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RNA virus phenotypic changes often result from multiple alternative molecular mechanisms, where each
mechanism involves changes to a small number of key residues. Accordingly, we propose to learn genotype-
phenotype functions, using Disjunctive Normal Form (DNF) as the assumed functional form. In this study
we develop DNF learning algorithms that attempt to construct predictors as Boolean combinations of
covariates. We demonstrate the learning algorithm’s consistency and efficiency on simulated sequences, and
establish their biological relevance using a variety of real RNA virus datasets representing different viral
phenotypes, including drug resistance, antigenicity, and pathogenicity. We compare our algorithms with
previously published machine learning algorithms in terms of prediction quality: leave-one-out performance
shows superior accuracy to other machine learning algorithms on the HIV drug resistance dataset and the
UCIs promoter gene dataset. The algorithms are powerful in inferring the genotype-phenotype mapping
from a moderate number of labeled sequences, as are typically produced in mutagenesis experiments. They
can also greedily learn DNFs from large datasets. The Java implementation of our algorithms will be made
publicly available.

1. INTRODUCTION

RNA viruses (including retroviruses), such as HIV, Influenza, Dengue and West Nile, impose a very
significant disease burden throughout the world. Because of their very short generation time and
low replication fidelity,1 RNA viruses exhibit extensive variability at the nucleic acid and protein
level which results in fast adaptation rate, and great ability to evade the immune system and
antiviral drugs.2,3 For example, HIV drug resistance has developed to all available drugs,4 and some
drug resistance mutations are probably present before the start of therapy;5 Influenza resistance
to Neuraminidase Inhibitor is rare but the resistance mutations are emerging and the resistance
becoming more prevalent.6

Genotype-phenotype function learning is important first step in elucidating the mecha-
nisms responsible for various viral phenotypes. It is also a crucial step towards inferring the pheno-
type from sequence alone, which has broad uses in clinical decision making (e.g. antiviral drug choice
based on drug resistance) and in public policy (e.g. vaccine formulation based on immunogenicity
and cross-reactivity).

We believe that by appropriately exploiting domain knowledge, computational methods can
efficiently and correctly learn genotype-phenotype mapping. This can be combined with the large
and rapidly growing sequence datasets to reduce the amount of required biological experimentation.
The fast replicating RNA viruses provide us a large pool of RNA virus sequences data. There were
229,451 sequences in the HIV Sequence Database at Los Alamos National Laboratory by the end
of 2007, an increase of 17% since the year before (http://www.hiv.lanl.gov/). This abundant data
suggests a great opportunity for computational models to unveil the underlying mechanisms of
phenotype changes. Specifically, by making best usage of the domain knowledge the models could
capture the genotype-phenotype correlations and improve prediction performance. We believe that
computational tools will be essential as exploratory and interpretation systems to support clinical
decisions concerning the prediction of the phenotypes.7

RNA virus phenotypes typically result from multiple alternative mechanisms. Each mechanism
is sufficient to explain the phenotypes and is constituted of a small number of key residues; yet
each key residue alone may correlate weakly with the observed viral phenotype. This is biologically
plausible and can be seen in a variety of biological evidences. For example, drug resistance is often
a steric-structural problem, and the physical interactions with inhibitors involve more than one
part of the target molecule, e.g. Protease Inhibitors (PIs) bind to four or more binding pockets
in the protease substrate cleft of HIV viruses;8 a variety of active site properties are playing roles
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in the binding determination, such as residue types, hydrophobicity, charges, secondary structure,
cavity volume, cavity depth and area etc. Therefore, multiple, alternative potential mechanisms
exist. Each mechanism involves only a small number of mutations since it has to be “discovered”
by the virus via random mutations. Thus overall only a small number of key residues are involved.
Therefore, a short Disjunctive Normal Form (DNF, “OR” of “AND”) would be an appropriate bias
over the hypothesis space under these assumptions. DNF is a disjunction of conjunctions where
every variable or its negation is represented once in each conjunction. DNFs of proteins provide
a mapping between key residues and their phenotype, and are an informative abstraction of key
residues for the construction. Another advantage of DNF is that it is a natural form of knowledge
representation for humans to interpret.

