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Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. 
However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant 
to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be 
unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant 
biological processes. We describe a successful attempt to mine novel functional gene sets for translational 
projects where the underlying physiology is not necessarily well characterized in existing annotation 
databases. We choose targeted training data from public expression data repositories and define new criteria 
for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no 
enrichment for informative Gene Ontology terms or other functional annotation.  However, we observe that 
such gene sets show coherent differential expression in new clinical test data sets, even if derived from 
different species, tissues, and disease states.  We demonstrate the efficacy of this method on a human 
metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on 
additional data sets related to neuronal processes and human development.  Our results suggest that our 
approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for 
novel clinical applications where existing functional annotation is relatively incomplete. 

 
1.  Introduction 

Genome-wide expression studies are producing large quantities of experimental data 
characterizing a growing range of human diseases. Yet the biological interpretation of results 
obtained from these experiments is still a challenge, and clinical applications remain relatively 
elusive. Typically, microarray data are analyzed at the single gene level to identify transcripts with 
statistically significant differences between phenotypes, and a functional analysis is then 
performed on the gene list.  Originally, such functional annotation was performed manually1,2, but 
soon many tools to automate the process were developed3-6. 
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More recently, analysis at the level of gene sets has emerged as a powerful alternative to 
individual-gene analyses to reflect the functional relationship between genes in a set. Mootha et al. 
initially demonstrated the power of using pre-defined gene sets in a case where no individual 
gene’s expression was significantly different between normal and diabetic patients7. Since then, 
many gene set analysis methods have been developed8-14. The goal of all gene set analysis 
methods is to identify functionally related genes that display coordinated expression changes. 
Typically, gene set analysis methods can be distinguished by their statistical criteria for 
differential expression, null hypotheses, and p-value calculations15.  

However, all analytical methods incorporating gene sets depend on the knowledge of sets or 
pathways relevant to the underlying physiology. For fields such as diabetes and cancer, there has 
been considerable effort toward manual and computational curation of relevant gene function16. 
The Gene Ontology17 contains controlled descriptions of gene function that are frequently used to 
define gene sets.  Pathway databases such as KEGG18, BioCyc19, and BioCarta 
(www.biocarta.com) can also be used to generate gene sets. However, for many complex 
physiological processes, there is still a need to identify relevant groups of functionally linked 
genes.  Recent work studying gene expression in human development suggests that this area is one 
in which additional annotation is needed20.   
 Clustering approaches have long been used to find meaningful patterns in gene expression 
data and to identify functional gene sets from microarray data7,21-23. However, such methods do 
not necessarily generalize to inform the analysis of novel data sets since functionally related genes 
may be co-expressed only in a subset of conditions, and such gene sets would be missed by 
traditional clustering methods. Biclustering methods have emerged as an alternative to traditional 
clustering methods in such cases. Biclustering24 finds subgroups of genes that exhibit similar 
expression patterns over a subset of conditions.  Many biclustering algorithms have been 
proposed25,26. More sophisticated biclustering algorithms search for coherent expression changes 
within subsets of conditions27-29. Coherence of a bicluster refers to coordinated changes of the 
genes’ expression patterns across a subset of conditions (as in Figure 1).  Gene sets with coherent 
expression patterns in a data set may be functionally linked to the phenotype of interest. 
 Here, we describe a novel approach to identifying candidate gene sets using new criteria 
for selecting coherent biclusters across multiple experiments somewhat related to the desired 
clinical application.  Previous efforts have looked for coherent functional modules showing 
enrichment in a particular gene expression data set, often by incorporating network, pathway, or 
clinical information30-32. Our method differs from these approaches in that we identify gene sets 
showing coherent expression patterns across multiple related studies, and then assess the general 
relevance of our candidate sets by using them for gene set analysis of novel clinical data.  In this 
sense, our work is closest to that of Liu et al.33, who find processes dysregulated across many 
related experiments.  However, their work still requires pre-defined gene sets relevant to the 
phenotype being studied.  The goal of our method is to systematically identify novel gene sets that 
generalize well for the analysis of new data in fields where molecular annotation is sparse, such as 
development or neuronal function. We use careful dataset selection, biclustering, and filtering to 
identify novel candidate gene sets, and we observe that several of these show coherent differential 
expression patterns in clinical test data sets from different yet related physiological processes.  



