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While networks models have often been applied to complex biological systems, they are 
increasingly being implemented to investigate clinical questions. Clinical trials have been 
studied extensively by traditional statistical methods but never, to our knowledge, using 
networks. We obtained data for 6,847 clinical trials from five "Nervous System Diseases" 
(NSD) and five "Behaviors and Mental Disorders" (BMD) from the clinicaltrials.gov registry. 
We constructed networks of diseases and interventions for visualization and analysis using 
Cytoscape software. To standardize nomenclature and enable multi-level annotation, we 
used MeSH and UMLS terms. We then constructed separate BMD and NSD networks to 
study dynamics over time. To assess how topology features related to clinical significance, 
we constructed a sub-network of Multiple Sclerosis and Alzheimer's trials and identified 
which trials had been published in high-profile medical journals. We found that the BMD 
network has evolved into a large, decentralized topology and does not distinctly reflect the 
five diseases by which it was defined, while the NSD network does, though other diseases 
and sub-phenotypes have emerged as areas of research. We also found that high-profile trials 
have distinctive network characteristics. Future work is needed to address mathematical 
questions such as scale-dependence of network features, clinical questions such as trial 
design optimization, and methodological questions such as data quality improvement. 

 
1.  Background 
 
Network models can reveal complex relationships in large data sets, and network 
topologies have been shown to share remarkably consistent features across diverse fields 
of study [1-3]. These features include scale free and small world properties, preferential 
attachment growth dynamics, vulnerability to perturbations of network hubs, and 
modularity. Network approaches are particularly revealing when they can describe 
systems in their entirety, incorporate quantitative and computable measurements, 
integrate multiple levels of detail, and capture the dynamics of a system over time [4]. 
Network models have often been applied to biological systems. For example, studies of 
gene-disease associations have interrogated genetic similarities among auto-immune 
diseases [5] and relationships between metabolic diseases and co-morbitities [6]. 
Increasingly, networks are also being implemented to investigate clinical and social 
questions. Recent studies have investigated the dynamics of infectious disease 
transmission [7], workflow in the intensive care unit [8], and collaborations resulting in 
publication [9,10]. 

Clinical trials, the gold standard of clinical research, have long been studied by 
traditional statistical methods [11-13] but never, to our knowledge, using network models. 
This is ironic since clinical collaborations have long been operated and even referred to 
as "networks" [14,15]. However, with requirements by journal editors [16] and U.S. 
Federal law [17] that certain trials be registered, and with the growth of public-access 



 

registries, it is now possible to apply network models to clinical trial data. Furthermore, 
given the central role of clinical trials in translational research, network modeling may 
provide useful insights to address challenges such as designing comprehensive but non-
redundant research programs and building on existing knowledge to design new trials. 

In this study, we apply network models to characterize the dynamics and multi-level 
structure of a large set of data from clinical trials in nervous system diseases and 
behavioral and mental disorders obtained from the clinicaltrials.gov registry 
(http://www.clinicaltrials.gov). We also address challenges related to defining 
nomenclature and scope of clinical trial networks. We hypothesize that, as in other types 
of networks, hubs are functionally important, and networks grow according to a 
preferential attachment model. To test this, we describe features of these multi-level 
networks, including topological parameters, characteristics of network hubs and clusters, 
and the dynamics of clinical trial networks over time. We find that different disease types 
demonstrate divergent network topologies over time, and we observe distinct 
characteristics of clinically "influential" trials. These findings will be useful to assess 
areas of emphasis, overlap and omission in clinical research and funding programs as 
well as to identify relationships within and among disease phenotypes and therapeutic 
strategies. 
 