The learning of DNFs is a machine learning technique to infer Boolean function relevant with
a class of interest. It has been extensively used in electric circuit design, information retrieve,9

chess game,10 and so on. The learnability of DNFs has been a fundamental and hard problem in
computational learning theory for more than two decades. Because of the combinatorial complexity,
exhaustive search algorithms for finding solutions require huge computational resources. Our group
has been developing algorithms for accelerating and optimizing the DNF learning for RNA virus
phenotypes, based on biologically plausible assumptions. We are also concerned with the amount of
data available and the learning efficiency of the algorithms. In this study, we develop fast exhaustive
DNF learning algorithms under biologically plausible assumptions. The algorithms can learn DNFs
either from only a few mutagenesis experiments or from large high-throughput datasets. The learning
quality is evaluated by examining the biological interpretation and prediction quality of the functions
on a variety of RNA virus datasets representing different phenotypes.

2. Related computational work

Existing work on computational and statistical inference of genotype-phenotype relationship focuses
on population genetics, using linkage analysis and association studies. Linkage analysis is not appli-
cable to our case because crossover is not a significant force in the evolution of most RNA viruses.
Similarly, association studies are not applicable here because they can only detect single-locus as-
sociations, or else require exceedingly large datasets: for a typical scenario where up to a few dozen
labeled sequences are available and the phenotype depends on 2-4 key residues that interact in a
complex fashion, there is not enough power in statistical tests to identify these residues. More specif-
ically, tests like those described in11–13 look for association between each individual residue position
and the phenotype. But if the phenotype is determined by a complex interaction among, say, four
residue positions, then there will be only moderate association between any one of these positions
and the phenotype label, and this association may not be reliably detected with the limited num-
ber of labeled sequences that are usually available. This is a weakness shared by all methods that
look for phenotypic association with individual residue positions (call these “position-specific asso-
ciation methods”). This deficiency on the real data was described in.14 Although position-specific
association methods can be expanded to look for phenotypic associations with any pair or triplet of
residues etc., the exponential growth in the number of covariates further reduces the power of the
tests. An even more serious limitation of these methods is that they assume that the labeled data
were independently sampled, a patently false assumption in most cases of interest.

Rule induction algorithms, such as simultaneous covering by decision tree algorithm,15 and
ordered list of classification rules induction16 can also mine if-then rules, but they only discover
small number of rules for efficient prediction or classification purposes. Sequence analyses using
logic regression17 and Monte Carlo Logic regression18 adaptively identify weighted logic terms that
are associated with phenotypes. These approaches do not explore the whole hypothesis space to
identify all possible solutions; hence it is not guarantee to learn the global optimal solution.

Many state-of-the-art machine learning approaches have been applied to RNA virus genotype-
phenotype mapping, such as support vector machine (SVM) regression,19 decision tree classifica-
tion,20 statistical models,21 neural network,22,23 recursive partitioning,24 linear stepwise regression,25

support vector regression,8 least-squares regression,8 and least angle regression.8 These models learn
from a training data set and then test their performance using a test data set. The effort focuses
on the prediction accuracy in a cross validation manner, but these approaches lack the intention
to learn biologically meaningful and interpretable functions. Nonetheless, we will comprehensively
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compare our DNF learning algorithms with these approaches on prediction quality.
We are not aware of any statistical or computational methods designed specifically to infer

genotype-phenotype relationship in RNA viruses or other situations dominated by point mutations
and small to moderate datasets.

3. Disjunctive Normal Form (DNF) learning algorithms

Disjunctive Normal Form (DNF) is a disjunction of conjunctions, where the conjunctions vary over
positive and negative literals. Any given boolean function f : {0, 1}d → {0, 1} can be written in an
equivalent DNF. For example, a DNF formula is of the form:

f(x1, x2, x3) = x1 ∧ x3 + x1 ∧ ¬x2 ∧ x3 + x2
where ‘∧’ denotes ‘AND’, ‘+’ denotes ‘OR’, ‘¬’ denotes negation, and ‘x’ is a binary literal. This

example formula is a 2-term 3-DNF which contains two conjunctive terms (called clauses hereafter)
with a maximum clause length of 3 literals. The size of the DNF formula is defined as the number
of clauses it contains. A DNF formula represents a logic if-then rule, which is true only if the logic
calculation of inputs is true. To adapt biological sequence data, the binary literals are extended
to positional category variables. For example, an extended literal ‘x = 5A’ means ‘x = Ind(the
sequence item at the 5th position is ‘A’)’, where ‘Ind()’ is an indicator function, and ‘A’ is the
string representation of amino acid or nucleotide acids. This extension enables us to assign labels to
any biological sequences. When a function assigns a positive label to an input sequence, we say that
the function ‘covers’ the sequence. The goal of our DNF learning algorithm is to learn the shortest
DNF(s) that cover all the positively labeled data, and do not cover any of the negatively labeled
data.