  

This method works even when the training data sets come from different tissues or species than 
the test data, allowing us to find clinically-applicable gene sets using existing data from model 
organisms.  Several of the gene sets differentially expressed in the test data show enrichment for 
informative Gene Ontology terms, but many others have no significant overlap with previously 
known functional categories.  Nonetheless, they can be useful as diagnostics and can help direct 
future translational research into gene-gene and gene-disease relationships, particularly in medical 
fields where the underlying molecular physiology is not yet well understood.   

2.  Methods 

2.1.  Algorithm overview 

We start by integrating publicly available gene expression data from several studies that are 
related, but not too closely related, to each other and to the test data set we wish to analyze. We 
apply a biclustering algorithm that finds coherent changes within and across studies (Figure 1) to 
the combined training data.  Subsequently, we filter out biclusters that do not meet certain quality 
criteria.  We consider the remaining biclusters as candidate gene sets, which we use for the 
analysis of human clinical gene expression test data distinct from the data used for gene set 
discovery.  Details of each of these steps in our method are discussed below.   
 

 
 

Fig 1. Heatmap of a representative bicluster that shows coherent change across samples. Samples 
from two studies on the hippocampus show lower gene expression when compared to samples from 
amygdala. Within each tissue type, coherent changes in expression are also apparent. 

2.2.  Data acquisition and normalization 

We downloaded single channel Affymetrix microarray data (as .CEL files) from the Gene 
Expression Omnibus (GEO) (Table 1). The Affymetrix CEL files for each medical area of interest 
were imported into the R statistical software (v2.8.1; http://www.R-project.org), and all training 
data for that area were normalized at once. Normalization was performed with the AffyPLM 
package in BioConductor (v2.4), using RMA background correction, quantile normalization, and 
the Tukey biweight summary method. After normalization, the variances of all probes were 
computed across all samples, and the 50% of the probes with the lowest variance were removed, 



  

eliminating probes that are not expressed in the relevant tissues or whose expression does not vary 
enough to be informative for our purposes. 

2.3.  Biclustering 

Next, we biclustered the normalized, filtered gene expression data using the Iterative Signature 
Algorithm (ISA)27,34.  We have found that ISA identifies more coherent and potentially 
biologically relevant biclusters than several other biclustering methods35,36. Briefly, ISA starts 
with a random initial set of genes.  All samples are scored for coherence with respect to this gene 
set and samples are chosen for which the score exceeds a predefined condition threshold (tC). 
Next, all genes are scored across the selected samples and a new set of genes is selected based on a 
predefined gene threshold (tG). The entire procedure is repeated until it converges. We used the 
BiCAT implementation35 of the ISA algorithm with tG = 2 and tC =1, parameters recommended for 
the identification of coherent patterns in a prior study37.  

Table 1 – Selected gene expression data sets for gene set discovery. 

 
Data Set GEO 

Accession # Title Tissue Samples 

GSE5090 Polycystic ovary syndrome 
patients vs control subjects Adipose PCOS patients, 

controls 

GSE9105 Effect of acute physiologic 
hyperinsulinemia Vastus lateralis 240 mins of insulin 

infusion 
Metabolic 
(Human) 

GSE474 Obesity and fatty acid oxidation Vastus lateralis Lean, obese 
GSE6882 Embryonic ovary development Ovary Embryonic 

GSE8065 Early postnatal development of the 
small intestine Intestine Postnatal 

GSE12769 Testis developmental time course Testis Postnatal 
Developmental 
(Mouse) 

GSE13103 Early mouse embryo eye 
development Optic fissure Embryonic 

GSE9803 Striatal gene expression data Striatum wild-type 

GSE4040 Gene expression in murine 
hippocampus Hippocampus wild-type Neuronal 

(Mouse) 
GSE4034 Gene expression in amygdala and 

hippocampus 
Amygdala, 
Hippocampus wild-type 

 

2.4.  Selecting biclusters as candidate gene sets 

Although we chose the ISA biclustering approach because the algorithm is able to find 
coherent biclusters that include samples from multiple experiments, there is no guarantee that the 
resulting biclusters have the generalizable-coherence property that we want for our candidate gene 
sets.  In addition, ISA often identifies multiple overlapping biclusters.  While some degree of 
overlap between gene sets might accurately represent genes involved in more than one cellular 
process, a high degree of overlap of both genes and samples likely occurs when different random 
starting points of the iterative algorithm converge to similar solutions.  Additionally, some of the 



  

resulting biclusters can be noisy and their genes’ expression patterns only poorly correlated with 
each other.  Therefore, we subject the biclusters to several quality measures before selecting 
certain ones as candidate gene sets.   

