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Whole exome and whole genome sequencing are likely to be potent tools in the study of common
diseases and complex traits. Despite this promise, some very difficult issues in data management
and statistical analysis must be squarely faced. The number of rare variants identified by sequencing
is apt to be much larger than the number of common variants encountered in current association
studies. The low frequencies of rare variants alone will make association testing difficult. This article
extends the penalized regression framework for model selection in genome-wide association data
to sequencing data with both common and rare variants. Previous research has shown that lasso
penalties discourage irrelevant predictors from entering a model. The Euclidean penalties dealt with
here group variants by gene or pathway. Pertinent biological information can be incorporated by
calibrating penalties by weights. The current paper examines some of the tradeoffs in using pure lasso
penalties, pure group penalties, and mixtures of the two types of penalty. All of the computational
and statistical advantages of lasso penalized estimation are retained in this richer setting. The overall
strategy is implemented in the free statistical genetics analysis software Mendel and illustrated on
both simulated and real data.
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1. Introduction

Deep resequencing is emerging as a new and potent means for mapping Mendelian disease
genes.1,2 The initial successes raise the question of whether the search for rare variants is apt

to be as promising a route to mapping genes for common complex diseases and traits. In our
opinion, the answer is likely to be in the affirmative, but too few studies have been completed

to form a strong opinion. The recent finding of an association between copy number variation
and autism is one argument in favor of the rare variant common disease hypothesis.3 This

association is not too surprising given the correlation between autism and paternal age, which
is known to increase the risk of deleterious mutations. The paternal age argument applies

to other psychiatric traits such as schizophrenia4 and bipolar disorder.5 The rare variant hy-
pothesis is also more plausible on evolutionary grounds than the common variant hypothesis

because genetic variants with a negative impact on fitness should in theory be driven to ex-
tinction. The lessons classical population genetics teaches about the balance between selection

and mutation are still relevant today. Thus, there is good reason to explore the statistics of

rare variation detection in anticipation of sequence based genetic studies.
Resequencing will deliver both rare and common variants. It would be counterproductive

to discard the common variants because in reality there is no sharp dividing line between
common and rare. Thus, statistical methods that can analyze both rare and common vari-
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ants simultaneously are preferable. Furthermore, some form of model selection is absolutely
necessary because the number of SNP predictors in most studies far exceeds the number of

participants. The rare variants uncovered in resequencing will exacerbate the excess of predic-
tors over responses. The recent papers10–13 have stressed the role of penalized estimation in

statistical genetics. Lasso penalties18–20 have the interesting capacity to force many parameter
estimates to zero. Model selection with a predetermined number of predictors can be achieved

by tuning the strength of the lasso penalty. If model fitting is carried out by coordinate ascent
or descent, then lasso penalized estimation is exceptionally fast.12,25

A particular rare disease predisposing allele may be present in only a handful of patients.

Hence, statistical tests that capture only marginal effects are doomed to low power. This sad
fact suggests focusing on disease gene discovery rather than disease variant discovery. One of

the most attractive strategies for combining signals is to group variants by gene or pathway.
Li and Leal7 proposed a group-wise test exploiting both multivariate and collapsing strategies

that possesses higher power than a simple multivariate test or simple collapsing. Madsen and
Browning8 extended the method by incorporating weights (dependent on allele frequency)

into the group-wise statistics and approximating p-values by permutations within each group.
Both methods consider rare variants with minor allele frequencies falling below a pre-specified

threshold and exclude more common variants from analysis. The pooling strategy of Price et
al9 circumvents the issue of arbitrarily chosen frequency threshold by calculating a group-wise

statistic under a variety of thresholds. Higher power is achieved at the cost of an increased
computational burden.

These methods have certain drawbacks. Environmental predictors are excluded from anal-
ysis even though they may contribute significantly to an association. Multiple testing remains

an issue. More importantly, existing methods are sensitive to the classification of variants.