2.  The scope and construction of a clinical trials network 
 
As the number of nodes in a network grows, the number of edges among them can 
increase exponentially, making analyses computationally intensive. There were 91,813 
trials in clinicaltrials.gov categorized into 22 categories of diseases and conditions, as of 
6/24/2010, and in the category of "Nervous System Diseases" alone, there were 65,462 
non-unique trials in 506 specific diseases and conditions (Figure 1). To define a 
computationally tractable and clinically interpretable system, we downloaded 6,847 non-
unique trials from five conditions categorized as "Nervous System Diseases" (NSD) and 
five conditions categorized as "Behaviors and Mental Disorders" (BMD). The NSD 
conditions were "Alzheimer Disease" (AD) (687 studies), "Brain Injuries" (505), 
"Multiple Sclerosis" (MS) (536), "Parkinson Disease" (PD) (629), and "Stroke" (1070); 
the BMD conditions were "Alcoholism" (357), "Attention Deficit and Disruptive 
Behavior Disorders"(444), "Bipolar Disorder" (584), "Schizophrenia" (1271), and 
"Smoking" (764). The NSD and BMD categories had similar total numbers of trials 
(3427 v. 3420) for later comparisons. 

For each trial, we downloaded multiple parameters and performed several types of re-
coding on the data (Table 1). We obtained National Clinical Trial (NCT) ID, Recruitment 
Status, Condition, Intervention, Sponsor, Study Type, Start Date and Completion Date for 
each trial. Intervention and Sponsor data frequently contained Unicode characters which 
we converted to ASCII text. Intervention attributes were nested (e.g., Drug: Aspirin) and 
were parsed to derive an Intervention Type field (e.g., Drug). Multiple fields contained 
more than one attribute per row in a pipe ("|") delimited manner (e.g., Drug: 
Aspirin|Drug: Codeine) and were also parsed. Other parameters such as study design and 
outcome are available, but they are highly heterogeneous and not readily computable. 
 



 

 
Fig. 1. Schematic representation of clinical trial data converted from tabular to graph structure. 
Clinicaltrials.gov contains disease data in a nested, partly ambiguous hierarchy. Trials are organized 
into categories such as Nervous System Diseases (NSD). These categories include standardized 
Conditions which include specific trials. Specific trials can include multiple free-form Conditions 
entered by investigators--please note the hypothetical typographical error. Since the term "Conditions" 
is used twice, we subsequently refer to the higher Conditions as "Diseases". From the tabular layout, 
files of node-edge-node triplets were generated for import into Cytoscape. 

 
Where possible, we standardized conditions to Medical Subject Headings (MeSH) 

(http://www.ncbi.nlm.nih.gov/mesh) and Unified Medical Language System (UMLS) 
(http://www.nlm.nih.gov/research/umls) nomenclature. Clinicaltrials.gov uses the term 
"Condition" for both their pre-defined diseases and the multiple free-form, mixed case 
text conditions submitted by investigators for each trial. Intervention data are also 
submitted by investigators as free-form text. For example, in multiple sclerosis, there are 
three pre-defined Diseases: "Multiple Sclerosis", "Multiple Sclerosis, Relapsing-
Remitting", and "Multiple Sclerosis, Chronic Progressive". Diseases map to MeSH terms 
and identifiers such as "Multiple Sclerosis, Chronic Progressive" [C10.314.350.500.200]. 
By contrast, there may be dozens of free-form text Conditions, some of which reflect true 
sub-phenotypes [18] and some of which are cases of inconsistent nomenclature, as shown 
in the examples related to brain injuries in Table 2. To standardize free-form text to 
UMLS Concept Unique Identifiers (CUI), we used the Batch SemRep web tool 
(http://skr.nlm.nih.gov). 

We then constructed networks for visualization and analysis using Cytoscape 
software (http://www.cytoscape.org). First, we implemented custom Python scripts 
(http://www.python.org) to convert tabular data into undirected graphs defined by node-
edge-node triplets (e.g., Trial-Condition-Trial) (Figure 1). Briefly, we iterated through all 
Conditions in all trials to identify trials that studied Conditions in common. This same 
algorithm was applied to Interventions and Sponsors and could be applied to any trial 
parameter. We also generated node attribute files defined by "node = <type>" statements 
(e.g., "Trial1 = NSD"). Once we constructed the networks, we analyzed their topologies 



 

visually and quantitatively. In this study, networks are displayed using the yFiles 
(http://www.yworks.com) Organic layout. Using the Network Analyzer plug-in [19] and 
custom code, we computed common topological parameters including node degree (i.e., 
the number of edges incident to the node) and others. We also identified hubs and clusters 
in the networks. 
 