First, we remove any biclusters that do not show coherent expression changes across 
samples from two or more experiments. That is, if the samples selected for a bicluster do not come 
from at least two different source data sets, we discard the gene set as being less likely to 
generalize to new conditions and tissues.  Our experience suggests that this criterion, given an 
appropriate choice of training data, is most responsible for the applicability of these discovered 
gene sets in new contexts (data not shown).   

We next assess the overlap between the gene sets defined by the biclusters.  If any pair of 
gene sets G and H overlap such that at least 80% of the genes in G are in H and at least 80% of the 
genes in H are in G, we select only the bicluster with fewer genes.  We reason that the smaller 
bicluster contains a core group of genes with a stronger functional association with the phenotype.  
 To enforce expression homogeneity within the biclusters, we use a recently proposed 
measure of bicluster quality, the average correlation value (ACV)38, to score biclusters for 
homogeneity. The ACV measures the average pairwise expression correlation between all pairs of 
genes in a cluster.  The maximum ACV score of 1.0 denotes a highly correlated bicluster. ACV 
has been shown to be more robust than the widely-used mean squared residue score25.  We discard 
biclusters with ACV < 0.5 (though results are quite robust to varying this threshold).  Biclusters 
that remain after all of these filtering steps are considered as candidate gene sets.  
 Finally, we note that normalization in meta-analyses is an important challenge, since many 
experiment-specific factors may persist even after normalization, and over-normalization may 
suppress real signal.  In order to assess normalization bias in our resulting biclusters, we calculate 
a score called the chip correlation value (CCV). The CCV is measured by calculating the 
correlation between sample averages for genes in a given bicluster with the sample averages over 
the entire gene expression matrix. Although biclusters are not discarded based on their CCV 
scores, it should be noted that extreme correlations might reflect insufficient normalization. 
  

2.5.  Applying candidate gene sets to analyze test data 

If our novel gene sets show coherent expression changes in a new setting, we can assume that their 
genes have some functional relationship, even if the exact nature of that relationship is unknown. 
Any gene-set data analysis method can be applied to assess coherent expression changes in test 
data; here, we choose Gene Set Enrichment Analysis (GSEA)16.  GSEA is a statistical framework 
that determines if members of a given gene set show collective expression changes linked to 
sample phenotypes by calculating a Kolmogorov-Smirnov running sum called the enrichment 
score (ES). We report the normalized enrichment score (NES) because this measure accounts for 
the gene set size, thus allowing for comparison between different experiments. The magnitude of 
the NES reflects the degree of enrichment for a given gene set. We accept a gene set as 
differentially expressed using an FDR q-value cut-off of 25%, as suggested by the GSEA 
authors16.  For time series data (the developmental data sets), we used the Pearson metric for 



  

ranking genes.   For the maternal blood data set20 (see Results), we used the GSEA-preranked 
option on genes ranked by the closer-to-zero (i.e., approximately the less-significant) of two t-
scores, one comparing paired antepartum and postpartum maternal blood samples, and the other 
comparing paired neonatal cord blood and postpartum maternal blood samples.   

Subsequently, in order to gain biological insight into the biclusters, we used the Database 
for Annotation, Visualization and Integrated Discovery (DAVID)39,40 (the April, 2008 release) to 
identify functional annotation terms significantly over-represented in the gene sets. A functional 
term is considered to be significantly enriched if its Benjamini-Hochberg-adjusted p-value, as 
reported by DAVID, is less than 0.05.  