If all types of variants (causal, protective, or neutral) coexist, then the various signals can
cancel one another and potentially compromise statistical power. Our recent paper11 explores

a remedy that groups variants by gene or pathway membership in penalized regression. The
encompassing multiple regression framework allows simultaneous consideration of genetic and

environmental predictors and overcomes the unfortunate cancelations of causal and protective
variants. Here we continue our exploration of group penalties, with emphasis on weighted

penalties that keep both common and rare variants in play. In accord with the notion that
variants with large deleterious effects should be rarer than variants with small deleterious

effects, lower weights should be assigned to variants with lower population frequencies.8,9

In pursuing group effects, we have attempted to retain the following advantages of lasso

penalized estimation: (a) it applies to both ordinary regression (quantitative traits) and logistic
regression (case-control studies), (b) it puts genetic and environmental predictors on the same

footing, (c) it keeps both rare and common SNP predictors in play, (d) it partially circumvents
the vexing issue of multiple comparisons, (e) it is computationally very efficient, (f) it offers

a principled approach to model selection when the number of predictors exceeds the number

of study participants, (g) it identifies protective variants as well as deleterious variants, and
(h) it is amenable to finding interactions among predictors. We have previously demonstrated

that Euclidean group penalties preserve these advantages.11 Group penalties make it easier
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for related predictors to enter a model once one of the predictors does. Lasso penalties are
retained to discourage the inclusion of neutral mutations in disease susceptibility genes. When

disease genes harbor one or more borderline-rare variants with substantial risk, a mixture of
lasso and group penalties performs well.

The major innovation in the current paper is the imposition of weights modulating lasso
and group penalties. Ideally the weights should be chosen to reflect prior biological knowledge.

In reality, we need better systems for rating the potential severity of point mutations. There is
a severity hierarchy extending from non-synonymous mutations to synonymous mutations and

ultimately to frameshift and protein truncating mutations. A non-synonymous mutation in a

highly conserved codon is more important than the corresponding mutation in a less conserved
codon. If both copies of a gene are disabled, this is a clear sign of trouble. If several genes in

a common pathway are disabled or disregulated, the pathway as whole may be compromised.
Integration of prior knowledge in penalized regression is an obvious priority, but until sequence

data becomes more widely available, it is probably premature to pursue such elaborations.
The remainder of the paper is organized as follows. Section 2 describes the penalized

regression framework with mixed lasso and group penalties, suggests a few plausible weighting
schemes, and explains how both group penalties and weights can be implemented. Fortunately,

the coordinate descent algorithms found successful in lasso penalized regression require trivial
changes. Coordinate descent is exceptionally quick and permits optimal tuning of the penalty

constant by cross-validation. Section 3 applies the mixed penalty method with weights to
simulation examples. Section 4 provides a detailed description of the user interface to our

implementation of penalized model selection in our statistical genetics program Mendel. We
illustrate the mechanics of problem definition using the breast cancer data analyzed in our

previous paper.11 Finally, the discussion mentions some strengths and weaknesses of model

selection under mixed penalties and suggests potentially helpful extensions.

2. Methods

Genome-wide association testing is one application field challenging current model selection
procedures. All generalized linear models involve an n×1 response vector y and an n×p predic-

tor matrix X. If the number of predictors p far exceeds the number of responses n, then some
form of model selection is mandatory. Indeed, the ability to estimate parameters consistently

requires the ratio p/n to tend to 0. Traditional model selection techniques include forward
and backward stepwise regression and minimization of AIC (Akaike) and BIC (Bayesian) in-

formation criteria; the latter two lead to a combinatorial search over a space with 2p possible
submodels. For this reason statisticians have substituted penalized estimation for combina-

torial search. Generally the objective function being minimized is a convex combination of
a loss function (or negative loglikelihood) and a penalty function. Penalty functions act like

priors in Bayesian statistics and must be carefully constructed to steer parameter estimates in

productive directions. The following reasons are cause for optimism in applying penalization
estimation in statistical genetics:

(a) Speed. Standard algorithms often choke when confronted with genomic-scale data. Ef-
ficient algorithms such as coordinate descent have been devised for solving convex
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optimization problems.10,12,25

