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Determining biological network dependencies that can help predict the behavior of a system given prior 
observations from high-throughput data is a very valuable but difficult task, especially in the light of the 
ever-increasing volume of experimental data. Such an endeavor can be greatly enhanced by considering 
regulatory influences on co-expressed groups of genes representing functional modules, thus constraining 
the number of parameters in the system. This allows development of network models that are predictive of 
system dynamics. We first develop a predictive network model of the transcriptomics of whole blood from 
a mouse model of neuroprotection in ischemic stroke, and show that it can accurately predict system 
behavior under novel conditions. We then use a network topology approach to expand the set of regulators 
considered and show that addition of topological bottlenecks improves the performance of the predictive 
model. Finally, we explore how improvements in definition of functional modules may be achieved 
through an integration of inferred network relationships and functional relationships defined using Gene 
Ontology similarity. We show that appropriate integration of these two types of relationships can result in 
models with improved performance. 

1. Introduction 

Stroke is currently the second leading cause of death in the Western world [1] and is estimated to 
cause 10% of deaths worldwide. Patients who do not die from a stroke suffer from neurological 
impairment that is significantly disabling in a large percentage of survivors. Preconditioning by 
induction of a small stroke or treatment with Toll-like receptor (TLR) agonists prior to induction 
of a large stroke provides a significant degree of neuroprotection in animal models [2]. To 
provide molecular level understanding of the dynamics of stroke processes we have previously 
used high-throughput transcriptomic profiling using microarrays to follow the dynamics of 
stroke and neuroprotection in a mouse model [2, 3]. Predictive models of regulatory and 
functional processes occurring during neuroprotection and stroke would offer a very powerful 
tool to investigate novel methods for prevention and treatment of this important disease. 

Models that can predict aspects of system behavior from the observation of a small number 
of system inputs or components have been largely limited to very general models [4], focused 
models that can be fully parameterized, or models for which there is a large body of existing data 
about the molecular interactions between components [5]. Inference of specific interactions 
between large numbers of system components is limited by the number of observations of the 
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system being examined. Specific interactions of interest include protein-protein interactions, 
interactions between signal transduction pathway members (e.g. phosphorylation events), and 
transcription factor mediated regulatory events (activation or repression of a gene or set of 
genes). Even with high-throughput experimental techniques most experimental designs are 
limited in their ability to produce detailed molecular networks of regulatory influences on a 
system-wide level. An alternative to determination of mechanistic networks between individual 
components is to constrain the parameter space by considering networks that describe the most 
important regulatory influences between groups of genes that represent important functions [6], 
here called functional influence networks. Functional influence networks involve regulatory 
processes that govern a specific set of system responses. The networks can be represented as 
causal influences between regulators, which mediate transitions between system states, and 
functional modules that provide the mechanism of action for the system [7]. For example, 
immune cells such as macrophages respond to certain kinds of stimuli (e.g. pathogen detection) 
by activating an inflammatory program that includes the transcriptional activation and 
subsequent release of inflammatory cytokines, pro-inflammatory effectors, and other 
components of the inflammatory program [8, 9]. These responses are regulated by a set of 
transcription factors (e.g. AP1, NFκΒ, and IRFs) that respond to pathogen associated molecular 
patterns (PAMPs) detected by TLRs. In a functional influence network the inflammatory 
response genes responding with similar dynamics would be considered to be functional modules 
and the genes that regulate their activation would be considered their regulatory influences. In 
this way the dynamic behavior of the network is simplified to facilitate modeling and represented 
only as expression patterns that represent collections of similarly behaving genes.  