2.6.  Orthology 

In some cases, we derived biclusters based on gene expression data in model organisms and 
evaluated their utility for interpreting human gene expression data from clinical samples.  In these 
cases, mouse-derived biclusters were mapped to their human gene symbols using DAVID’s Gene 
ID Conversion Tool. Further, probe sets from human Affymetrix Chips are collapsed to their gene 
symbols using GSEA. In such cases, the gene symbols are used instead of their Affymetrix probe 
set identifiers. 

3.  Results 

We applied this approach to three different functional areas to highlight its utility for functional 
interpretation of clinical data.  We start by applying our method to the well-studied metabolic field 
and follow with two other areas where annotation is relatively sparse: neuronal function and 
development. Table 2 summarizes the characteristics of the resulting biclusters from each field.   

 Table 2 – Characterization of resulting biclusters.  

 
# of genes # of conditions ACV CCV Study 
min mean max min mean max mean ± stdev mean ± stdev 

Metabolic 12 63.8 154 5 10.1 17 0.74 ± 0.12 -0.23 ± 0.30 
Neuronal 7 122.6 436 3 9.0 19 0.95 ± 0.03 0.12 ± 0.49 
Developmental 4 528.8 893 6 9.1 12 0.94 ± 0.03 0.07 ± 0.37 

3.1.  Metabolic data set 

Metabolic disorders include a broad array of medical conditions such as diabetes, obesity, 
hypertension, and insulin resistance. We compiled gene expression data from publicly available 
metabolic studies involving human tissue samples hybridized to Affymetrix GeneChip HG-
U133A arrays. The initial experiments include adipose tissue samples from polycystic ovary 
syndrome (PCOS) patients compared with control subjects (GSE5090), vastus lateralis muscle 
samples during acute physiologic hyperinsulinemia (GSE9105), and vastus lateralis muscle 
samples from obese and lean subjects.  PCOS is a common endocrine disorder that is associated 
with metabolic abnormalities including insulin resistance, increased risk for diabetes mellitus, 
obesity and hyperlipidemia41. 



  

 The entire metabolic data set consisting of 53 samples and 11,141 genes was used as input 
for biclustering. Overall, ISA identified 15 biclusters for the metabolic data. Filtering resulted in 
11 biclusters selected as candidate metabolic gene sets. One bicluster was discarded based on low 
ACV; three biclusters were filtered because of high degree (>80%) of overlap (Figure 2).  In such 
cases, the biclusters with fewer genes were selected because they were likely to be more specific. 
On average, the selected biclusters contain 64 genes and 10 conditions with more than 73% 
correlation between genes. Further, average CCV is relatively low (-0.23 ± 0.3) suggesting that the 
clusters are not due to normalization artifacts (Table 2).   
 

 
 

Figure 2.  Metabolic bicluster overlap before filtering. A heatmap of overlap between biclusters from 
the metabolic study is shown. Biclusters with >80% overlap with each other are outlined in dashed boxes. 
In such cases, the bicluster with fewer genes is chosen as a candidate gene set.  Note that biclusters 7 and 
13 are both retained because the high overlap is in one direction only.  In such cases, it is possible that 
both gene sets represent interesting biological functions.    

 
 We then applied these candidate metabolic gene sets in a GSEA analysis of data from 
Mootha, et al. comparing smooth muscle gene expression in diabetic patients and healthy 
controls7.  Recall that this is the data set that was first used to demonstrate the GSEA approach; 
there are no individually differentially expressed genes, and gene sets related to oxidative 
phosphorylation were shown to be downregulated in diabetics in this data.  However, no gene sets 
were shown to be significantly upregulated in diabetes7.  In our experiments on the same data, out 
of our eleven candidate biclusters, three were significantly upregulated (FDR q-value < 0.25) in 
smooth muscle from diabetic patients: bicluster9, bicluster11 and bicluster14. The GSEA results 
for differential expression of these gene sets are summarized in Table 3A, and full functional 
enrichment results are listed in supplementary table S1 (http://bcb.cs.tufts.edu/genesetPSB11/).   
 In an attempt to interpret the functional role of these gene sets, we evaluated the enriched 
biclusters using functional annotation tools in DAVID.  However, these differentially expressed 
biclusters either showed no statistically significant overlap with current ontology classes 
(bicluster11) or overlapped only with broad GO terms such as developmental process 
(bicluster14) or multicellular organismal process and biological regulation (bicluster9).   