(b) Flexibility. The modeling of complex biological phenomena is naturally embedded in the
design of the loss and penalty functions. In association studies, biological meaningful

units such as genes and pathways can be examined by introducing group penalties.11 In
copy number variation (CNV) reconstruction, copy number should change infrequently

along a chromosome. Such smoothness is enforced by the fused lasso penalty.15

(c) Theoretical Justification. Recent advances in theoretical statistics justify the use of penal-
ized estimation in high dimensional settings. Model selection consistency is especially

relevant to association testing. Under certain regularity conditions, the predictors sin-
gled out by penalized estimation have a high probability of coinciding with the true

predictors.16,17

(d) Empirical Justification. There are many success stories of penalized regression methods

in natural language processing, remote sensing, financial engineering, and other appli-
cation areas outside genetics.

2.1. Penalized Regression with Weights

In lasso penalized linear regression12,18,19 estimates of the intercept µ and the regression coef-
ficients βj are derived by minimizing the objective function

f(θ) =
1

2
‖y − µ−Xβ‖22 + λ‖β‖1,

where θ = (µ, β), ‖z‖2 = (
∑

j z
2
j )

1/2 is the Euclidean (ℓ2) norm, and ‖z‖1 =
∑

j |zj | is the taxicab
(ℓ1) norm. The sum of squares ‖y−µ−Xβ‖22 represents the loss function minimized in ordinary

least squares; the ℓ1 contribution ‖β‖1 is the lasso penalty function. Its multiplier λ > 0 is
the penalty constant. The order in which predictors enter a model as λ decreases is roughly

determined by their impact on the response. Exceptions to this rule occur for correlated
predictors. Because the intercept is felt to belong to any reasonable model, the lasso penalty

omits it, and the intercept freely moves off zero.
Logistic regression is handled by replacing the sum of squares by the negative loglikelihood.

The loglikelihood amounts to

L(θ) =

n
∑

i=1

[yi log pi + (1− yi) log(1− pi)] , (1)

where the success probability pi for response i is defined by

pi =
eµ+xt

iβ

1 + eµ+xt
iβ
. (2)

Here the response yi is 0 (control) or 1 (case), and xti is the ith row of the predictor matrix X.

To put the regression coefficients on an equal penalization footing, all predictors are centered
around 0 and scaled to have approximate variance 1. There is a parallel development of lasso

penalized regression for generalized linear models.20 In each case the objective function is
written as

f(θ) = L(θ)− λ‖β‖1
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as the difference between the loglikelihood and the lasso penalty. Because we now maximize
f(θ), we subtract the penalty.

To construct a weighted lasso penalty, we assign a positive weight sj to each predictor j

and substitute the sum
∑

j sj|βj | for ‖β‖1. A larger weight sj corresponds to a higher penalty

and discourages the j-th predictor from entering the model. Conversely, a smaller weight sj
exerts less penalty and encourages selection of the corresponding predictor. Eliminating a

weight (sj = 0) forces the j-th predictor to be retained in the model. In association testing,
there are several sources of prior knowledge pertinent to assigning lasso weights:

(a) Genotyping Error. Variants that cannot be typed reliably should be penalized more.

(b) Allele Frequencies. In a different context, Madsen and Browning8 propose the weight
s =

√

p(1− p) for a variant with population frequency p. This scheme assigns smaller

penalties to rarer variants as suggested by classical population genetics theory. The
more extreme weights s = p(1− p) risk giving rare variants too much influence.

(c) Properties of Point Mutations. Several programs predict the functional effects of non-

synonymous changes. The SIFT software of the Venter Institute,22 PolyPhen-2,23 and
MAPP24 represent a good start in quantifying the risk entailed by coding mutations.

(d) Conservation Across Species. Conservation scores are particularly valuable for assigning
weights to noncoding mutations not covered by SIFT.

Integrating the weights derived from different types of information is a challenge. For the sake
of simplicity, we adopt the allele frequency weights s = 2

√

p(1− p) in our examples. The factor

of 2 makes the weights scale between 0 and 1.