Finding the minimum size DNF formula is a well-known NP-Complete problem;26,27 hence there
is no polynomial time learning algorithm. Existing practical solutions usually sacrifice completeness
for efficiency. The existing heuristic or approximation approaches can be categorized into deter-
ministic9,28,29 and stochastic algorithms.10,30 The deterministic methods include bottom-up schemes
(learning clauses first and building DNFs in a greedy way) and top-down schemes (converting DNF
learning to a Satisfiability problem). Stochastic methods randomly walk through the solution space
to search for clauses but are not guaranteed to yield optimal solutions.

In this study, we aim to find the minimum size DNFs by making the assumption that only small
numbers of key residues are involved in determining the functions. The assumption is biologically
plausible and can be seen in a variety of RNA virus phenotypes:14 Drug resistance: In Influenza,
resistance to the M2 ion channel blockers amantadine and rimantadine is associated with two
mutations in the M2 protein;31 Immunogenicity: In HIV-1, decreased immunogenicity has been
shown to be caused by three mutations in the gag protein;32 Pathogenicity: In Avian Influenza,
dramatically increased pathogenicity was found to be associated with a small number of mutations
in the polyprotein cleavage site;33 Antigenicity: In Influenza A, the investigation of the differences
between the vaccine strain (A/Panama/2007/99) and the circulating (A/Fujian/411/02-like) virus
showed that two mutations in the hemaglutinin protein are responsible for the antigenic drift.34

Using this assumption, our method:

(1) Converts DNF learning to learning k-DNF where k ≥ 1 is the maximum size of conjunctive
clauses. (Standalone DNF learning algorithm)

(2) Exhaustively learns monotone DNF(s) after feature selection (Monotone DNF learning algo-
rithm)

(3) Greedily learns DNFs for hard problem settings.
(4) Extracts biologically meaningful solutions and better predicts phenotypes from genotypes.

3.1. Standalone DNF learning

Valiant35 showed that for every constant k ≥ 1, k term DNF can be PAC learned in polynomial
time by k-CNF, i.e. CNFs with at most k literals in each clause. K-term DNF learning is essentially
a combinatorial problem. The standalone DNF learning algorithm first learns a set of conjunctive
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clauses deterministically with the maximum clause length of k (table 1), and then constructs DNFs
from the clause pool. The construction process becomes a typical SET-COVER problem (table
2) after converting each clause into a set of sequences it covers. In response, the DNF learning
algorithm is equivalent to finding the minimum number of sets that cover all the positive sequences.
Although the SET-COVER problem is again NP-Complete, by limiting the maximum clause length,
for typical RNA virus problem settings the number of clauses is usually manageable and the SET-
COVER can be exhaustively completed. Typically, the number of possible clauses of sizek is up to
Lk, where L is the sequence length. The actual number of clauses that appear in the dataset is much
smaller than this number, especially for biologically conserved datasets. After equivalence filtering
(see Section 3.4), given the datasets we evaluated, the number of learned clauses is usually about
several hundreds.

The standalone algorithm can be extensively used to infer DNFs from small (a couple of se-
quences) to medium size (hundreds of sequences) datasets, or large conserved datasets.

Table 1. Clause learning algorithm

Clause Learning Algorithm (S, k):
Input:

A set S of already-available labeled sequences
k: assumed upper-bound length of clauses (a small positive integer)

Steps:
1. Enumerate all combination of literals to form conjunction clauses
2. Record the set of (positive and negative) sequences that each clause covers
(n+

j , n
−
j )

Output:
The set of clauses C and the corresponding sequence index sets (N+, N−)

Table 2. DNF learning algorithm

Disjunctive Normal Form Learning Algorithm(C, n+):
Input:

A set C of clauses
n+: the set of positive sequence index to be covered by the clauses

Steps:
1. Euivalence filtering (see Section 3.4)
2. Among the clauses that cover only the positive sequences, find a minimum set of
clauses that cover all the positive sequences:

2a. start from the clauses that cover the positive sequences which are rarely covered
by other clauses

2b. repeat 2a recursively until all the positive sequences n+ are covered
Output:

The set of the shortest DNFs

3.2. Monotone DNF learning after feature selection (MtDL)

In machine learning, feature selection is a technique of selecting a subset of relevant features to
build robust learning models or for prediction purposes. Here we use feature selection to choose the
set of features that we believe the solution DNFs are based on, and then construct DNFs within the
selected feature space. Note that the feature selection is only used to narrow the feature space, but
does not infer any mapping functions. The monotone DNF learning algorithm then exhaustively
builds DNFs based on the selected features. By doing this, the size of the solution space is greatly
narrowed, as a result MtDL does not need to limit the maximum length of clauses and can search
the hypothesis space more thoroughly than the standalone DNF learning algorithm.
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The Monotone DNF learning algorithm after feature selection (MtDL) is explained in table 5.
The learning algorithm first enumerates all possible literals within the selected features, and then
combines them into conjunctive clauses. MtDL differs from the standalone algorithm in that it does
not limit the maximum size of clauses but completely considers all possible combinations. Take a
typical example: L features are selected after feature selection, where L is usually much smaller
than the sequence length. In step 1 there should be at most M = 20 ∗ L possible literals in the
case of protein sequences. Because the literals from the same position will not appear in the same
conjunctive clause, we do not need to consider all 2M combinations, and instead only combinatorially
choose up to L literals from M. Hence the total number of clauses is at most N = (M choose L). In
reality, depending on the divergence and the amount of the data, the actually number of possible
literals is always much smaller than this number. Furthermore, in step 4, the N clauses will be
pre-filtered by removing the clauses that cover any negative sequences. When the clause pool is
ready, in step 5 the algorithm incrementally constructs the combination of clauses to be candidate
DNFs and examines the coverage of sequences. MtDL starts from 1 clause, and checks the next
larger number if no solution is found. The algorithm terminates when the DNFs cover all positive
sequences but not any of the negative sequences. In the result section we show that in practice
MtDL runs fast on real RNA virus datasets.

Feature selector: The choice of feature selector is critical to the MtDL algorithm. The best
feature selector for MtDL needs to guarantee that the selected feature space is a superset of the
DNF solution space, and as small as possible for fast calculation. The Combinatorial Filtering
(CF) algorithm we developed14 works seamlessly with MtDL as a feature selector. CF() efficiently
identifies the smallest set of positions that completely explains the differences between classes,
thus MtDL can definitely learn DNFs based on these positions. In the following evaluation, MtDL
always runs together with CF(). Notwithstanding, other feature selection methods, such as LASSO,
Logistic Regression with regularization, or dimension reduction methods like PCA, are also good
candidate selectors, but in these cases, the coverage threshold might need to be set (section 3.5).

Table 3. Monotone DNF learning algorithm

Monotone DNF Learner (F , S):
Input:

F: A set of selected features (by CF(), for example)
S: the labeled training datasets

Steps:
1. Construct {L}, the list of literals in the features (e.g. 5A).
2. Throw out L that does not cover any positive sequences.
3. Combinatorial construct {Clauses}, the list of conjunctive clauses from {L}, (e.g.
5A ∧ 8C). The possible combinations are |L| chooses 1, 2, .., |F |.
4. Throw out the conjunctive clauses that cover any negative sequences.
5. Incrementally construct {DNF}, the list of disjunctive normal form that covers all
positive sequences but no negative sequences: starts from 1 clause, construct DNFs
from {Clauses}, try the next larger number if no solution learned.

Output:
The set of the shortest DNFs

3.3. Greedy versions of both algorithms

As we will show in the result section, with typical RNA virus datasets, the standalone and monotone
DNF learning algorithms learn DNFs efficiently. In cases of very large dataset, both algorithms
are modified to greedy versions to learn DNFs rapidly. The greedy versions only differ from the
exhaustive versions in the DNF construction step. Instead of exhaustively combining all clauses to
construct DNFs, the greedy algorithms iteratively select the clause that covers the largest number
of the uncovered positive sequences until all the positive sequences are covered.
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3.4. Equivalence filtering

Computationally equivalent clauses cover the same set of sequences while differing in their compo-
sition literals. They are equivalent in DNF functions in the sense that replacing one clause with its
equivalent clauses will not change the predictions of the DNF on the same training set. Equivalent
clauses are very common in RNA virus datasets; therefore, during DNF learning process equivalent
clauses are filtered and only one of them is used as the representative to construct DNFs. By using
equivalence filtering the DNF learning running time is greatly reduced. Note that the equivalence
filtering is only for computational efficiency purpose. After learning DNFs, all clauses that have
equivalent clauses will be expanded to recover all the DNFs.

3.5. Avoiding over-fitting and robustness to noise

The following two techniques are used to avoid over-fitting and make the algorithms robust to noise:

(1) DNF pruning: similar to the pruning of decision tree, after learning DNFs the clauses that
only cover a small number of sequences may be pruned if removing them results in an increase
of the prediction accuracy on the test dataset. The advantages of pruning are:

• Avoiding over-fitting, because irrelevant clauses are removed.
• The DNFs are shorter, which makes them easier to understand and more biologically

meaningful.
• Robust to noise, because pruned DNFs ignore the clauses/literals rendered meaningless by

noise.