  

 We had originally expected that any gene sets we discovered in our metabolic data would 
overlap heavily with existing functional annotation, reflecting the wealth of research about the 
molecular mechanisms of diabetes and obesity.  However, we instead discovered new gene sets 
that exhibited coherent changes across diverse experiments and that also showed significant 
coordinated upregulation in diabetics.  While the exploratory q-value cutoff suggested for GSEA 
analysis16 allows for a one-in-four false-positive rate, all three of the gene sets identified in this 
analysis had much lower q-values.  Thus, although any of these findings might be a false-positive, 
it is unlikely (probability ≤ 0.0005) that all three of them are.   We believe these results suggest 
that there may be previously unrecognized functional links among the members of each of these 
gene sets, warranting further study.   In clinical applications where diagnosis is difficult or early 
diagnosis is critical, such gene sets might also be useful as diagnostic tools even before their 
functional roles are understood.     
 

Table 3. Differential expression of candidate gene sets in test data. 

A) Metabolic biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Bicluster14 31 0.57 1.71 0.01 0.08 
Bicluster9 39 0.54 1.64 0.03 0.07 Homo Sapiens Smooth 

Muscle 
Bicluster11 32 0.50 1.60 0.04 0.08 

B) Neuronal biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Bicluster4 128 0.65 1.52 0.00 0.21 
Bicluster12 65 0.53 1.39 0.05 0.22 
Bicluster1 197 0.58 1.38 0.13 0.19 Homo Sapiens 

Dorsolateral 
prefrontal 
cortex Bicluster3 219 0.51 1.37 0.10 0.17 

 

C) Developmental biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Homo Sapiens Blood Bicluster4 239 0.31 1.54 0.000 0.005 
 
 

3.2.  Neuronal data set 

Motivated by an interest in the impact of loss of nicotinic activity on cochlear synapse 
formation42, we collected gene expression data from substructures of the mouse central nervous 
system: striatum (GSE9803), hippocampus (GSE4040) and amygdala (GSE4034). Gene 
expression data from only wild-type mice were considered and all studies utilized Affymetrix 
Mouse430.2 GeneChips. This neuronal data set included 32 samples and 22,550 genes. ISA 



  

initially identified 33 biclusters for the neuronal data42; filtering resulted in 25 candidate neuronal 
gene sets, whose characteristics are summarized in Table 2.   
 We applied the neuronal candidate gene sets to analyze human gene expression data from 
postmortem brains (specifically, dorsolateral prefrontal cortex) of adults with Down syndrome 
(DS) and healthy control subjects (GSE5390). In this data set bicluster4, bicluster12, bicluster1 
and bicluster3 were upregulated in DS patients (Table 3B).  

Bicluster4 showed statistically significant enrichment for the GO biological process term, 
lipid metabolic process, and several PANTHER terms including lipid, fatty acid and steroid 
metabolism; mRNA transcription regulation; voltage-gated K channel; and transferase.  
Bicluster1 is enriched for several GO categories including nervous system development, 
myelination, and regulation of action potential.  Enriched GO terms for bicluster 3 include 
developmental process, localization, cell adhesion and death.  Enriched PANTHER categories for 
this bicluster include neuronal activities, receptor mediated endocytosis, cytoskeletal protein, cell 
junction protein, and cadherin. On the other hand, bicluster12 did not exhibit statistically 
significant overlap with any functional annotation terms. 

Cadherins are proteins involved in calcium-ion-mediated cell adhesion.  Abnormalities in 
myelination, cell adhesion, and lipid classes have been implicated in DS43-45.  In addition, these 
results are consistent with our recent observation of increased oxidative stress, and apparent 
downstream disruption of ion signaling and cell structural integrity, in the DS fetus46. The 
functional roles of genes in these novel gene sets mined from diverse neuronal tissues in healthy 
mice may therefore help inform ongoing translational efforts to develop novel therapies for Down 
syndrome.   

