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Personalized medicine is a high priority for the future of health care. The idea of tailoring an individual’s wellness plan to 

their unique genetic code is one which we hope to realize through the use of pharmacogenomics. There have been 

examples of tremendous success in pharmacogenomic associations however there are many such examples in which only 

a small proportion of trait variance has been explained by the genetic variation. Although the increased use of GWAS 

could help explain more of this variation, it is likely that a significant proportion of the genetic architecture of these 

pharmacogenomic traits are due to complex genetic effects such as epistasis, also known as gene-gene interactions, as well 

as gene-drug interactions. In this study, we utilize the Biofilter software package to look for candidate epistasis 

contributing to risk for virologic failure with efavirenz-containing antiretroviral therapy (ART) regimens in treatment-

naïve participants of AIDS Clinical Trials Group (ACTG) randomized clinical trials. A total of 904 individuals from three 

ACTG trials with data on efavirenz treatment are analyzed after race-stratification into white, black, and Hispanic ethnic 

groups. Biofilter was run considering 245 candidate ADME (absorption, distribution, metabolism, and excretion) genes 

and using database knowledge of gene and protein interaction networks to produce approximately 2 million SNP-SNP 

interaction models within each ethnic group. These models were evaluated within the PLATO software package using pair 

wise logistic regression models. Although no interaction model remained significant after correction for multiple 

comparisons, an interaction between SNPs in the TAP1 and ABCC9 genes was one of the top models before correction. 

The TAP1 protein is responsible for intracellular transport of antigen to MHC class I molecules, while ABCC9 codes for a 

transporter which is part of the subfamily of ABC transporters associated with multi-drug resistance. This study 

demonstrates the utility of the Biofilter method to prioritize the search for gene-gene interactions in large-scale genomic 

datasets, although replication in a larger cohort is required to confirm the validity of this particular TAP1-ABCC9 finding. 
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1. Introduction  

1.1. The HIV pandemic 

Human Immunodeficiency Virus (HIV) Type 1 infection has been in a state of pandemic for several 
years. The 2008 UNAID report estimates that 33 million people are currently infected, with 
approximately 3 million new infections during the year of 2008 [1]. Within regions in Sub-Saharan 
Africa, the prevalence of HIV-1 infection rises as high as 25-30% [1]. Because there is no cure for 
HIV-1 infection, one of the best tools available to combat the epidemic currently is antiretroviral 
therapy (ART). ART helps with treating those individuals already infected and helps to reduce the 
chance of spreading the disease[2]. ART consists of a regimen of two or three antiretroviral drugs and 
is successful in drastically increasing the lifespan of HIV-1 infected individuals and improving their 
quality of life[3]. By reducing the amount of virus circulating freely in the blood of an infected 
person, ART also greatly decreases the probability of transmitting the virus through sexual contact[4], 
and child birth [5]. Despite the benefits of ART for its use in fighting HIV, there are unfortunately 
several issues that accompany the use of the therapy. Arguably the most significant issue among these 
is the prevalence of adverse drug reactions (ADR) and the failure of the drug to suppress viral load. 
Adverse reactions to antiretroviral drugs range from skin rash and nausea to neurologic impairment 
and fatal hypersensitivity, as is sometimes seen in response to the drug abacavir [6]. ADRs contribute 
to ineffectiveness of ART by reducing adherence to drug regimens and requiring temporary 
discontinuation of treatment [7]. The failure of a drug to suppress viral load in a patient is known as 
virologic failure [8]. Virologic failure refers either to initial inefficacious response to the drug and a 
failure to ever reach a controlled viral load or to the phenomenon whereby viral load rebounds 
subsequent to reaching a controlled level. 