 

Table 1. Example record layout for a single trial. The Category, Disease and 
Intervention Type fields were derived from the clinicaltrials.gov primary data. 

Parameter Example value 
NCT ID NCT00167323 
"Category" BMD 
"Disease" Alcoholism 
Recruitment Status Completed 
Intervention Behavioral: Adherence therapy 
"Intervention Type" Behavioral 
Study Type Interventional 
Start Date Jul-03 
Completed Date Jul-07 
Condition Bipolar Disorder|Alcohol Use Disorder 
Sponsors University of Pittsburgh|National Institute on Alcohol 

Abuse and Alcoholism (NIAAA) 
 
 
 

Table 2. Examples of non-standard nomenclature in the Condition field of trials in the 
"Brain Injuries" category, in order of frequency. UMLS identifiers and terms were 
assigned using the Batch SemRep web tool. 

Standard UMLS term 
UMLS 

CUI Total Free-text Condition Subtotal 
Traumatic Brain Injury C0876926 173 Traumatic Brain Injury 148 
    Mild Traumatic Brain Injury 10 
    Severe Traumatic Brain Injury 9 
    TBI (Traumatic Brain Injury) 6 
Cerebral Palsy C0007789 96 Cerebral Palsy 96 
Brain Injuries C0270611 82 Brain Injury 41 
    Brain Injuries 33 
    Brain Injuries Traumatic 5 
    Acquired Brain Injury 3 
Craniocerebral Trauma C0018674 13 Craniocerebral Trauma 7 
    Head Injury 6 
Hypoxic-Ischemic 
Encephalopathy 

C0752304 12 Hypoxic Ischemic 
Encephalopathy 

7 

    Hypoxic-Ischemic 
Encephalopathy 

5 

Subarachnoid 
Hemorrhage 

C0038525 11 Subarachnoid Hemorrhage 11 

 
 
 



 

 
3.  Annotation of multiple network levels 
 
A fundamental challenge in network modeling and systems biology is the integration of 
multiple "levels" of data, that is, data with different levels of granularity. We constructed 
multi-level networks to analyze trial Conditions, Interventions, and Sponsors. We defined 
four Condition levels, from the top down, as (1) the two clinicaltrials.gov categories 
(BMD and NSD) or "Both", (2) the 10 clinicaltrials.gov diseases or "Multiple", (3) the 
standardized UMLS CUIs, and (4) the free-form text Conditions. We defined three 
Intervention levels as (1) the Intervention type (e.g., "Drug" for the Intervention "Drug: 
Aspirin"), (2) the standardized CUIs of the Intervention, and (3) the free-form text 
Intervention. We defined two Sponsor levels as (1) sets of Sponsors and (2) individual 
Sponsors. 
 

 
Fig. 2. Multi-level networks. Intervention networks are colored (a) by disease category, Behaviors and 
Mental Disorders (BMD) in red, Nervous System Diseases (NSD) in green, Both in black and (b) by 
intervention type ("Multiple" in gray, "Drug" in cyan). The central cluster represents placebo-
controlled trials. There are more BMD trials represented than NSD trials and relatively few "Both" 
trials. Sponsor networks are colored (c) by category (nodes: BMD in red, NSD in green, Both in black) 
and (d) in an enlarged view of the upper right quadrant of (c), by the specific sponsor (edges: the 
National Institute of Mental Health in red, the National Institute of Neurological Disorders and Stroke 
in green). 

 



 

To construct multi-level networks of Conditions, Interventions and Sponsors, we 
selected a subset of 2412 completed interventional trials (Figure 2).  The Conditions 
network had 2202 nodes, similar to the Interventions and Sponsors networks (Table 3) 
but had 231,813 edges, a 4-5 fold increase compared to the other networks. A clear result 
of multi-level visualization is that, especially in large networks, higher levels of 
aggregation (e.g., disease category v. individual disease) are easier to interpret. 

All networks had a large, primary connected component subdivided into more or less 
distinct sub-graphs which correspond to higher levels of aggregation, such as disease 
category. Clear clusters were also visible and correspond to lower levels of aggregation, 
such as placebo intervention or large sponsors. 
 