(2) Threshold setting: set thresholds of the fractions of the sequences that the learned DNF(s)
cover. The DNF learning algorithms can be easily modified to terminate when at least a fraction
p of the positive sequences are covered, and at most a fraction n of the negative sequences can be
covered by the DNFs. The thresholds p and n are determined in a cross-validation way. Similar
to pruning, the threshold setting method can also avoid over-fitting, learn shorter DNFs and
be robust to noise. One advantage of threshold setting over pruning method is that threshold
setting usually achieves better prediction quality.

3.6. Extension of literals

The literals can also be extended to negation of one amino acid or a subset of the amino acids.

3.7. Extension to multiple class data

The algorithm is applicable to multiple class data by running multiple times with each time one of
the classes is made positive class and the rest are merged as negative class.

4. RESULTS

4.1. Demonstrating DNF learning algorithms consistency

The DNF learning algorithms will first be validated on simulated protein sequences with hypotheti-
cal target functions. We will use this stage to validate the algorithms’ consistency. When generating
simulated sequences, we match the position-specific amino acid distributions to those of a real pro-
tein datasets, and then generate random phenotypic target functions (making sure they did not label
the entire dataset with the same value). We use 732 HIV-1 gp160 protein sequences (downloaded
from LANL), and assumed a variety of target functions (e.g. (70a∧9l∧11p∧70t) + (62l∧45m∧36y∧
9l) + (62P ∧ 53V ∧ 36s) + (83i∧ 45I) = +) . Each target function contains a number of clauses, and it
is used to label the sequences accordingly. Notice that this method enables us to generate as many
sequences as we want so we can test the algorithm convergence under a variety of conditions. We
repeated this process many times, and in all of these cases both standalone algorithm and MtDL
algorithm converged to the target functions with moderate number of sequences.
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Fig. 1. The evaluation of MtDL algorithm on simulated sequences. From left to right, the number of CNF
clauses, the number of DNFs, running time, prediction sensitivity and specificity are plotted as functions against the
number of key residues assumed in the target function (rows), and the number of positive sequences and negative
sequences (vertical columns and horizontal rows of small colored squares). The numerical values of the colors are
shown in the colorbar. Take the top left chart for example, when the key residues are assumed to be 2 in the target
function, with say 100 positive and 2 negative sequences used, the number of CNF clauses is about 12 (red color
means higher value as indicated in the colorbar).

4.2. Measuring inference efficiency (convergence rate as function of dataset
size)

To assess the efficiency of our learning method, we would like to understand the relationship between
the complexity of the function to be learned and the number of training examples needed to converge
to it. Namely, we would like to know the convergence rate as a function of the amount and type
of available sequences and the complexity of the genotype-phenotype mapping. This is important
because the available number of sequences vary for different datasets. Based on the convergence rate
we can assess the likelihood of convergence, and whether (and how much) further experimentation
will be needed.

To do this, we used 588 aligned sequences of HIV protease protein downloaded from the Stanford
HIV database, with an aligned length of 99. We then randomly generated putative binary target
functions, each depending on a small number (2..5) of literals. For each such target function, the
588 sequences were labeled accordingly. The DNF learning algorithm was then run 20 times, each
time assuming a different target function to produce a statistically robust result. As an illustration,
we will show the evaluation results of MtDL in the following sections, and the simulation result of
the standalone algorithm is similar.
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Convergence Rate: As described in the introduction, we are concerned with the relation
between the amount of available data and the convergence of the algorithm. It is therefore most
meaningful to compare the convergence of the hypothesis space under our algorithm with this
method. Figure 1 shows the number of DNFs learned by the algorithm as a function of the number
of literals in the target function (# of key residues, top-to-bottom), and the number of positive and
negative sequences (vertical and horizontal rows of small colored squares, respectively, with values
of 2, 5, 10, 20, 50, 100 sequences each). Blue color indicates convergence (i.e. one single DNF is
learned given the amount of data, and the learned DNF is exactly the same as the target function),
and red color indicates alternative DNFs exist. The number of DNFs reduces with more available
sequences, and in all of the cases, MtDL algorithm converges with only about 50 positively labeled
and 50 negatively labeled sequences.