3.3.   Developmental data set 

We collected gene expression data representing mouse developmental time courses in various 
tissues, all hybridized to Affymetrix Mouse430.2 GeneChips. We only considered data from wild-
type animals; treated samples and mutant strains were excluded. The data were derived from ovary 
(GSE6882) and optic fissure (GSE13103) during embryonic development, and intestine 
(GSE8065) and testis (GSE12769) during postnatal development. Overall, this data set contained 
24 samples and 22,550 genes. 
 Initially, ISA identified 25 biclusters on this data set.  Filtering resulted in 10 biclusters to 
be considered as candidate developmental gene sets, which are characterized in Table 2. We then 
applied these developmental biclusters to re-analyze expression data from our previous study of 
maternal and fetal gene expression20. This study confirmed the detection of fetal mRNA in 
maternal whole blood by SNP analysis after identifying candidate fetal transcripts that were 
upregulated in both antepartum maternal blood (at 37-40 weeks’ gestation) and umbilical cord 
blood compared to postpartum maternal blood.  We used the GSEA “preranked” feature so that we 
could rank the genes based on their less significant performance in these two different 
comparisons (antepartum to postpartum, and antepartum to neonatal; see Methods).   

In this analysis we found that developmental bicluster4 (Table 3C) was significantly 
upregulated (FDR q-value < 0.005) in both the antepartum mothers and the babies’ cord blood 



  

compared to the postpartum mothers, and therefore would be considered likely to include fetal 
transcripts in maternal circulation.  Bicluster4 showed statistically significant overrepresentation 
of several GO terms, including digestion, lipid transport, and lipid binding.  SP_PIR (Protein 
Information Resource) terms such as intestine, glycoprotein, neuropeptide, and inflammatory 
response were also overrepresented. Given that myelin membrane synthesis relies upon lipid and 
sterol metabolism47, expression of these genes may reflect the maturing neurological system of the 
near term fetus, necessary for coordinating the complex sequence of actions needed for feeding 
and breathing; or it may simply reflect direct preparation for digestion.   In our previous analysis 
of this data20, we saw evidence of putative fetal expression of genes related to several functional 
processes likely to be needed at birth:  immunity, sensory perception, lung maturation, and 
neurological function. However, no functional over-representation of digestive or metabolic 
proteins was detected as a set.  Indeed, a painstaking manual annotation effort revealed hints that 
such proteins were among the likely fetal transcripts, but their significance was unclear. In 
contrast, the present work likely suggests that the healthy term fetus is preparing to feed.   

The fact that such transcripts are detectable in maternal circulation helps support the 
proposal to use transcriptional analysis of maternal blood as a non-invasive approach to monitor 
fetal development.  Translational applications of this work might include detecting potential 
feeding disorders before birth by identifying dysregulation of this gene set in individual fetuses.   

4.  Discussion  

4.1 Implications  
Our understanding of functional relationships among sets of genes is still in its infancy.  Discovery 
of coherent gene sets that work together in different biological processes or disease states may 
help further annotate genomes by assigning function to unknown genes or discovering previously 
unsuspected relationships.  Our method allows us to identify gene sets likely to have a common 
functional role in a given tissue or disease state.  We found that many candidate gene sets selected 
in this way show statistically significant differential expression in new test data sets, suggesting 
that such gene sets may generalize well across tissues and relevant disease states.  

Many gene set discovery methods rely upon annotation tools that utilize ontology or 
pathway databases. A potential issue with such functional enrichments is the dependency of p-
values on bicluster sizes48.  Smaller yet functionally-relevant biclusters may go unnoticed due to 
their insignificant enrichment p-values.  Our approach of searching for coherent biclusters 
spanning conditions from multiple experiments allows us to extract biological phenotype features 
that generalize well across different tissues and species, even in the absence of enrichment for 
known functional pathways.  Thus, this approach may be a way to generate a collection of gene 
sets relevant to the analysis of data from novel areas, where existing functional annotation is 
relatively incomplete. 
 The question of whether the enriched biclusters exhibit known functional coherence is 
itself of interest.  The rationale behind using metabolic disease samples in our first experiment was 
to determine whether our method would capture meaningful functional annotation in a field where 
such annotation is relatively plentiful.  Although one metabolic bicluster (Bicluster4) was enriched 