Table 3. Similar topology parameters of completed interventional trial networks of 
Interventions and Sponsors. The clustering coefficient is a measure of the extent to 
which nodes in a graph cluster together. 

Network Nodes Edges Clustering 
coefficient 

Diameter 

Interventions 1372 61,749 0.74 9 
Sponsors 2124 53,248 0.87 9 

 
 
4.  Assessment of network dynamics 
 
Clinical trials provide an opportunity to study network dynamics because rich 
longitudinal data is available, and because multiple behaviors can be observed including 
new node and link formation as well as "death" (e.g., when a trial is withdrawn or 
terminated). We identified all trials in the registry that started after 1980 or completed 
before 2009. We did not include trials started after 2005 to control for possible lags in 
registration. We then constructed separate networks for BMD and NSD trials to compare 
their evolution over time, visually (Figure 3) and by topology metrics.  

Trial network topologies diverged over time between BMD and NSD. Of note, for 
both the BMD and NSD networks, approximately 90% of trials in the registry began after 
2000. Before 1995, there was a core BMD component and a separate co-morbidity 
component. Between 1996-2000, the schizophrenia\bipolar disorder core component 
grew, and alcohol and smoking trial clusters began to form, while attention deficit trials 
were a separate component. Since 2000, the BMD network has become large and 
decentralized and does not distinctly reflect the five major diseases by which it was 
defined. Before 1995, there was a greater total number of trials in NSD than in BMD, 
including a large stroke trial cluster, a more sparse cognitive disorders cluster, and a 
separate MS component. Between 1996-2000, the network clusters grew and became 
more integrated. Since 2000, the NSD network's clusters reflect the five major diseases 
by which it was defined. In addition, new disease trial clusters such as cerebral palsy 
have emerged as major areas of research, other areas like MS and Parkinson's Disease 
have spawned sub-phenotypes such as Secondary Progressive MS and Idiopathic PD, and 
more rare conditions have emerged. Notably, around 2005, first in BMD and then in NSD, 
the increase in completing trials began to exceed the number of starting trials in the 
registry. 
 



 

 
Fig. 3. Clinical trial network dynamics. (a) The number of trials started and completed in Behaviors 
and Mental Disorders (BMD) and Nervous System Diseases (NSD) rose slowly until about 2000 and 
then increased rapidly. (b) Sizes of both networks grew logarithmically, but the number of edges grew 
at different rates. Networks of BMD trials started (c) up until 1995, (d) between 1996-2000, and (e) 
between 2001-2005 are shown. Networks of NSD trials started (f) up until 1995, (g) between 1996-
2000, and (h) between 2001-2005 are also shown.  

 
 
 



 

These differences were reflected in network topology parameters. The BMD 
network's clustering coefficient increased over time (0.67, 0.85, 0.92) but was unchanged 
in the NSD network (0.91, 0.9, 0.93). In contrast, the BMD network's diameter and 
characteristic path length first rose and then fell, but both metrics rose steadily in the 
NSD network (4, 10, 6 v. 3, 5, 11 and 1.6, 3, 2.2 v. 1.8, 2.4, 2.5). Finally, the BMD 
network's density was unchanged over time (0.21, 0.16, 0.18) but fell in the NSD network 
(0.29, 0.17, 0.11). 
 
5.  Network characteristics of "influential" trials 
 
We next examined how network topology features and dynamics related to clinical 
significance. First, we constructed a sub-network of the 479 MS and Alzheimer's trials in 
clinicaltrials.gov with a status of "Completed" and a reported start date. We then 
identified MS and Alzheimer's trials published in the Journal of the American Medical 
Association or the New England Journal of Medicine since 2005 to represent "influential" 
clinical trials. Figure 4 shows the topological characteristics of these influential studies 
relative to other trials in the context of Conditions, Interventions, and Sponsors networks.  
 