Modeling the dynamic behavior of functional influence networks makes it possible to chart 
the development of a biological network through time, with reference to experimental evidence 
from gene expression data. For example, Tegner et al. (2003) have created a method that models 
the change in each gene's expression as a linear process [10]. Another algorithm created recently 
for such dynamic modeling uses an ODE model for regulatory dynamics and L1 shrinkage as a 
means of selecting parsimonious models [11, 12]. The result is a coupled set of ODEs, each ODE 
describing the expression of a set of co-regulated genes as a function of the expression of genes 
identified as being regulators. A separate model is learned for each functional module, with each 
model defining the network edge connections between that cluster and its regulators and 
assigning strengths (coefficients) to each such regulatory interaction. Thus, the approach infers 
the regulatory network structure as it builds individual dynamic models for each regulated 
functional module. 
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Despite the significance of dynamic regulatory models, the performance of many inference 

methods is highly dependent on the initial clustering techniques. Inference methods require 
determination of subtle differences in patterns of gene expression profiles to best identify co-
regulated functional modules. Unfortunately gene expression data has inherent noise and 
standard clustering techniques applied to limited sets of observations will inappropriately 
identify clusters. Existing knowledge, for example functional information about genes 
represented in the Gene Ontology (GO), can be used to augment clustering approaches. Methods 
to incorporate knowledge-driven techniques into predictive models of pathways have been 
recently proposed in which the GO is used to filter [13], enrich [14] or restructure [15] gene 
associations inferred from gene expression data through reverse engineering methods. These 
approaches have been shown to improve the biological plausibility of the network inferences 
drawn and the accuracy of the predictive models built. However, they still treat data- and 
knowledge-based inferences as incommensurable inputs, and the impact of each approach on the 
inferred network is factored in separately. 

The goal of the current study is to show how dynamic modeling using functional influence 
networks can be used to infer the important regulatory influences that drive neuroprotection or 
injury during stroke in a mammalian model system and how incorporation of data from other 
sources can be used to improve model performance. We accomplish this using clustering, 
network topology and functional associations to refine components of functional influence 
networks (regulators and functional modules). We then use a machine-learning approach to learn 
relationships between components that can be used to robustly predict system dynamics. Our 
results show that predictive modeling in complex eukaryotic systems can be a useful way of 
generating hypotheses about the high-level functional regulation of the system, even with 
relatively few observations of the system. This approach provides valuable information about the 
processes of neuroprotection and injury during stroke in a whole animal model system, and 
generates a number of interesting hypotheses that are being experimentally validated. 

2.  Methods 

2.1. Data sets 
Briefly, we used a dataset of microarray results from blood of mice in a neuroprotection study, 
and data processing was performed as previously described [3]. The dataset comprises five 
treatments; ischemic preconditioning, lipopolysaccharide (LPS) or CpG injection, or control 
treatments, saline injection and sham surgery. The samples were taken 3, 24 and 72 hours post-
preconditioning treatment, a stroke was induced at 72 hours then two more samples, 3 and 24 
hours post-stroke induction, were taken for each preconditioning treatment. 

tiffanyjung
Typewritten Text
316



 
2.2. Co-expression networks 

We filtered this data to exclude probes that do not change significantly (p value > 0.05, fold-
change expression < 2.0) resulting in 7352 transcripts. The expression levels of these transcripts 
(fold change relative to control untreated animals) were used as input to the CLR method [16] 
and the resulting relationships were filtered to a Z score of 5.0, yielding a network with 1880 
nodes and 14205 relationship edges. We inverted the adjacency matrix for this network and 
treated it as a distance matrix for hierarchical clustering using complete linkage agglomeration 
and cut the dendrogram to generate 46 clusters to serve as initial targets for modeling. 

The igraph library in the R statistical language was used to calculate the topology of the 
inferred networks. Bottlenecks are considered to be those genes with high betweenness centrality 
measures in the network [17, 18]; the highest 2.5% in this study. 

2.3. Predictive modeling cross-validation approach 

To infer a predictive regulatory model of neuroprotection during stroke we expanded on an 
algorithm that was previously applied to transcriptomics from prokaryotes and yeast [11, 12, 19]. 
We first applied the multivariate regression method, the Inferelator, to the targets defined from 
network analysis (above) using sets of potential regulators as described in the text. This method 
infers parsimonious sets of regulatory influences between regulators and targets (functional 
modules). In the learned model the relation between the expression of a target (y) and the 
expression levels of regulators with non-null influences on y (X) is expressed as:  

€ 

τ
dy
dt

= −y + β j X j∑
 (1) 

Here, τ is the time step used in model construction and β is the weight for relationship X on y as 
determined by L1 shrinkage using least angle regression [20]. To make predictions using a 
learned model eq. 1 can be solved for y, the expression of the target cluster. Assuming 
equilibrium conditions the derivative dy/dt is 0 and so equation (1) can be represented simply as 
a linear weighted sum: 

