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Ovarian	cancer	is	often	called	the	‘silent	killer’	since	it	is	difficult	to	have	early	detection	and	
prognosis.	 Understanding	 the	 biological	 mechanism	 related	 to	 ovarian	 cancer	 becomes	
extremely	important	for	the	purpose	of	treatment.	We	propose	an	integrative	framework	to	
identify	 pathway	 related	 networks	 based	 on	 large‐scale	 TCGA	 copy	 number	 data	 and	 gene	
expression	 profiles.	 The	 integrative	 approach	 first	 detects	 highly	 conserved	 copy	 number	
altered	genes	and	regards	them	as	seed	genes,	and	then	applies	a	network‐based	method	to	
identify	 subnetworks	 that	 can	 differentiate	 gene	 expression	 patterns	 between	 different	
phenotypes	of	ovarian	cancer	patients.	The	identified	subnetworks	are	further	validated	on	
an	 independent	gene	expression	data	 set	using	a	network‐based	 classification	method.	The	
experimental	 results	 show	 that	 our	 approach	 can	 not	 only	 achieve	 good	 prediction	
performance	across	different	data	sets,	but	also	 identify	biological	meaningful	subnetworks	
involved	in	many	signaling	pathways	related	to	ovarian	cancer.	

1.  Introduction	

Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United 
States [1]. It has been estimated that 21,990 women will be newly diagnosed and 15,460 women 
will die of ovarian cancer in 2011 [1]. Most ovarian cancers are serous ovarian carcinomas and 
only less than 20% of them can be early detected. Prognosis for high grade serous carcinoma 
patients remains unsatisfactory because most patients develop resistance to chemotherapy after 
surgery and eventually die [2]. Therefore, chemoresistance has been a critical clinical problem and 
it is important to understand the biological mechanism of ovarian cancer to overcome the 
resistance to chemotherapy. Many research topics, such as gene mutation analysis [3], biomarker 
identification [4], etc., have been carried out to study the chemotherapy resistance. Among them, 
identification of pathway networks in ovarian cancer becomes an important topic in study.  
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New technologies have generated large amounts of high-throughput genomic and proteomic 
data related to ovarian cancer, which make it possible to conduct a comprehensive study from the 
computational point of view to better examine the cancer genome. The Cancer Genome Atlas 
(TCGA) project is the one of the studies that collects various biological data for ovarian cancer 
using genome analysis techniques. It provides opportunities and challenges to develop 
computational methods to study cancers based on multiple biological data, which can reveal 
different aspects and levels of biological system function. Traditional computational or statistical 
approaches, mainly focusing on one type of data source, cannot provide a system view of complex 
biological system. Current and future needs require sophisticated integration of diverse sets of 
data, aiming to better understand the main features (e.g., components and their interactions) of 
biological processes or systems [5, 6]. Many integrative approaches have been proposed to study 
glioblastoma based on TCGA data portal [7-9]. A recent study explored mRNA expression, 
microRNA expression, promoter methylation and DNA copy number data on TCGA ovarian 
cancer samples and provided biologically meaningful results successfully [10]. However, the 
paper [10] has not conducted a sophisticated integrative analysis across different data sources. 
Here, we propose a new integrative framework for pathway network identification in ovarian 
cancer.  

Our integrative approach is based on the hypothesis that the cancer phenotype can be reflected 
by gene expression profiles, which are driven by genomic changes at the copy number level. It is 
also based on the hypothesis that the highly conserved copy number altered genes might not be 
differentially expressed at the gene expression level. Therefore, our approach first detects the 
consensus regions in the DNA copy number data in high-grade ovarian cancer patients and regards 
the genes with conserved copy number altered as the seed genes. Then a network identification 
method, based on gene expression profiles and protein-protein interaction  network [11], is used to 
identify significant subnetworks from seed genes that could differentiate two different phenotypes 
among patients according to the overall survival time. Finally, the identified subnetworks are cross 
validated on a public gene expression data set using a network-based prediction model. Our results 
show that the proposed integrative approach can achieve good prediction performance with a high 
reproducibility across different data sets. Moreover, it also identifies several important pathway 
related networks, such as ErbB signaling pathway and Notch signaling pathway, which are likely 
associated with the development of ovarian cancer. 

2.  Materials	and	method	

2.1.  Integrative	framework	

Fig.1 illustrates an integrative framework for copy number analysis, subnetwork identification and 
prediction by integrating DNA copy number data, mRNA gene expression profiles, protein-protein 
interaction network and clinical information. From DNA copy number data, we detect significant 
consensus amplified and deleted regions using Genomic Identification of Significant Targets in 



	

	

Cancer (GISTIC) algorithm [12] and then extract the genes located in these regions. We consider 
these genes are highly related to the ovarian cancer mechanism and may function as ‘drivers’ to 
form different phenotypes. We also curate ovarian cancer related genes from literature [2] and 
combine them with the consensus genes from copy number data as seed genes for subnetwork 
identification. Then we identify subnetworks based on the seed genes using bootstrapping Markov 
random field-based method (BMRF), which integrates protein-protein interaction networks and 
the gene expression profiles. For the purpose of evaluation, we adopt a public gene expression 
data set in the study. We train a classifier on the TCGA gene expression data set on the identified 
significant subnetworks and then test on the public data set using network-constrained support 
vector machines (netSVM). Finally we measure the prediction performance and conduct survival 
analysis on these two gene expression profiles. 
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Fig. 1. Illustration of an integrative framework for TCGA ovarian cancer data analysis. 