1.2. Pharmacogenomics and HIV treatment 

The way in which people respond to drug treatment has been shown, in many cases, to be influenced 
by their genetics. The field of pharmacogenomics attempts to discover the exact genetic variants 
which predict success, failure or ADR in response to treatment. There have been successes in 
identifying genetic polymorphisms which explain large proportions of variance in drug response. 
Approximately 20-30% of the variance in initial dosing of the anti-coagulant warfarin, for example, 
can be explained by variation in the gene VKORC1[9], which codes for vitamin K epoxide reductase 
complex subunit 1. Vitamin K epoxide reductase creates the enzymatically active form of vitamin K 
[10] which is in turn extremely important in modulating the function of proteins involved in blood 
clotting. For this reason, it makes biological sense that a polymorphism which affects the expression 
of VKORC1 would also affect how much warfarin is necessary to prevent over-clotting. Arguably the 
most significant pharmacogenomic discovery has been made in the field of HIV ART. 
Hypersensitivity reaction (HSR) in response to the nucleoside reverse-transcriptase inhibitor (NRTI) 
abacavir, a commonly-used drug in ART regimens, has been shown to be strongly tied to HLA 
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genotype. HLA-B*5701 genotype has a 100% negative predictive value (NPV) for predicting HSR 
from abacavir [11, 12]. As a result of this relationship, HLA-B*5701 has become one of the first 
genetic tests approved by the FDA for use in determining risk prior to prescription of a drug. 
Although the abacavir story represents the pinnacle of pharmacogenomic discovery and there may not 
be another single genetic polymorphism with 100% NPV for ART in the future, there are still many 
possibilities for utilizing genetic prediction models in determination of the optimal ART drug regimen 
to prescribe in order to control HIV. It might be that a combination of genetic variants in concert 
would best predict antiretroviral drug response. 

1.3. Genetic interactions 

Decades of research into the pharmacokinetics of drug metabolism have shown that the enzymes 
which process and transport pharmaceuticals function as part of highly-interconnected networks [13]. 
For example, studies have shown that many drugs, including phenytoin [14] and irinotecan [15], can 
be metabolized, activated, or deactivated by more than one enzyme[16]. It is as a result of this 
complementation that it is reasonable to expect the necessity of multiple genetic polymorphisms to 
experience a large change in the resulting phenotype. The phenomenon of gene-gene interaction, or 
epistasis as it is often referred to in the field of genetic epidemiology, has been a subject of much 
discussion over the past decade [17-19]. Although the term epistasis was coined separately by 
Bateson [20] and Fisher [21] in the early 20th century to refer to the effect of one gene “masking” 
another’s effect or a non-additive effect of multiple elements observed simultaneously, respectively, 
the necessary technology to explore its presence has only recently been developed. The HapMap 
project, the sequencing of the human genome, and the steady increase in computational power have 
been the driving factors in the ability to analyze genetic data for gene-gene interaction effects. Despite 
the rising computational power available, genotyping technology has far out-paced the ability to 
exhaustively analyze multi-locus genetic effects for genome-wide association study (GWAS) data. To 
search exhaustively for epistasis between two single nucleotide polymorphisms (SNPs) in a current 
GWAS containing 1 million SNPs would require 5 x 1011 tests. Although it is still possible to perform 
this pair wise exploration by utilizing parallel computation, it is clear that with the advent of whole-
exome and whole-genome sequencing technology as a primary source for genetic information in 
association studies in the near future, an alternative to exhaustive searches must be found. One such 
solution is that of biasing the search using prior knowledge to search for combinations of genes that 
are likely to interact biologically. The Biofilter tool [22] was developed to use databases such as the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Protein Family database (PFAM) in 
order to build SNP-SNP models based on known interactions between genes and proteins in curated 
pathways and networks. Especially in a field such as pharmacogenomics, in which the knowledge of 
the drug metabolism networks is extensive, enriching the search for epistasis with knowledge from 
known biological interactions could prove valuable. Not only does this alleviate the issues of 
computational complexity, but it also substantially reduces the number of tests and associated 
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multiple-comparison issues. As opposed to considering 10’s or 100’s of billions of two-way 
interaction models, one would search a more reasonable subset of a few million models with a solid 
biological basis. The time necessary to perform the subsequent statistical analysis declines from days 
to hours, using a single processor. One concern of pursuing only a biologically-informed subset of 
interaction models is the possible loss of novel significant interactions during filtering. Due to long-
standing knowledge in pharmacology, the potential reduction in noise outweighs the concern. 

2. Methods  

2.1. Study population 

DNA samples in the current study come from individuals who were randomized to receive efavirenz 
(in multidrug ART regimens) in the AIDS Clinical Trials Group (ACTG) randomized clinical trials 
(RCT) ACTG 384, A5095 and A5142 and were collected under protocol A5128 [23]; study designs 
are described in depth elsewhere [24-30]. ACTG 384 [29, 30] and A5095 [24-26] were double-blind, 
multicenter RCTs designed to test the effectiveness of differing ART drug regimens. Of the 980 
individuals enrolled into ACTG 384, 526 were consented for DNA extraction and 347 of those with 
DNA available were on efavirenz-containing regimens. A5095 enrolled 1147 subjects for comparison 
of protease inhibitor-sparing regimens. Of the enrollment in A5095, a total of 600 individuals were 
available who both consented for DNA and had ART containing efavirenz. The final study used in 
this multi-study analysis was A5142 [27, 28]. This ACTG study was a Phase III comparison of 3 ART 
regimens. Of the 757 participants of A5142, 411 were randomized to receive ART containing 
efavirenz and provided DNA samples.  
 