€ 

y = β j X j∑  (2) 
and the dynamic version (for time series) is expressed for each time point (m) as: 

€ 

ym =
−ym−1 + β j Xm−1 j∑

τ
− ym−1

 (3) 
In our modeling we used a τ of 30 minutes, which is appropriate for mRNA dynamics in a 
eukaryote [21].  
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Given the limited amount of transcriptomic data available for training we wanted to ensure 

that the models being inferred were robust, that is, that they were predictive of target expression 
under novel conditions not included in the training data. To accomplish this we employed a 
cross-validation approach to evaluate the performance of inferred models using different starting 
components (sets of regulators or target clusters, as described in the text). In the cross-validation 
the transcriptomic data is divided into five sets based on the treatment (i.e., LPS, CpG or 
ischemic preconditioning pretreatment, or saline or sham control treatments; see Figure 2B), five 
models are trained on the data excluding each treatment set in turn, and the performance of each 
model is evaluated on the left out set. Performance is evaluated as the average correlation of 
observed versus predicted expression values for each target weighted by the number of genes in 
each target, to produce a weighted gene-normalized overall performance score for the model, as: 

€ 

P =
corr(predi,obsi)nii=1

T
∑

nii=1

T
∑

 (4) 

where P is the overall 
performance score, T is the 
number of targets in the model, 
pred and obs are the predicted 
and observed expression 
patterns, respectively, and n is 
the number genes in the target i. 
This cross-validation approach 
allows relatively unbiased 
assessment of model 
performance because the data 
used to evaluate the model is 
not included in the training 
data. 

2.4. Probabilistic integration of 
relationships 

Our previous results showed 
that partitioning co-regulated 
clusters of genes using either 
CLR or XOA associations 
could improve the performance 

 
 

Figure 1. Overview of iterative cross-validation predictive modeling 
approach. 1). Network inference from transcriptomic data using CLR. 
2) Definition of target clusters for modeling using several partitioning 
methods. 3) Definition of potential regulators from existing knowledge 
or topological analysis. 4) Cross-validation of predictive model: A. 
Divide expression data into related independent groups of observations 
(i.e. different treatments); B. Build a predictive model using all but one 
group with the Inferelator; C. Evaluate the performance of the model 
using the left out group; D. Repeat with next independent group. 5) Use 
the overall predictive performance to evaluate and refine methods used 
to determine the network components (targets [2] and regulators [3]). 

1. Infer coexpression network

3. De!ne regulators
3A. Transcription factors (TFs)
3B. Topological regulators (BNs) 
3C. Combined regulators (TFs+BNs)

2. De!ne target clusters
2A. Coexpression clustering (CLR)
2B. Functional based clustering (XOA)
2C. Probabilistic clustering (CLR+XOA)

4. Cross-validation approach
4A. Indepedent observation groups

4B. Build predictive model

4C. Evaluate predictive model

5. Performance of model informs 
 re!nement of components

!4D. Repeat with next independent group
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of our cross-validated model. We were interested in combining the networks generated by both 
methods. Our approach was to treat the score for association between two genes as a p value for 
each method (see below), then partition the parent target cluster into subclusters using 
hierarchical clustering. We then used the predictive model generated for the genes in the 
subclustered target to assess which approach provides the best performance. We tested several 
approaches for integrating p values: maximum p value, minimum p value, mean p value, and the 
product of p values. Associations unique to either approach were transferred into the final 
similarity matrix directly, thus creating a union set of associations. Though the product of p 
values is the appropriate probabilistic combination of p values, the other methods were used 
because they may be more appropriate for specific instances. Additionally, the p values from 
each method do not have exactly the same meaning due to the differences in assumptions used in 
generating them. For CLR p values we converted the output of CLR (Z scores for the edge 
relative to the all other edges for each interaction partner) to p values using the normal 
distribution in R.  