  

for expected metabolic terms such as UDP-glycosyltransferase activity and carbohydrate 
metabolism (Supplemental Table S1), we found several metabolic gene sets that were not 
statistically enriched for any informative  pathway terms.  This lack of enrichment may be due to 
the relatively small size of the metabolic biclusters.  Importantly, despite the lack of enrichment, 
several of these biclusters were significantly differentially expressed in the test data.  Furthermore, 
inspection of these biclusters revealed several genes with previously assigned roles in metabolic 
disorders.  For example, consider bicluster9, which we found to be significantly upregulated in 
smooth muscles of diabetic individuals. The Phenopedia49 component of the Human Genome 
Epidemiology database (HuGE Navigator)50 suggests that several of the genes in this bicluster, 
including ADRA1A, ADRB1, APOC3, CACNA1A, MTHFR and TH, are disease susceptibility 
genes associated with cardiovascular diseases and obesity. However, no previous relationship 
between most of these genes was detected in the literature. These results suggest that our approach 
may help capture novel links among genes and between genes and phenotypes. 
 Equally important, several of our test data sets were from a different species than that of 
the original data used for biclustering. This is particularly important for biological processes such 
as development that rely on mammalian model systems. For example, for the developmental data 
set, candidate gene sets were acquired from several murine tissues: ovary, intestine, testis and 
optic fissure. Yet, orthologous gene sets were found to be upregulated during human development. 
Similarly, neuronal biclusters derived from mouse brain tissues provided information about 
expression in the dorsolateral prefrontal cortex of Down syndrome patients.  

4.2 Future work 

Future work will include obtaining a wider range of gene sets based on larger collections of 
training data, and exploring the impact of varying training set size or other parameters.  Biclusters 
identified with ISA depend on the initially chosen set of genes and the threshold parameters tG and 
tC.  By varying the threshold parameters and running ISA with different initial conditions, it is 
possible to generate a representative set of biclusters and to determine the method’s sensitivity to 
these changes.  Additionally, it is preferable to identify smaller biclusters that consist of tightly 
linked genes. This goal can be realized by either refining our smaller discovered biclusters or by 
clustering the larger ones into smaller subsets. The impact of using different biclustering methods 
should also be explored further. To expand the training data sets, integration of data from different 
microarray platforms and multiple species, though non-trivial, is feasible51,52 and desirable.  
Furthermore, it is important to determine how best to select training data to facilitate discovering 
new gene sets for the analysis of particular test data sets. Future work might explore the 
effectiveness of this approach as a function of, for example, distances between MeSH terms 
describing the training and test data.  Finally, future experiments are needed to identify and 
validate new functional relationships between genes that are suggested by our results.   
 
References 
 
1. V. R. Iyer et al., Science 283, 83 (Jan 1, 1999). 
2. X. Wen et al., Proc Natl Acad Sci U S A 95, 334 (Jan 6, 1998). 



  