Yuan and Lin21 have suggested Euclidean penalties as a natural way to group predictors.
The lasso penalty ‖β‖1 and the ridge penalty ‖β‖22 separate parameters. If a parameter enters

a model, then it does not strongly encourage or inhibit other associated parameters from
entering the model. Euclidean penalties act more subtlely. Let G denote a group label and tG
a corresponding group weight. The objective function

f(θ) = L(θ)− λ
∑

G

tG‖βG‖2

incorporates a Euclidean penalty on each group. Here βG is the subvector of the regression
coefficients corresponding to group G. For the purposes of this paper, we take all tG = 1. In

studies with good candidate genes or pathways, it makes sense to reduce tG for a candidate
group. Groups with a single predictor are allowed. Singleton groups are advisable for dispersed

variants far from any gene.
Euclidean group penalties run the risk of letting in response-neutral predictors. As soon

as one predictor from a group enters a model, it opens the door for other predictors from the
group to enter the model. For this reason we favor a mixture of group and lasso penalties.11

Lasso penalties maintain the pressure for neutral mutations to be excluded, even if they occur

in causal genes or pathways. There is no need to group SNPs that occur outside coding or
obvious regulatory regions. Simultaneous imposition of lasso and Euclidean penalties has fur-

ther advantages. In addition to enforcing model parsimony and selecting relevant parameters,
both penalties improve the convergence rate in minimizing the objective function. Because
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the penalties are convex, they also increase the chances for a unique minimum point when the
loss function is non-convex.

2.2. Algorithms

Traditional algorithms such as Newton’s method and scoring falter on high-dimensional, non-
smooth problems. Cyclic coordinate ascent-descent is a better choice. Block relaxation, a

generalization of cyclic coordinate descent, cycles through disjoint blocks of parameters and

updates one block rather than one coordinate at a time. Meier et al26 use block relaxation to
fit logistic regression with purely group penalties. The extreme efficiency of cyclic coordinate

descent-ascent in penalized estimation stems from the low cost of the univariate updates and
the fact that most parameters never budge from their initial value of 0. Here we summarize

cyclic coordinate ascent-descent for linear and logistic regression with mixed lasso and group
penalties. Full algorithmic details appear in our previous papers.10–12 Adding weights imposes

trivial changes to the algorithms.
In coordinate ascent we increase f(θ) by moving one parameter at time. If a slope param-

eter βj is parked at 0, when we seek to update it, its potential to move off 0 is determined
by the balance between the increase in the loglikelihood and the decrease in the penalty. The

directional derivatives of these two functions measure these two opposing forces. The direc-
tional derivative of L(θ) is the score ∂

∂βj
L(θ) for movement to the right and the negative score

− ∂
∂βj

L(θ) for movement to the left. An easy calculation shows that the directional derivative

of λ‖βG‖2 is λ in either direction when βG = 0. In this case note that ‖βG‖2 = |βj |. If βG 6= 0,
then the partial derivative of λ‖βG‖2 with respect to βj is λβj/|βG‖2. Hence, the directional

derivatives both vanish at βj = 0. In other words, the local penalty around 0 for each member

of a group relaxes as soon as the regression coefficient for one member moves off 0.

2.2.1. Logistic Regression

In logistic regression the penalized loglikelihood with group and lasso penalties is

f(θ) = L(θ)− λL

∑

j

sj|βj | − λE

∑

G

tG‖βG‖2,

where j ranges over all variants and G ranges over all groups. In practice, we fix the ratio

of λL to λE and define λ = λL + λE. Formulas for the score vector ∇L(θ) and the expected
information matrix E[−d2L(θ)] are well known11 and need not be repeated here. The expected

and observed information matrices coincide in logistic regression.
In penalized maximum likelihood estimation, coordinate ascent is implemented by replac-

ing the loglikelihood by its local quadratic approximation based on the relevant entries of the
score and observed information. The penalty terms are likewise approximated locally by linear

or quadratic functions in the parameter being updated. The one-dimensional updates are not

exact, but they can be computed easily by Newton’s method. To update a slope parameter
βj , one resets βj = 0 and commences maximization. If the directional derivatives to the right

and left of 0 are both negative, then no progress can be made, and βj remains at 0. Otherwise,
maximization is confined to the left or right half-axis, whichever shows promise. Because the
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objective function is concave, the two directional derivatives at 0 cannot be simultaneously
positive. Newton’s method almost always converges within five iterations. At each iteration

one should check that the objective function is driven uphill. If the ascent property fails, then
the simple remedy of step halving is available.