 
Fig. 4. Topological features of "influential" trials. (a) In the Conditions network, influential trials 
(black) are members of large disease clusters (AD, MS, Relapsing Remitting MS) near both prior (red) 
and subsequent (green) trials. (b) In the Interventions network, influential trials are in the network 
periphery, representing novel approaches, and are primarily near subsequent trials, supporting their 
influence on future studies. These include four trials in RRMS using fingolimod, interferon beta-1a, 
cladribine, and rituximab. (c) In the Sponsors network, influential trials are dispersed across various 
clusters of trials with common sponsors, which represent academic and industrial collaborations. They 
also occur primarily near prior trials, suggesting a culmination of previous efforts. (d) While the 
current degree of new nodes in the Intervention and Sponsor networks increased steadily as networks 
grew, the degree of new nodes in the Condition network started high and fell before rising again. 

 



 

We set out to understand the dynamics of these three networks and, in particular, to 
describe when high-degree network hubs joined the networks. We first calculated degree 
distributions for the three networks in their current state. We then sorted the trials, that is 
the network nodes, by their start dates. Finally, we fit a coarse lowess spline to the three 
network series to identify trends in the data (Figure 4d). The degree of new nodes in the 
Intervention and Sponsor networks increased steadily, suggesting that early interventions 
were often abandoned and early sponsors often left the field, while later entrants formed 
more connections. The degree of new nodes in the Condition network started high, like a 
preferential attachment model, but fell before rising again, suggesting that medically 
relevant conditions were identified early and more have been defined recently. 

We have defined influential trials using just one out of a multitude of possible ways. 
The increasing number of connected components in the networks (n=1, 6 and 16, for >3 
nodes) supports the hypothesis that innovation may spread most easily among disease 
areas but may disseminate more slowly among groups studying different interventions, 
and information may flow with some difficulty across unconnected sponsor groups. 
 
6.  Discussion 
 
In this study, we present the first network-based analysis, to our knowledge, of clinical 
trial data. Using a large set of data from clinical trials in nervous system diseases and 
behavioral and mental disorders obtained from the clinicaltrials.gov registry, we examine 
the topological parameters, network features, and longitudinal dynamics of clinical trial 
conditions, interventions and sponsors. We propose solutions to defining nomenclature 
and scope for constructing clinical trial networks. We hypothesized that, as in other types 
of networks, hubs and clusters are functionally important, and networks grow according 
to a preferential attachment model. We found that the role of network hubs was more 
similar among conditions and sponsors, since those hubs had functionally dominant roles, 
whereas, aside from the placebo cluster in the interventions network, the interpretation of 
functional importance was less clear. We also found that networks of different disease 
categories grew in divergent manners, and networks demonstrated variant models of 
preferential attachment. 

Inconsistent data quality has previously been identified as an impediment to the 
construction of biological networks [20,21] and clinical databases [22,23]. One of the 
major challenges to studying human diseases computationally is the development of 
vocabularies and ontologies that realistically reflect the complex inter-relationships 
among phenotypes. Multiple solutions to this problem have been reported including 
mapping diseases to OMIM disorders [24], Medicare records [6], MeSH terms [25], ICD-
9 codes and other ontologies. Clinicaltrials.gov implements MeSH terminology at the 
upper levels of its disease classification system but allows submission of free-form text at 
the lower levels. Other attributes such as interventions are unstructured but could be 
mapped to reference data sets such as RxNorm [26] or Drugs@FDA 
(http://www.accessdata.fda.gov). Still other attributes are submitted by trial sponsors with 
limited safeguards to ensure the accuracy and consistency of terminology.  

We used clinicaltrials.gov and UMLS terms to standardize trial nomenclature and 
enable multi-level analysis. Multi-level analysis of trials may be useful when sponsors 
evaluate trials "upward" as components in an overall research program and "downward" 



 

as collections of individual patients. In both cases, issues of membership overlap and 
hierarchy may be encountered. Ahn et al. [27] constructed communities that incorporate 
overlap and hierarchical organization in biological and social networks. We addressed 
overlap by implementing classes such as "Both" for disease categories and "Multiple" for 
diseases. 