Table 1. Sample size broken down by study and race ethnicity grouping. 

      Study   
  ACTG 384 A5095 A5142 Total 

Pre-QC Total Cases 45 124 97 266 
    Controls 302 476 314 1092 

Post-QC Total Cases 38 100 59 197 
  Controls 228 319 160 707 
  White Cases 16 34 24 74 
    Controls 116 163 78 357 
  Black Cases 18 47 30 95 
  Controls 69 97 49 215 
  Hispanic Cases 4 19 5 28 
    Controls 43 59 33 135 
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The total number of individuals available with DNA samples and GWAS genotyping across these 
three studies was 1358. Self-described ethnicity of the combined study population reveals the study 
population to consist of 45% white (N = 606), 34% non-Hispanic black (N = 459), 19% Hispanic (N 
= 265) and 2% other (N = 28). After quality control (QC) and exclusions were applied, 904 
participants remained available for analysis. Of this 904, 48% (N = 431) were non-Hispanic white, 
34% were non-Hispanic black (N = 310), and 18% (N = 163) were Hispanic. The endpoint used in 
this study was virologic failure as defined by a spike in viral load above 200 copies/mL after 
achieving viral load less than 200 copies/mL on ART. Individuals who experienced virologic failure 
on efavirenz are categorized as cases while those who did not are categorized as controls (Table 1). 

 

 

Figure 1. An outline of the analysis plan used in this study. A more detailed description of the Biofilter step is 

available in Figure 2. 
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2.2. Genotyping and quality control exclusions 

Individuals from the ACTG 384 study were genotyped on the Illumina 650Y array while those from 
A5142 and A5095 were genotyped with the Illumina Human1M-Duo platform (Illumina, Inc. San 
Diego, CA). In combining data from these two platforms, only the SNPs which overlapped were used 
for this analysis. Principal components analysis was performed referencing the HapMap phase 3 
sample data to map each individual back to one of three major ethnic groups: white, black, and 
Hispanic. There was greater than 95% concordance between self-reported ethnicity and that found 
through principal components analysis. Within each race stratum, quality control was performed to 
filter out samples and SNPs of low quality (Figure 1). Samples with low genotyping rate (<95%), 
high or low heterozygosity (inbreeding coefficient > 0.125 or < -0.125) and related individuals (IBD 
estimate > 0.1) were removed. SNPs with missingness > 2%, large deviations from Hardy-Weinberg 
equilibrium (p < 10-6) and those with differential missingness between cases and controls > 2% were 
removed from analysis.  

2.3. Biofilter 

The Biofilter[22] was developed to provide prior biological knowledge to influence the search for 
gene-gene interactions in large-scale data. Given a set of variants, Biofilter first maps the SNPs back 
to genes based on gene definitions in Ensembl and then builds models using disease-dependent (i.e. 
those biological associations previously known with respect to the trait under investigation) or 
disease-independent relationships (i.e. known biological interactions with no particular association to 
the trait under consideration). A unique option for the Biofilter is to provide a personally curated list 
of genes based on expert knowledge of the phenotype under study as a starting point, using that list to 
search both disease-dependent and disease-independent data sources to map all other genes that are 
related to the genes in the curated list.  Based on user options, the Biofilter can query the set of 
databases, which currently includes KEGG, PFAM, Reactome, DIP, PFAM, GO, and NetPath, to 
establish groups of interacting genes. Once these groups are established, SNP-SNP interaction models 
are created by exhaustively pairing two SNPs from two genes in the group. Biofilter allows flexibility 
in choosing how restrictive the creation of interaction models will be. For example, when inputting a 
list of self-curated genes, the user has the option to ensure that at least one of the SNPs comes from a 
gene in the list.  Alternatively, restrictions can be relaxed to allow models with SNPs from other 
genes in the same group or even pathway as those genes in the list. As shown in Figure 2, we 
provided a list of 245 absorption, distribution, metabolism and elimination (ADME) genes which 
were curated by the authors and allowed for the inclusion of SNPs which were within 10kb of the 
gene boundaries. Interactions were restricted to allow only those models for which at least one of the 
SNPs in the model belonged to a gene in the list – although the search was conducted in the disease-
independent databases. Two-SNP interaction models were generated separately for non-Hispanic 
white (henceforth referred to as white), non-Hispanic black (henceforth referred to as black), and 
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Hispanic ethnic groups, while those participants self-describing as other races were excluded.  We 
used all six databases currently integrated in the Biofilter to generate our SNP-SNP models. 