Another important factor in measuring efficiency is the running time due to the combinatorial
nature of DNF learning. Recall that in MtDL, the number of candidate clauses in step 4 is bounded
by 2L and the number of DNFs is bounded by 22

L

, where L is the number of literals. L increases
when more sequences are available, and this explains why, in the “running time” column the red
color, which indicates the longest running time, is at the right bottom corner. Note that the longest
running time is still on the order of seconds in the simulation.

The prediction sensitivity and specificity showed that the algorithms converge with only mod-
erate numbers of sequences. Interestingly, the prediction quality chars are symmetric in that if we
flip the labels of the data, the prediction accuracy will remain the same. This is important because
although our DNF learning algorithms identify DNFs that only cover the whole positive space, the
sequences in both classes contribute equally to the learning.

4.3. Retrospectively validating DNF learning algorithms when ground truth is
known

We retrospectively validated the MtDL algorithm by testing it on datasets with real viral protein
sequences where the genotype-phenotype mapping is already known and assumed to be correct. We
compiled a number of datasets covering several RNA viruses with varying degree of average sequence
identity (SI) and a variety of phenotypes, including Avian Flu High/Low pathogenicity (4 mutations
in HA proteins changed the pathogenicity from low to high in H5N2 Influenza HA, SI: 95%),33

Influenza H3N2 antigenicity shift (2 mutations in HA shifted the antigenicity of Influenza H3N2, SI:
93%),34 SIV Env neutralizability (2 mutations in SIV Env proteins determined the neutralizability
of SIV, SI: 99%),36 FIV tropism in CRFG cells (2 mutations in FIV polymerase PA subunit made
it unable to replicate in CRFK cells, SI: 95%).37 These conclusions were made from mutagenesis
experiments that were chosen empirically or by domain knowledge. We applied our MtDL+CF
(using CF as the feature selector) algorithm on the same set of mutagenesis sequences to predict
the key residues for the phenotype changes. For all the tests performed, our algorithm converged to
the correct answer(s). In contrast, the conventional position-specific association method we selected
as comparison,11 can only predict positions of importance, but our MtDL+CF algorithm explicitly
learns the actually mapping functions. Even so when only comparing the positions identified, the
conventional method only correctly identifies the positions in one of the datasets, and yields high
false positive and false negative rates in the other four datasets (Table 4). This demonstrates our
arguments in section 2 that if the phenotype is determined by a complex interaction, the traditional
methods cannot detect all the key residues correctly.

4.4. The utility of DNF learning algorithms on large datasets

To demonstrate the applicability of MtDL to learn biologically meaningful results, MtDL+CF was
applied to a large, divergent dataset, the HIV drug resistance dataset (download from Stanford HIV
database). The dataset was retrieved from the Stanford HIV database, including seven Protease
Inhibitor drugs and eleven Reverse Transcriptase Inhibitor drugs. We ran the MtDL algorithm on
all the drug datasets and learned very short and interpretable DNFs (Table 5). For example, a
protein is resistant to NFV when position 9 is I or (position 63 is I and position 9 is not I and
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Table 4. Comparing DNF learning with position-specific association methods Retrospective comparisons
of the DNF learning algorithm on a variety of datasets

Data set name
(# pos/# neg seq)

Golden standard
(identified mutations)

DNF(s) learned by
MtDL

Positions identified by
Traditional method

H3N2 hema Antigenicity
shift (490pos/421neg)

145H, 146Q 145H+146Q 18, 67, 122, 145, 146

H5N2 hema Pathogenicity
(4pos/11neg)

275K, 275T, 323K, 324R,
325K

323K+324R+325K 275, 323, 324, 325

FIV tropism (3pos/7neg) 30E, 32K 30K∧32E 32
SIV Envelope Neutraliz-
ability (8pos/5neg)

179N, 337R 179N+337R 331, 348

position 87 is not N) .
The purpose of these concise DNFs is three folds: 1) to identify the key positional determinants

of drug resistance, e.g. position 89I for RTV, position 36 and 45 for APV,etc.. These positions
have been identified by experiments and reported in literatures; 2) quantitatively describe how the
residues in these positions combine to produce resistance; and 3) proposed new interpretation of
HIV drug resistance mechanisms that have potential to be validated by domain experts.