The p value for an XOA relationship is obtained by comparing the observed XOA score 
against the distribution of (a sample of) all possible scores obtained by computing the XOA 
similarity between all pairs of GO terms from the three subontologies. For example, the p value 
0.14 associated with the XOA score of 3.76 assessing the similarity of GO:0007179 (BP: TGF-
beta receptor signaling pathway) and GO:0016301 (MF: kinase activity) indicates that fewer than 
14% of all XOA scores have higher semantic similarity than 3.76. Higher XOA scores are 
regularly found in association with lower p values. For example, statistically relevant values (< 
0.05) typically correspond to XOA scores above 4.73. The p value across gene expresses the 
same idea, since the semantic similarity between two genes is the highest XOA score found 
pairing GO categories across the two genes: 

XOA(GP1, GP2) = max XOA(c1i, c2j) (5) 

where i=1,…,n and  j=1, …,m, GP1 and GP2 are genes, c1i is one of the GO categories 
associated with GP1, and c2j one of the GO categories associated with GP2. 

3. Results and Discussion 

3.1. Reverse-engineering by predictive modeling of transcriptomic data 

We are interested in developing a predictive model of neuroprotection in stroke at a systems 
level. There are significant gaps in knowledge about the regulation, functional mechanisms, and 
components that are involved in neuroprotection and stroke. These gaps prevent the development 
of molecular-level representations of the stroke process. We therefore have chosen to use a 
reverse-engineering approach that considers the regulatory influences and functional processes 
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that these influences induce at a more abstract level. The resulting models will still provide 
useful and interpretable predictions that can be used for further experimental or computational 
investigation.  

Our approach is to develop a predictive model of transcriptomic data using a machine-
learning approach and cross-validation, and use the ability of this model to predict behavior 
under novel conditions as a way to refine the reverse engineering process (Figure 1). The 
reverse-engineering algorithm [11, 12] uses multivariate regression to learn ordinary differential 
equations (ODEs) that describe the relationship between the expression levels of a parsimonious 
set of regulators and the target functional module. Here, we apply this approach to a higher 
eukaryotic system with observations that are focused specifically on stroke response and 
neuroprotection. 

To define functional 
modules that are the targets 
in the model we used a 
transcriptomic data set from a 
mouse stroke model to infer 
functional relationships 
between genes using the 
context likelihood of 
relatedness (CLR) method 
[16] and used hierarchical 
clustering to define targets 
(see Methods). We initially 
treated all genes annotated as 
transcription factors (85 
genes in the network) as 
potential regulators for 
reverse engineering. 

To evaluate the 
performance of the model in 
a relatively unbiased manner 
we used a cross-validation 
approach (see Figure 1) that 
allows all the observations of 
the system to be treated as 

 
Figure 2. Performance of a predictive model of neuroprotection and 
injury during stroke in a mouse model system. A. Target cluster 
performance. The coexpressed clusters used as targets for modeling are 
shown (X axis) with bar height (Y axis) indicating the performance 
(correlation of predicted versus observed expression) for that target in the 
cross-validation approach. # indicates the poorly performing cluster used in 
further partitioning and * indicates the accurately predicted cluster shown in 
panel B. B. Expression of an accurately predicted target. The observed (red 
line) versus predicted (green line) expression levels (Y axis) for one cluster 
representing 180 genes is shown over the treatments/time points (X axis). The 
independent groups used in the cross-validation are indicated in colored 
boxes, and time points post-treatment (white boxes) and post-stroke induction 
(grey boxes) are also shown. 
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‘independent’ data sets. We obtained an overall 
model performance of 0.52 (mean correlation per 
gene) observed versus predicted expression. In 
Figure 2A we show the performance (Y axis) of 
each cluster in the model (bars) ordered by 
performance. We mark the performance bar 
corresponding to the poorly performing cluster 
used for further analysis (see below) with a number 
sign and mark the bar corresponding to a well-
predicted cluster with an asterisk. In Figure 2B we 
show the predicted (green line) and observed (red 
line) expression of the well-predicted cluster 
marked in panel A, over all the conditions 
examined (Y axis). The shaded bars below the X 
axis in Fig. 2B show the independent groups used for cross-validation. This correlation between 
observed and predicted expression shows that the model is robustly predictive of the behavior of 
the majority of the genes considered. This is an important result as it shows that regulatory 
influences that act as predictors can be learned from a relatively limited set of expression data. 
We note that the model itself provides a large number of interesting predictions about regulatory 
influences and expression of particular functional groups that are the focus of future studies. In 
this study we use this output of the model (predicted target behavior) to refine the components 
and relationships that are used for model generation. 