2.2.  Data	description	

DNA copy number data and mRNA gene expression data for ovarian serous cystadenocarcinoma 
cases are obtained from TCGA data portal. 157 patients have DNA copy number expression, 
mRNA gene expression, as well as the clinical survival information. Among them, 58 patients 
have overall survival time less than 2 years and 45 patients have overall survival time larger than 4 
years. We categorize these two groups as ‘high risk’ and ‘low risk’, respectively.  An independent 
public mRNA gene expression data set (GSE3149) for ovarian cancer cases is obtained from Bild 



	

	

	

et al. [13]. Accordingly, 45 patients are grouped in ‘high risk’ and 49 patients are grouped in ‘low 
risk’. The copy number data are arrayed by Agilent Human Genome CGH microarray 244A chips 
and both mRNA gene expression profiles are arrayed by Affymetrix HG U133A chips. The copy 
number data are normalized using dChip software [14] and mRNA gene expression data are 
normalized by Plier and quantile normalization methods [15]. Subnetworks are identified from 
protein-protein interaction (PPI) network obtained from the HPRD database [16], which contains 
about 9,000 genes and 35,000 interactions. We convert probe set IDs used in gene expression data 
to Entrez gene IDs. The probe set ID with the largest variance across patients’ samples is used 
where multiple probe set IDs are linked to one Entrez gene ID.  By mapping the PPI network and 
two data sets we obtain 7,249 genes in 27,885 interactions to be investigated. 
 

2.3.  DNA	copy	number	consensus	region	detection	

The segmentations on the DNA copy number data are detected by Circular Binary Segmentation 
(CBS) method [17]. The CBS is a modified binary segmentation method that splits the 
chromosome into regions of equal copy number to reduce noises and estimates parameters through 
permutation distribution. The significantly amplified or deleted genomic regions across the 
ovarian cancer samples are detected by GISTIC algorithm [12] on the segmented DNA copy 
number data. The GISTIC algorithm takes segmented copy number data and identifies regions of 
the genome that are significantly amplified or deleted across a set of samples. A G-score is 
assigned to each aberration that considers the amplitude of the aberration as well as the frequency 
of its occurrence across all samples. False Discovery Rate q-values are then calculated for the 
aberrant regions, and regions with q-values below a user-defined threshold are considered 
significant. Here we set both amplification threshold and deletion threshold as 1 (4 copies for 
amplification and 1 copy for deletion), and the false discovery rate q-value threshold as 0.01. 

2.4.  Network	identification	by	bootstrapping	MRF	(BMRF)	

We apply a bootstrapping Markov random file (BMRF) method to the TCGA gene expression 
data by integrating protein-protein interaction network to identify significant subnetworks that 
could distinguish the expression patterns between ‘high risk’ and ‘low risk’. BMRF method 
follows a maximum a posteriori (MAP) principle to form a novel network score that explicitly 
considers pairwise gene interactions in PPI networks.  

Let’s first define a random variable vector { , , }
1
f f

m
f  to represent a set of discriminative 

scores of m genes (or proteins) between two phenotypes. In the context of a PPI network, Let S 
represent a gene set of m genes in a network and Ni represent connected neighbors of gene i. We 
define a pairwise clique C2 on Ni and S as  2 { , '} | ' ,iC i i i N i S   . 

The random variable vector f is said to form a Markov random field on S with respect to Ni and 
subject to the following conditions: 
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The second criterion in Equation (1) is the Markov property of a random field, which states 
that the probability of a certain configuration at gene i is statistically independent of the 
configurations of all other genes ( j S  ) given configuration iN .  

The possible configuration f of a set of random variable vector F obeys a Gibbs distribution if 
the joint distribution takes the following form: 
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where Z is a normalizing constant given by 
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U is an energy function that is determined by a sum of clique potentials Vc(f) over all cliques. 
Clique potentials allow the modeling of knowledge (a priori) about the contextual interactions 
between genes at neighboring sites. For simplicity, we usually assign 0 potential to all cliques of 
size greater than 2. The energy U(f) corresponds to the probability of that configuration. From 
Equation (2), we can see that lower energies correspond to more likely configurations. The 
parameter T is often referred to as ‘temperature’ that controls the sharpness of the distribution. Z is 
a normalization constant and does not need to be calculated.  

