 
GWAS publications. With exponentially increasing personal genome sequences with phenotype 
information, we will likely to discover more rare causal variants and comprehensively predict 
personal risk on a variety of diseases. 
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