2.2.2. Linear Regression

In ordinary linear regression, the objective function to be minimized is

f(θ) =
1

2
‖y − µ−Xβ‖22 + λL

∑

j

sj |βj |+ λE

∑

G

tG‖βG‖2.

Coordinate descent for linear regression also yields to Newton’s method. Owing to the discon-

tinuities in the penalties, once again iteration is confined to the left or right half-axis, provided
either passes the directional derivative test. In contrast to unpenalized linear regression, min-

imization takes more than a single iteration. This complication just reflects the fact that the
group penalty is neither linear nor quadratic.

2.3. Selection of Tuning Constants

In principle, cross validation can be invoked to determine the optimal values λL and λE. As we

show in our simulation, setting them equal works well. Given a fixed ratio of the two penalties,
the total penalty λ = λL + λE can be adjusted to deliver a predetermined number of genes

or SNP variants. Because the number of non-zero predictors entering a model is generally a
decreasing function of λ, a bracketing and bisection strategy is effective in finding a relevant

λ.10 Of course, the smaller the number of predictors desired, the faster the overall computation

proceeds. If computing time is not a constraint, it is helpful to optimize the objective function
over a grid of points and monitor how new predictors enter the model as λ decreases. Another

way to choose λ is to minimize either the BIC or AIC criterion as a function of λ. Recall
that the purpose of convex relaxation is to avoid the combinatorial search entailed by the

traditional application of the AIC and BIC criteria. Guiding the choice of λ by these criteria
is a better tactic.

3. Analysis of Simulated Data

Our first simulation example, admittedly a toy example, involves 1000 controls and 1000

cases under different scenarios reflecting heterogeneity in both minor allele frequencies (MAF)

and relative risks (RR). We assume 10 participating genes, each with 5 rare variants. Across
the variants the MAFs are simulated from the Wright-Fisher distribution under balancing

selection

f(p) ∝ c pαs−1(1− p)αn−1eσ(1−p),

where c is a scaling constant such that
∫ 1
0 f(p) dp = 1 and σ is a selection coefficient. We

take αs = 0.2, αn = 0.002, and σ = 15.27 For i = 1, . . . , 5, gene i has i causal rare variants.

Therefore, the model has 15 causal rare variants dispersed over 5 genes and 35 neutral rare
variants dispersed over 10 genes. All neutral variants have relative risk (RR) 1; causal variants’
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Fig. 1. Solution paths of parameter estimates under lasso penalties (top row), mixed penalties (middle row),
and group penalties (bottom row). Left column: sj ≡ 1 and tG ≡ 1 (no weighting). Right column: sj =

2
√

pj(1− pj) and tG ≡ 1.

RRs are drawn uniformly from the interval [1.2,5]. The wild-type penetrance f0 is set at 0.01.

For more details on data simulation algorithm, see our previous paper.11 Figure 1 shows the
solution paths of lasso, mixed penalty, and group penalty estimates with and without weights

sj = 2
√

pj(1− pj), where pj is the MAF estimated from the controls. All group weights are set
to 1. The pure lasso penalty (λL/λ = 1) picks up significant variants sequentially. The pure

group penalty (λL/λ = 0) picks up genes (groups) 1, 2, and 3 sequentially. The mixed group

plus lasso penalty (λL/λ = 0.50) achieves a good compromise between the two.
To discern the effects of weighted and unweighted penalized estimation, we repeat the

same simulation 100 times and plot ROC curves for selected variants and genes in Figure
2. Each point of the ROC curves records the true and false positive rates of the selected
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Fig. 2. ROC curves based on 100 simulations using the setup of Figure 1.

variants (left panel) and genes (right panel) at a specific λ value. A true positive for selection
of a gene is defined as choosing any true variant within that gene. In all three situations,

adding weights improves the selection of causal variants and genes. Indeed, the ROC curves
shift visibly toward the upper left. Also notice that for acceptable false positive rates (less

than 0.05) the mixed-weight penalty provides the best true positive rates for selection of both
variants and genes.