Understanding the dynamic "evolution" of clinical trials from a systems perspective is 
similar to a phylogenetic analysis of ecosystems and may be useful in understanding the 
emergence, persistence, diversification and modularity of clinical research, particularly 
given the "noise" we have described in this type of data [28]. Many models have been 
proposed to describe dynamics in different types of network systems. These models 
include preferential attachment and linear distance dependence in internet topology [29], 
duplication-mutation schemes in the E. coli genetic network [30], modified preferential 
attachment in sexual contact networks [31], asymmetric disassembly for contraction and 
preferential attachment for re-growth in the New York garment industry [32], and anti-
preferential attachment in protein-protein interaction [33]. In the context of clinical trials, 
one might expect that a growth model similar to preferential attachment might hold true 
for networks of conditions and sponsors, where it may be the case that "the rich get 
richer". However, for networks of interventions, one might expect an altogether different 
growth model, where it is less likely that trials will be initiated for an existing 
intervention, since an intervention will eventually either fail and disappear or succeed and 
no longer require new studies, though in both cases it might be introduced into new 
indications. 

Studying the evolution of clinical trial networks can provide insight into mechanisms 
of knowledge flow, just as studying the spatial-temporal transmission of infectious 
disease might provide insight into mechanisms of communicability. While the flow of a 
virtual entity like information through a trial network is different from the flow of a 
physical entity like electricity through a power grid, both require sources and 
connectivity. An example of a knowledge source is the release of information via 
Pubmed, clinicaltrials.gov, or perhaps a conference, highlighting the importance of 
registering and reporting results of trials, including negative studies, in a complete and 
timely manner. An example of knowledge connectivity was described in Figure 4 where 
the differing connections between components in the three networks may have 
implications on how knowledge from influential trials is disseminated. This is significant 
because the average time to take a new therapeutic compound from discovery to 
commercialization in the U.S. is nearly 13 years, up from less than eight years in the 
1960s. Opening a trial requires a median of approximately 2.5 years simply to begin 
patient accruals, not to complete the trial [34].  

The primary limitation of this study is the reliance on potentially ambiguous 
categorizations and nomenclature of study conditions. For example, there are 536 studies 
in the pre-defined "Multiple Sclerosis" category, 181 studies under "Multiple Sclerosis, 
Relapsing-Remitting", and 26 studies under "Multiple Sclerosis, Chronic Progressive". 
However, searching with the text term "Multiple Sclerosis" returns 585 studies, while 
searching for the terms independently returns 625 studies. Other recognized phenotypes 
such as Primary Progressive MS are not explicitly defined. Clearly, the definition of 
disease nomenclature is an ongoing effort. 



 

There are several potential future directions for this work. We chose to take a disease-
centric approach by focusing on relationships among trials in neurological diseases. 
Alternative approaches could include expanding scope, by looking at all diseases; altering 
scope, by looking at a different set of diseases or a specific class of interventions; or 
altering the network model, by focusing on relationships using some unit other than trials. 
There are many opportunities to study other aspects of network dynamics. For example, 
in studies of corporate networks, the merging and splitting of nodes can represent 
acquisitions and spin-offs. Similarly, merging and splitting of nodes in clinical trial 
networks could reflect evolving understanding of sub-phenotypes of disease or 
differences in drug mechanisms of action. To further integrate multiple levels of detail 
into network models of clinical trials, it would be extremely useful to have patient-level 
data, but this may be difficult to obtain since such data is typically reported at a summary 
level, if at all. Other issues to investigate include scale-dependence [35] and network 
vulnerability [36]. For example, in the same way that other types of networks such as 
power grids or the Internet might experience cascading failure, what might happen to the 
practice of medicine if the findings of a "hub" trial are called into question? 

In conclusion, we have presented the first network-based analysis of public clinical 
trials data. We defined a large set of trials in neurological conditions using data from 
clinicaltrials.gov. We analyzed multi-level models that integrated levels of granularity of 
trial conditions, interventions, and sponsors. We also analyzed dynamic models of 
network evolution over time. In both cases, we performed visual and topological 
evaluations. We highlight opportunities to make trial nomenclature more consistent and 
computable, we describe divergent network topologies over time in different disease 
types, and we identify characteristics of clinically "influential" trials in neurology using 
network models. 
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