Table 5. DNFs learned from HIV drug resistance dataset

Drug type Drug DNF = sensitivity/specificity; in the DNFs, lowercases mean negation
PI NFV 9l + (63l ∧ 9i ∧ 87n) = 0.902/0.834

RTV (81i ∧ 81v) + 83i + (70a ∧ 70l ∧ 89l ∧ 70t) = 0.981/0.988
LPV (9l ∧ 53i) + (9l ∧ 45m ∧ 9h ∧ 9m) = 0.961/0.965
APV (36s ∧ 45m ∧ 36y ∧ 9l) = 0.787/0.961
IDV (70a∧9l∧11p∧70t) + (62l∧45m∧36y∧9l) + (62P ∧53V ∧36s) + (83i∧45I) = 0.965/0.982
SQV (9r∧83i)+(62q∧53i∧89l∧70l)+(45i∧89l∧70t∧70a)+(76V ∧89l∧81v∧9l) = 0.899/0.963
ATV (70a ∧ 9l) + (89l ∧ 76V ∧ 81a) = 0.833/0.910

NRTI DDI 150M + (68s ∧ 68t ∧ 68d ∧ 68n) + (74v ∧ 42n ∧ 74t) = 0.738/0.985
AZT (73v ∧ 34− ∧214t ∧ 214d) = 0.848/0.988
D4T (209l ∧ 214d ∧ 34t ∧ 214t) + (68t ∧ 34m ∧ 214d ∧ 214t) + (68T ∧ 117I ∧ 66N) = 0.797/0.956
TDF (34i∧66N ∧214t∧183v)+(68g∧19r∧214Y ∧68t)+(34V ∧68t∧214f ∧214t) = 0.784/0.980
ABC 183V + (214d ∧ 121p ∧ 209l ∧ 82k) + (82k ∧ 66d ∧ 214Y ∧ 180c) = 0.940/0.944

NNRTI NVP (102k ∧ 102r) + (189g ∧ 102n) + (180y ∧ 100e) = 0.868/1.0
DLV (210t ∧ 102N) + (180y ∧ 100q ∧ 226F ∧ 210t) = 0.915/0.994
EFV (102r ∧ 102k) + (102s ∧ 189g) = 0.871/0.997

4.5. Improved prediction performance of DNF learning algorithms on the HIV
drug resistance problem

To demonstrate the prediction power of our DNF learning algorithms, we examine the prediction
quality of both standalone and MtDL learning algorithms on two well-known Biology datasets re-
spectively: the HIV drug resistance dataset and the UCI promoter gene dataset (details in section
4.6). Many state-of-the-art machine learning models, such as Support Vector Machine, Decision
Trees, Neural Networks, Nave Bayes etc, have been tested on the datasets to learn genotype-
phenotype mapping, and the five-fold cross-validation prediction quality was reported.8 In the HIV
drug resistance dataset, drug resistance levels are defined as fold-increased resistance compared to
the wild type virus strain; therefore, for classification models the numerical resistance values were
converted to multiple class labels by setting resistance thresholds. We use the thresholds suggested
on the website, and select the sequences with significant resistant values and susceptible values
while ignoring those with weak resistance or weak susceptible labels. The five-fold cross-validation
prediction accuracies of Protease Inhibitor are shown in table 6. The standalone DNF learning al-
gorithm outperforms other machine learning algorithms in 4 out of the 7 PI datasets (Table 6). The
result suggests that by exploiting domain-knowledge to reduce the running time, the exhaustive
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Table 6. Comparing Standalone DNF learning with published machine learning algorithms on HIV
Protease Inhibitor datasets. The numbers of positively labeled and negatively labeled sequences in the
datasets are shown, as well as and the prediction accuracies of 1) Standalone DNF, 2) Z-score,11 3)
Naive Bayes (from Weka), 4) SVM (svm light software, default parameters), 5) Decision Tree (Weka,
ID3 algorithm), 6) Winnow (Weka). The highest accuracy of each drug is highlighted in bold

Prediction accuracy (%) NFV SQV IDV RTV APV LPV ATV
#pos/#neg sequences 194/211 119/321 115/279 154/244 47/308 103/142 42/111
Standalone DNF 93.5 91.8 91.7 96.1 96.1 88.2 93.3
Z-score 74.6 87.3 91.7 87.4 92.3 90.5 88.8
NaiveBayes 95.1 75.1 78.4 93.2 87.3 92.7 73.1
SVM (svm light) 77.2 74.2 83.4 92.2 87.5 86.3 72.6
DT 94.0 89.0 90.1 98.6 91.8 98.6 78.5
Winnow 91.1 84.7 89.9 94.6 91.1 94.6 85.9

Table 7. Comparing MtDL+CF with published machine learning algorithms on Promoter Gene dataset

System Errors Comments
MtDL + CF 4/106 No domain knowledge required
KBANN 4/106 A hybrid ML system that uses domain knowledge to initial the network structure
BP 8/106 Std backprop with one hidden layer
O’Neill 12/106 Ad hoc technique from the bio. lit.
Nearest neighbor 13/106 k-nearest neighbor, k = 3.
ID3 19/106 Quinlans decision-tree builder

algorithms achieve better prediction performance, and DNF turns out to be a reasonable bias on
the hypothesis space as genotype-phenotype mapping functions for HIV drug resistance.