3.2. Network topology identifies important points of regulatory control 

Many approaches for reverse-engineering regulatory networks preselect regulators based on 
sequence-based annotation, and then attempt to identify regulatory relationships between these 
sets of transcriptional regulators. Functional influence networks may be driven by mediators that 
are not transcriptional regulators, but could include effectors (e.g. immune effectors), signaling 
pathway components, metabolic enzymes, or any other component whose change mediates or 
reflects major changes in the state of the system. Previously our research has suggested the 
hypothesis that topological bottlenecks identified from transcriptional coexpression networks 
represent mediators of state transitions in systems [18, 22]. We thus tested the ability of 
topological bottlenecks to predict system behavior reasoning that true mediators of system 
transitions should be more predictive of system behavior than randomly chosen differentially 
regulated genes. 

 
Figure 3. Bottlenecks are complementary to 
transcription factors as candidate regulatory 
influences. Predictive models were constructed 
using annotated transcription factors (TFs), 
topological bottlenecks, or a combination of the two 
groups (X axis). The mean and standard deviation 
(error bar) of ten randomly selected sets of genes is 
shown as a control. Performance (Y axis) using our 
cross-validation approach indicates that bottlenecks 
are robustly predictive of system behavior. 
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We examined the ability of bottlenecks to 

serve as regulators in our cross-validated 
modeling. As a comparison we randomly 
selected ten sets of differentially expressed 
genes in the network and evaluated their 
ability to predict the behavior of the targets in 
the model. Our results (Figure 3) show the 
performance of models that include 
transcription factors only, bottlenecks only, a 
combination of bottlenecks and transcription 
factors, or the mean of ten randomly chosen 
sets of genes. Bottlenecks provide modestly 
better performance than either the 
transcription factors set used initially or 
randomly selected genes. Furthermore, 
combining the transcription factors with the list of bottlenecks further improved the ability of the 
resulting model to predict expression behavior under novel conditions. This shows that the 
expression of bottlenecks is somewhat predictive of system behavior. 

A surprising result of this analysis was that the randomly selected gene sets performed 
significantly worse than any of the selected regulator groups but the performance was still high 
(R = 0.45). This is likely to be due to the limited number of observations of the system that we 
are using for this work. Essentially the model is able to identify randomly selected genes which 
are somewhat predictive of the behavior of the targets because the dynamics of expression over 
the limited observations are relatively simple. Adding additional observations and/or data 
gathered for other purposes (TLR agonist treatment of mice, e.g.) should improve performance 
of our model. Further study is required to determine whether bottlenecks are indeed robustly 
predictive of system behavior. 

3.3. Probabilistic integration of relationships improves delineation of functional modules 

We next wanted to examine how the model could be further improved by better determination of 
target clusters. We examined how best to partition target gene clusters by combining results from 
the CLR and XOA algorithms to delineate subclusters. As a test case we focused on a 
problematic cluster with very poor performance (Figure 2A) identified in our previous study 
[15]. This cluster is made up of 335 genes and has a performance of -0.22 (correlation of 
predicted versus observed behavior) in the original model. 

 
Figure 4. Performance of CLR and XOA defined 
subclusters for prediction. The parent cluster was 
subclustered using either the CLR (red)- or XOA (blue)-
derived associations between genes into the indicated 
number of subclusters. Performance (mean correlation of 
observed versus predicted expression levels) is shown on 
the Y axis. These results support our previous 
observations that both methods can improve performance. 
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In Figure 4 we show the cross-validation performance on this cluster subdivided the cluster 

into 3-7 subclusters using either CLR (red bars) or XOA (blue bars) associations. These results 
show that using both expression-driven (CLR) or function-driven clustering can improve 
performance of the predictive model dramatically over that of the parent cluster. 