4. Software Implementation and Illustration of Real Data

The methods we have described are implemented in the statistical genetics software Mendel6

and will be freely available in its next public release, version 10.5 or higher. Mendel is

available for Linux, MacOS, and Windows at http://www.genetics.ucla.edu/software.
Within Mendel the SNP association option handles GWAS (genome-wide association study)

data, both simple marginal p-value calculations and the above lasso based analyses.
We previously applied mixed penalized logistic regression to a familial breast cancer

dataset11 with SNPs assigned to genes involved in double strand break repair. We now take
advantage of these data to illustrate the mechanics of our implementation in Mendel. The

data originate from genotype samples of participants enrolled in the UCLA Family Cancer reg-
istry. We performed penalized logistic regression in which the response, breast cancer status

(affected versus unaffected), is coded as a binary outcome. Our sample contains 399 Cau-
casian participants, of whom 196 were affected and 203 were unaffected. Covariates include

age, Ashkenazi Jewish heritage, and education level. We imputed missing non-genetic pre-

dictors using the mean value for a continuous variable and the most frequent category for
a categorical variable. Overall 148 SNPs from 17 genes in the DSBR pathway were typed

and grouped by gene. Missing SNP data were imputed using the SNP Imputation option of
Mendel.6 For a complete description of the data, results, and insights gained from mixed
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penalized analysis, see our companion paper.11 Mendel takes less than five seconds on a

standard desktop computer to complete all analyses on this dataset. On a more challenging
dataset with 10,000 SNPs and 2,200 individuals, Mendel completes all marginal and lasso

analyses in under 30 seconds.
The input files used for the breast cancer and other analyses adhere to the usual Mendel

conventions. In particular, the compressed SNP genotype data file conforms to the standard

binary format adopted by both Plink and Mendel. SNP group designations and weights
are optional. If they are desired, then they should be deposited in the SNP definition input

file alongside the name, chromosome, and base pair position of each SNP. If no group is
specified for a SNP, it is considered to be a singleton group. If no weight is specified for a

SNP, then the SNP is assigned the default weight 2
√

p(1− p), where p is its MAF. The user
may specify a value for the ratio λL/λ by invoking the keyword lasso proportion in the

Control file. Mendel reads all optional parameter settings from the Control file. To provide
flexible modeling, the user can force any predictor or group to be retained in the lasso model

by assigning to the keywords retained predictor or retained group the corresponding
predictor or group name. If a retained group is specified, then all predictors within that group

are retained. For example, the Control file snippet

Analysis_option = SNP_Association

Model = 2

Quantitative_trait = BC

Marginal_analysis = True

Lasso_analysis = True

Desired_predictors = 50 :: marginal

Desired_predictors = 20 :: lasso

Lasso_proportion = 0.5

Predictor = Grand :: BC

Predictor = Age :: BC

Transform = standardize :: Age

Retained_predictor = rs11571476

Retained_predictor = Age

Retained_group = XRCC4

instructs Mendel to perform SNP association analysis using cases and controls. The value 2
for the keyword Model implies logistic regression; the default value 1 implies ordinary linear

regression. The third command in the above Control file indicates that affection status pertains
to the trait BC. Both a marginal and lasso analysis will be performed, with the top 50 marginal

predictors and the top lasso set of 20 predictors reported in a Summary output file. Marginal
results on all predictors are always reported in another output file intended for plotting.