4.6. Improved prediction performance on the UCI Promoter Gene dataset

Another dataset we use to evaluate our DNF learning algorithms’ prediction power is the popular
UCI’s promoter gene dataset, which has been studied with many machine learning models. The
task is to predict promoters from DNA sequences of nucleotides, A, C, G, or T. The dataset
contains 53 promoter sequences and 53 non-promoter DNA sequences. In Biology, the promoters
are characterized by special motifs at certain positions from the transcription starting location,
e.g. “cttgac” motif at +37 position indicates a promoter region. However, deriving all such domain
theories is impractical and not meaningful. Computationally machine learning algorithms showed
promising prediction performance on this dataset (Table 7). Among them the knowledge-based
artificial neural network (KBANN)38 achieves the best accuracy of 4 out of 106 errors in a held-out
test manner.

The KBANN model is a hybrid system of both Explanation-based learning (EBL)(a system that
corporate pre-existing knowledge) and Empirical learning system (learning solely from training
examples). In38 they argue that the hybrid system should be superior, in terms of classification
accuracy, to empirical learning systems. On the Promoter Gene dataset, KBANN learns a neural
network model and translates a set of domain theories to initial the neural network structure.
The error rate is the number of wrongly predicted examples in a leave-one-out cross-validation
(LOOCV) manner. Three other machine learning algorithms, standard back propagation, Quinlan’s
ID3, O’Neill’s ad hoc partial pattern matching, and the “nearest neighbor” are compared in Table
7.

We employed the same LOOCV method on MtDL algorithm, and selected CF() as the feature
selector. Although the prediction performance of MtDL+CF is the same as the best one KBANN,
MtDL+CF does not require any pre-existing domain knowledge, which is not always available.

5. CONCLUSIONS

We developed two efficient DNF learning algorithms under the assumption that DNF is an appropri-
ate bias over the hypothesis space for RNA virus phenotype datasets. The assumption is biologically
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plausible and very important to our algorithms, because it reduces the hypothesis space greatly to
make the computational hard problem solvable. We also demonstrated the learning efficiency and
consistency on simulated sequences, showed the strength of the methods in learning biological mean-
ingful mapping functions and showed superior prediction accuracies to positional-specific methods
and other machine learning methods.

We aimed to learn the minimum size DNFs even though the exact learning is NP-complete.
Compared to existing heuristic algorithms that only focus on learning time and learnability, we
exploit the domain knowledge and develop efficient exhaustive algorithms to learn the shortest
DNFs. We also applied a number of techniques to accelerate the DNF learning process, including
setting the maximum length of clauses in standalone algorithm, using feature selector (CF) in
MtDL to narrow down the searching space, equivalence filtering of the clauses, and extending
both algorithms to greedy versions. This enables the algorithms to run over very large datasets.
Notwithstanding, as shown in the result section, the DNF learning algorithms are also powerful in
extracting DNFs from only a small numbers of sequences.

We focus on the learning from mutagenesis data where the data is highly reliable and the
alignment is well defined. In the cases of noisy data and low quality alignment when combinatorial
algorithms usually suffer more than statistical models, we use pruning and thresholds to make the
algorithms robust to noise.

Our goal in this work has been to aid biological investigation by learning the genotype-phenotype
mapping. Since this is our focus, we compared our method to other methods designed to do the same.
Our algorithms explicitly learn genotype-phenotype mappings that are interpretable to humans, so
that the mapping functions can not only predict phenotypes from genotypes along, but also unveil
biologically meaningful explanations. The algorithms can learn DNFs from different sizes of data:
ranging from a few sequences to large high-throughput datasets, and show superior prediction
performances. In contrast, given the limited data, the positional-specific association methods would
be ineffective if they were to be applied to the full set of protein positions because there is not
enough statistical power for the inference. Given full size of dataset, our DNF learning algorithms
outperformed other published machine learning algorithms on two common datasets.

We successfully demonstrated the learning efficiency and the prediction power of our DNF
learning algorithms on RNA virus datasets, and the algorithms can be extensively used on other
domains where similar assumptions hold.
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