We next examined how combining the two sets of associations could improve results. We 
chose to consider the strength of the associations as p values in order to directly compare the 
scores from different algorithms. We used four simple methods for combining p values for XOA 
and CLR scores when there were overlapping associations within a cluster: the minimum XOA 
or CLR p value, the maximum XOA or CLR p value, the mean of the XOA and CLR p values, 
and the product of the XOA and CLR p values. As shown in Figure 5, either the mean p value or 
maximum p value strategy provides the best performing solution for most cluster sizes, showing 
significant, but modest, improvement for a model composed of four subclusters. These findings 
indicate that an appropriate combination of approaches can improve the performance of 
predictive transcriptomic models 

4. Conclusions 

We have presented an approach to reverse-engineering from limited, but focused, transcriptional 
datasets and used it to infer functional influence networks of mouse blood during stroke. This 
approach uses a machine-learning method to iteratively define and refine the components of the 
network, both potential regulatory influences and coexpressed functional modules that are the 
targets of prediction (Figure 1). The approach is applicable to problems in which there are not 
well-established regulatory pathways already understood, where there are a limited number of 
observations of the system available, and where there may be complex and multiscale effects that 
need to be captured by the model, but not necessarily explicitly modeled. Our results 
demonstrate that the approach can be applied to provide biological insight into a complex and 
poorly understood pathology, such as neuroprotection and injury during ischemic stroke. 

We show that a machine-learning method that employs multivariate regression techniques to 
learn ODEs describing relationships between regulators and target clusters can be applied to 
model transcriptomic dynamics from multicellular eukaryotic time course samples (Figure 2). 
This is an advance in modeling such systems that have traditionally been underrepresented in 
reverse-engineering applications due to their complexity and lack of ‘gold standard’ networks for 
validation. The results from cross-validation show that the models we produce can predict 
transcriptomic behavior of the majority of the genes considered under conditions not used to 
train the models. This approach is limited by the requirement that the gene-expression level 
changes of the regulatory influences must be indicative of their activity, an assumption that is 
clearly not true for many regulators. Additionally, regulatory influences inferred from such a 
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limited set of observations, though predictive of system behavior to a significant degree, are 
unlikely to be highly accurate. However, this approach provides the foundation for more detailed 
investigation, both computationally and experimentally. These results represent an important first 
step toward more detailed and nuanced models of complex systems. 

Using network topology we show that highly central bottlenecks are more predictive of 
system behavior than a similarly sized group of transcription factors (Figure 3). This result is 
consistent with the notion that bottlenecks from inferred networks represent mediators of 
transitions between system states [18, 22]. We further show that combining transcription factors 
and bottlenecks provides even better predictive performance. These gains are modest but 
statistically significant and we foresee that including more varied observations of the system will 
improve the results of the modeling, and should improve the definition of important mediators 
that we identify through network topology. However, the integration of such data will have to be 
undertaken carefully [23]. 

In our approach the performance of the predictive models is dependent on definition of the 
underlying functional modules used as targets for prediction. We initially define functional 
modules using hierarchical clustering based on expression profiles of genes. This approach gives 
good performance for a number of resulting clusters (Figure 2A) but does not provide accurate 
predictions for a number of significantly sized clusters. We show that further subclustering of a 
poorly performing cluster using either co-expression relationships from CLR or functional 
relationships from XOA [24] can 
dramatically improve the gene-wise 
performance of the parental cluster. Further, 
we use a probabilistic integration method 
and show that the combination of the two 
relationships can provide better 
performance than either individual method. 
This relatively simple approach has the 
advantage of being able to integrate 
arbitrary kinds of relationships between 
genes, so long as they can be associated 
with p values. We are currently examining 
what other kinds of relationships between 
genes will improve performance of the 
predictive models (e.g. protein-protein 
interactions, phylogenetic relationships). 

 
Figure 5. Comparison of subclustering methods. The 
mean performance of the methods examined (X axis) across 
different subclustering levels (3-7 clusters, as in Figure 1) is 
shown (Y axis). The error bars represent one standard 
deviation. The methods used are XOA and CLR alone, 
minimum p value (MinP), maximum p value (MaxP), mean 
of p values (MeanP) and product of p values (PxP). These 
results show that combining the CLR and XOA associations 
using probabilities can improve performance over the 
individual methods alone, but that only when non-standard 
methods (maximum p value or mean of p values) are 
employed to do so.  
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