For this analysis run, the ratio λL/λ ratio is set to 0.5. If the keyword lasso proportion

is not specified, the ratio has its default value of 1. All defined SNPs are always included

as predictors unless specifically excluded in a SNP exclusion file. In this example two non-

SNPs are named as predictors for the trait BC, a mandatory grand mean and an optional
variable Age. The Transform keyword specifies that the Age variable will be normalized prior

to analysis; we recommend normalization for all quantitative predictors. Finally, the above
Control file specifies that the two predictors rs11571476 and Age and all predictors in the
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group XRCC4 should be retained in the lasso model.
As mentioned, most results are presented in a Summary output file. At the top of this file

appear the results for each predictor individually. For example, the first few rows of marginal
results might be

PREDICTOR MARGINAL REGRESSION STANDARD HARDY- MINOR GENOTYPING GROUP

NAME P-VALUE ESTIMATE ERROR WEINBERG ALLELE SUCCESS NAME

P-VALUE FREQUENCY RATE

Grand Mean - -0.03509 - - - - -

Age 0.2347E-04 0.43700 0.10660 - - - -

rs9634161 0.00760 - - 0.19917 0.15539 1.00000 RAD52

rs16889040 0.00768 - - 0.49854 0.25815 1.00000 RAD21

rs4986763 0.01123 - - 0.20101 0.37469 1.00000 BRIP1

rs16888997 0.01298 - - 0.67786 0.25815 1.00000 RAD21

rs16888927 0.01932 - - 0.17591 0.26817 1.00000 RAD21

rs1120476 0.02024 - - 0.48503 0.43233 1.00000 XRCC4

To decrease computation time, regression estimates are only calculated for predictors with
marginal p-values more significant than 0.001. This default threshold can be reset by the user.

A table of false discovery rates for the marginal p-values appears after the single predictor

summary.
The results of the lasso analysis are listed after the marginal results in the Summary file.

For example, the first few rows of lasso results might be

PREDICTOR MARGINAL LEAVE-ONE-OUT REGRESSION HARDY- MINOR GENOTYPING GROUP

NAME P-VALUE INDEX ESTIMATE WEINBERG ALLELE SUCCESS NAME

P-VALUE FREQUENCY RATE

Age 0.2347E-04 0.1645E-05 0.50391 - - - -

rs9634161 0.00760 0.00166 -0.42841 0.19917 0.15539 1.00000 RAD52

rs2061783 0.35871 0.01508 1.46004 0.2611E-10 0.03509 1.00000 XRCC4

rs10514249 0.02687 0.02757 -0.80396 0.86985 0.43985 1.00000 XRCC4

rs2075685 0.34106 0.05623 -0.38380 0.05712 0.42105 1.00000 XRCC4

rs2887531 0.50526 0.08627 -0.24576 0.11833 0.23183 1.00000 RAD52

rs11571476 0.05510 0.08633 0.30271 0.68282 0.42481 1.00000 RAD52

Since our example Control file specified that group XRCC4 should be retained, all members
of that group will be included in the complete lasso output set. The lasso output is sorted

by the leave-one-out index, which is simply the p-value of the likelihood ratio test of the
full regression model, using all predictors in the lasso set, versus the model leaving out the

specified predictor. Because of the prior selection of predictors, the leave-one-out index is not
a legitimate p-value.

5. Discussion

This paper presents penalized estimation as a framework for association testing in the presence
of both common and rare variants. Our results partially vindicate the twin strategies of mixed

group penalties and penalty weights acting at either the single predictor or the group level.

Penalty weights provide a flexible way of incorporate prior biological knowledge and have
the potential to increase power in association mapping. Even choosing to weight individual

variants by their population frequencies makes a difference in sorting through the confusion
of causal genes and neutral variants within them. Although our recommended tactics improve
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both false positive and false negative rates, they represent an incremental improvement rather
than a panacea. In our opinion, there is still room for further improvement. More progress

is apt to come through more nuanced weights or propensity scores cumulating risks across
the whole spectrum of variants within a gene or pathway. Replacing variant predictors by

group-wise propensity scores may serve to reduce the number of predictors and the need for
differential penalty weights altogether.
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