2.4. Statistical analysis 

All statistical analyses were performed using the Platform for the Analysis, Translation and 
Organization of large scale data (PLATO) software package 
(http://chgr.mc.vanderbilt.edu/ritchielab/subscriptions) [31].  PLATO is a scaffold which allows for 
recoding, quality control, and analysis of data as part of a pipeline. The Biofilter models were used as 
input for PLATO.  The statistical analyses performed used logistic regression to assess the risk of 
each pair of interaction models. Logistic regression models included terms for each SNP separately 
and a term for multiplicative interaction. In addition, variables deemed important with respect to the 
outcome of virologic failure were included as covariates in the model. Principal components vectors 
were utilized to adjust for population substructure within each racial group, as might exist between 
northern and southern European white individuals or African Americans. Indicator variables for 
genotyping phase and baseline viral load (≥ or < 100,000 copies/mL) were also incorporated. 
Regression analysis was performed separately within each ethnic group as defined by principal 
components analysis. 
 

 

Figure 2. A schematic of the procedure involved in a Biofilter run. 
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3. Results 

Genome-wide genotyping of 1358 AIDS Clinical Trials Group (ACTG) participants with exposure to 
the NNRTI efavirenz was conducted to elucidate the genetic basis of virologic failure. Race-
stratification was performed using principal components analysis based on HapMap phase 3 samples. 
After quality control processes, 904 individuals remained. The Biofilter software tool was used to 
take a list of 245 ADME genes and build putative gene-gene interactions based on biological 
knowledge provided by KEGG, DIP, Pfam, Net Path, Reactome, and Gene Ontology. The SNPs from 
each ethnic group were then mapped back to these ADME genes and SNP-SNP models were created 
by taking one SNP from each gene in a proposed gene-gene interaction. Running Biofilter resulted in 
2,144,157 models to evaluate in whites, 2,471,201 models in blacks, and 2,099,614 models in 
Hispanics.  These models were derived from a total of 33067, 35764 and 32698 SNPs for white, black 
and Hispanic groups respectively. If all two-way interactions between these SNPs were exhaustively 
tested, it would result in the evaluation of 546 million models for the white group and 638 million and 
534 million models for the black and Hispanic groups respectively. The differences in model number 
between ethnic groups are due to race-stratified quality control. SNP-SNP models from Biofilter were 
passed to PLATO[31] to perform logistic regression analysis. Due to the highly correlated nature of 
many of the interaction models, a Bonferroni correction would too conservative for correcting for 
multiple testing. Instead, a false-discovery rate (FDR) correction was applied using the qvalue 
package available in R. No interaction models were found to be significant at an FDR level of 0.10, 
although the most significant interactions were significant at an FDR level of 0.45. The interaction 
models with lowest p-values are shown in Table 2. 
 

Table 2. Most significant interaction models resulting from gene-gene interaction analysis. 

SNP1 SNP2 
Model  

P-value 
Interaction 

P-value 

SNP1 
Odds 
Ratio 

SNP2 
Odds 
Ratio 

Interaction 
Odds Ratio 

rs2318785 (NME2) rs2157597 (NME7) 1.69E-06 5.98E-07 0.257 0.253 4.732 
rs2318785 (NME2) rs12118611 (NME7) 1.69E-06 5.98E-07 0.253 0.257 4.732 
rs2318785 (NME2) rs12121994 (NME7) 1.68E-06 6.15E-07 0.247 0.263 4.769 
rs2318785 (NME2) rs17349439 (NME7) 3.30E-06 1.20E-06 0.265 0.277 4.487 
rs2318785 (NME2) rs6703463 (NME7) 1.48E-05 3.93E-06 0.258 0.289 3.884 
rs2318785 (NME2) rs12744184 (NME7) 7.46E-06 6.46E-06 0.253 0.306 3.821 
rs735883 (TAP1) rs1283807 (ABCC9) 4.38E-06 9.05E-06 2.245 3.236 0.154 
rs735883 (TAP1) rs1352909 (ABCC9) 4.61E-06 9.76E-06 2.231 3.205 0.155 
rs735883 (TAP1) rs4148665 (ABCC9) 4.83E-06 9.89E-06 2.230 2.850 0.172 
rs735883 (TAP1) rs1283798 (ABCC9) 1.04E-05 1.00E-05 2.395 2.482 0.240 
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4. Discussion 