3. B. R. Zeeberg et al., Genome Biol 4, R28 (2003). 
4. D. A. Hosack, G. Dennis, Jr., B. T. Sherman, H. C. Lane, R. A. Lempicki, Genome Biol 4, R70 (2003). 
5. P. Khatri, S. Draghici, G. C. Ostermeier, S. A. Krawetz, Genomics 79, 266 (Feb, 2002). 
6. P. Khatri, S. Draghici, Bioinformatics 21, 3587 (Sep 15, 2005). 
7. V. K. Mootha et al., Nat Genet 34, 267 (Jul, 2003). 
8. J. H. Hung et al., Genome Biol 11, R23 (2010). 
9. W. T. Barry, A. B. Nobel, F. A. Wright, Bioinformatics 21, 1943 (May 1, 2005). 
10. L. Tian et al., Proc Natl Acad Sci U S A 102, 13544 (Sep 20, 2005). 
11. J. J. Goeman, S. A. van de Geer, F. de Kort, H. C. van Houwelingen, Bioinformatics 20, 93 (Jan 1, 2004). 
12. S. W. Kong, W. T. Pu, P. J. Park, Bioinformatics 22, 2373 (Oct 1, 2006). 
13. U. Mansmann, R. Meister, Methods Inf Med 44, 449 (2005). 
14. I. Dinu et al., BMC Bioinformatics 8, 242 (2007). 
15. J. J. Goeman, P. Buhlmann, Bioinformatics 23, 980 (Apr 15, 2007). 
16. A. Subramanian et al., Proc Natl Acad Sci U S A 102, 15545 (Oct 25, 2005). 
17. M. Ashburner et al., Nat Genet 25, 25 (May, 2000). 
18. M. Kanehisa, S. Goto, Nucleic Acids Res 28, 27 (Jan 1, 2000). 
19. P. D. Karp et al., Nucleic Acids Res 33, 6083 (2005). 
20. J. L. Maron et al., J Clin Invest 117, 3007 (Oct, 2007). 
21. M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc Natl Acad Sci U S A 95, 14863 (Dec 8, 1998). 
22. P. Tamayo et al., Proc Natl Acad Sci U S A 96, 2907 (Mar 16, 1999). 
23. M. Kankainen, G. Brader, P. Toronen, E. T. Palva, L. Holm, Nucleic Acids Res 34, e124 (2006). 
24. J. Hartigan, J. Am. Stat. Assoc. 67, 123 (1972). 
25. Y. Cheng, G. M. Church, Proc Int Conf Intell Syst Mol Biol 8, 93 (2000). 
26. S. C. Madeira, A. L. Oliveira, IEEE/ACM Trans Comput Biol Bioinform 1, 24 (Jan-Mar, 2004). 
27. J. Ihmels, S. Bergmann, N. Barkai, Bioinformatics 20, 1993 (Sep 1, 2004). 
28. A. Tanay, R. Sharan, M. Kupiec, R. Shamir, Proc Natl Acad Sci U S A 101, 2981 (Mar 2, 2004). 
29. X. Gan, A. W. Liew, H. Yan, BMC Bioinformatics 9, 209 (2008). 
30. M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, T. Muller, Bioinformatics 24, i223 (Jul 1, 2008). 
31. A. Keller et al., Bioinformatics 25, 2787 (Nov 1, 2009). 
32. I. Ulitsky, R. Shamir, Comput Syst Bioinformatics Conf 7, 249 (2008). 
33. M. Liu et al., PLoS Genet 3, e96 (Jun, 2007). 
34. J. Ihmels et al., Nat Genet 31, 370 (Aug, 2002). 
35. S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann, E. Zitzler, Bioinformatics 22, 1282 (May 15, 2006). 
36. X. Wei, PhD Dissertation, Computer Science, Tufts University (2010). 
37. K. O. Cheng, N. F. Law, W. C. Siu, A. W. Liew, BMC Bioinformatics 9, 210 (2008). 
38. L. Teng, L. Chan, Journal of Signal Processing Systems 50, 267 (2007). 
39. G. Dennis, Jr. et al., Genome Biol 4, P3 (2003). 
40. W. Huang da, B. T. Sherman, R. A. Lempicki, Nat Protoc 4, 44 (2009). 
41. M. Urbanek, S. Sam, R. S. Legro, A. Dunaif, J Clin Endocrinol Metab 92, 4191 (Nov, 2007). 
42. S. Turcan, D. K. Slonim, D. E. Vetter, PLoS One 5, e9058 (2010). 
43. K. E. Wisniewski, B. Schmidt-Sidor, Clin Neuropathol 8, 55 (Mar-Apr, 1989). 
44. G. Lubec et al., J Neural Transm Suppl 57, 161 (1999). 
45. B. W. Brooksbank, M. Martinez, Mol Chem Neuropathol 11, 157 (Dec, 1989). 
46. D. K. Slonim et al., Proc Natl Acad Sci U S A 106, 9425 (Jun 9, 2009). 
47. M. H. Verheijen et al., Proc Natl Acad Sci U S A 106, 21383 (Dec 15, 2009). 
48. G. Li, Q. Ma, H. Tang, A. H. Paterson, Y. Xu, Nucleic Acids Res 37, e101 (Aug, 2009). 
49. W. Yu, M. Clyne, M. J. Khoury, M. Gwinn, Bioinformatics,  (Oct 30, 2009). 
50. W. Yu, M. Gwinn, M. Clyne, A. Yesupriya, M. J. Khoury, Nat Genet 40, 124 (Feb, 2008). 
51. L. Shi et al., Nat Biotechnol 24, 1151 (Sep, 2006). 
52. J. Tsai et al., Genome Biol 2, SOFTWARE0002 (2001). 
 