As genotyping technologies progress and we move into the era of whole-genome sequencing, the 
need to improve analysis schemes is ever-present. This is especially true when gene-gene, gene-
environment, and gene-drug interactions are concerned. Allowing our biological knowledge of gene 
and protein network dynamics to guide the search for the genetic basis of disease is a promising 
solution to this dilemma. While our current state of biological knowledge is limited, and that 
knowledge-base will continue to grow and develop over time, if we develop techniques that use the 
information we have, while still exploring novel interactions, we have a greater chance for success. 
By narrowing the dimensions of the search space, the computational complexity of the problem 
becomes much more amenable to current analytical techniques. In addition, interpretation of results is 
more straightforward. We utilized a list of 245 genes involved in absorption, distribution, metabolism 
and elimination of drugs and their metabolites to focus the search for gene-gene interactions 
associated with virologic failure during HIV treatment with efavirenz. Although there were no gene-
gene interactions which remained significant after correction for multiple testing, this could be related 
to the small sample size present in this study. Due to race-stratification, the largest group in the 
analysis had 74 cases and 357 controls. But the development of this analytic pipeline and software 
tools will be immensely useful for future analyses. 

The interactions which appeared most significant in the results of the logistic regression analysis 
occur between a SNP - rs2318785 - in the NME2 gene and multiple SNPs in the NME7 gene. Both 
NME2 and NME7 are part of the NDK family, coding for nucleoside diphosphate kinase enzymes 
involved in the synthesis of non-ATP nucleoside triphosphates. Although it is not readily apparent as 
to why purine and pyrimidine metabolism would be involved in the predisposition towards virologic 
failure, it is possible that this could represent novel biological knowledge in this field. Currently 
known reasons for virologic failure include lack of adherence to drug regimen, presence of drug 
resistance mutations in the HIV strain, and drug interactions which might limit efficacy. In the 
absence of environmental heterogeneity, little is known about the etiology of virologic failure. Small 
sample size precludes our ability to draw conclusions about the role of nucleoside triphosphate 
metabolism on risk for virologic failure. Other SNP interaction models which were among the most 
significant results involve a SNP in the TAP1 gene - rs735883 - and multiple SNPs in the ABCC9 
gene. TAP1 encodes a transporter responsible for the shuttling of antigen into the endoplasmic 
reticulum for association with MHC class I while ABCC9 is part of the MRP subfamily of ABC 
transporters associated with multi-drug resistance and codes for a protein thought to be a subunit of a 
pancreatic potassium channel responsible for drug-binding modulation of the channel. It could be that 
down-regulation of TAP1 through mutation prevents proper immune response to the virus even after it 
has been affected by NNRTI action and this allows it to rebound during treatment. The results of the 
current study require validation with larger sample size before any firm conclusion can be drawn.  
The current results are meant to demonstrate the pipeline for analysis and the general approach rather 
than attempting to draw general statements regarding true biological associations with HIV therapy. 
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Despite the lack of statistical power to elucidate a significant genetic interaction, this study shows 
the promise of the use of Biofilter for focusing the search for gene-gene interactions during large-
scale genetic association studies. The number of polymorphisms typed in association studies is 
nearing our limits to perform exhaustive explorations of two-way interactions during analysis. 
Reducing the set of interesting models to evaluate presents itself as a capable alternative. Utilizing 
Biofilter to provide the set of interesting models and PLATO to perform analysis has at least three 
advantages over traditional exhaustive gene-gene interaction analysis. First, it partially alleviates 
issues of multiple comparisons. Second, interpretation of results is significantly eased due to models 
construction. Third, the use of regression framework allows for the adjustment of the analysis taking 
into account important covariates. Although the use of Biofilter might not be as promising an option 
in cases where very little biological knowledge exists on the phenotype being analyzed, in the case of 
pharmacogenomics, where extensive drug metabolism networks have been elucidated, utilizing this 
knowledge to direct the analysis is a superior alternative, particularly when epistasis is concerned. As 
the search for the genetic architecture underlying complex traits such as drug pharmacokinetics 
continues, utilities such as the Biofilter can play an important role. Drug response is a nuanced trait 
and, as such, is likely to have genetic components which are monogenic as well as those that are 
multi-locus. Now that whole-genome sequencing technology is almost ready for wide-spread 
implementation, rare genetic variation is likely also to become an important component to consider 
for pharmacogenomic traits. Due to the nature of rare variants, the same pathway knowledge which is 
exploited by Biofilter to search for epistasis should be useful to group these rare variants to look for 
patterns predicting drug response. In summary, Biofilter is a tool which is likely to prove invaluable 
for the analysis of large-scale genetic association data for complex disease, especially in 
pharmacogenomic data where the biological knowledge is extensive.    
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