Denote the observed discriminative scores of genes between two phenotypes as 

1{ , , }mz zz  . Here, we define zi as the z-score of its corresponding p-value pi using 
1(1 )i iz p   , where 1  is the inverse normal cumulative density function (CDF) [18]. We 

assume that the observed discriminative score is a result of the addition of independent zero mean 
Gaussian noise to the underlying discriminative score; ~ (0,1)Nz = f + e, e . One possible estimate 
of the underlying discriminative score f is the MAP estimate f̂  that maximizes the likelihood of 
posterior probability ( log ( )P f | z ); with the help of Bayes’ rules and Gibbs distribution, it is 
equivalent to state that the MAP estimate f̂  minimizes the following posterior potential function: 
ˆ arg min( ( ) ( ))U U 

f
f f z | f . The first term in the posterior potential function is the prior potential 

given by: 
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where di is the degree of gene i in the PPI network, k is the number of interactions (or edges), and 
λ is a trade-off parameter. The first term in Equation (3) is the average discriminative score in a 
subnetwork; the second term in Equation (3) imposes the smoothness across the subnetwork, 
while putting more weights on the genes with large degrees. Note that the posterior potential 
function is normalized by the number of genes and the number of edges in the subnetwork, hence, 
independent of the subnetwork size.  

The second term in the posterior potential function is the likelihood potential given by: 
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where γ is a trade-off parameter. The likelihood potential gives the average square of difference 
between observed and underlying discriminative scores, given the assumption of a Gaussian 
distribution of the noise signal with 0 mean and 1 standard deviation.  

Thus, we can define the subnetwork score as the negative posterior potential function that 
takes into account the dependency among the genes of a subnetwork, which, in the form of 
estimated discriminative scores, can be defined as follows: 
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Once we define the MRF-based network score, a modified simulated annealing search 
algorithm is then developed to efficiently find optimal or suboptimal subnetworks with maximal 
network scores. Finally, to improve their reproducibility across data sets, a bootstrapping scheme 
is implemented to statistically select confident subnetworks. BMRF method has the advantage in 
identifying hub genes that usually express little changes among different phenotypes and are hard 
to detect, therefore improves the mechanism study of ovarian cancer. In this experiment, we 
determine the significant subnetworks according to network size and network score. A network is 
considered as significant if its size is greater than 5 and the network score is larger than 1.65 
(p≤0.05; normal distribution). 

2.5.  Network	constrained	support	vector	machines	(NetSVM)	

Given a training sample set (x1, y1), …, (xl, yl) with p features and l samples, where p
i Rx  and 

}1,1{ iy , the SVM learning algorithm aims to find a linear function of the form 

bf  xβx)( , with pRβ  and Rb  such that a data point x is assigned to a label +1 if f(x) > 
0, and a label -1 otherwise. Consider a gene network that is represented by a graph G = (V, E, W), 
where V is a set of vertices that correspond to p genes, E = {u ~ v} is a set of edges indicating that 
gene u and v are linked on the network and W is the weights of the edges. The degree of a vertex v 
is defined as 

u
v vuwd ),( , where w(u, v) indicates the weight of edge u~v. For this application, 

the weights could represent the probabilities of having edges between two vertices. Following 
Chung et al. [19], we define the Laplacian matrix L of G with the uvth element to be: 
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This matrix is symmetric and non-negative definite and its corresponding eigenvalues or 
spectra reflect many properties of the graph as detailed in [19].  

We define the network-constrained SVM given non-negative parameter η as follows: 
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Note that L can be written as L = SST, where S is the matrix whose rows are indexed by the 
vertices and whose columns are indexed by the edges of G such that each column (corresponding 
to an edge e = {u, v}) has an entry udvuw /),(  in the row corresponding to u, an entry  

udvuw /),(  in the row corresponding to v, and zero entries elsewhere. Therefore we can see 
that βTLβ can be re-written as 

 

2

~

( , )T u v

u v u v

w u v
d d

  
   

 
β Lβ .  (8) 

From this representation we can understand that the added regularization term ηβTLβ imposes 
the smoothness of parameters (coefficients) β over the network via penalizing the weighted sum of 
squares of the scaled difference of coefficients between neighboring vertices in the network.  

The solution of Equation (7) could be obtained by reducing it to a conventional SVM 
optimization problem based on the property of L that is symmetric and semi-positive definite. We 
set equal weight 1 for all connections in PPI database in our experiment.  

2.6.  Classification	performance	merits	and	survival	analysis	

For the identified subnetworks, we conduct three-fold cross validation on TCGA data set and 
independent test on the public data set. During the cross validation iteration, each time we leave 
one fold as validation set and the others as training set. Note that the folds are stratified so that 
they contain the approximately same proportions of labels as the original data. The three-fold 
cross validation procedure is repeated 100 times in order to get more reliable performance 
estimation by different randomizations. The average validation performance is reported. 

We evaluate the prediction performance through several statistical analyses. Given the true 
labels of samples and prediction results, we use the Receiver Operating Characteristic (ROC) 
curve [20] and the area under the curve (AUC) to measure the prediction accuracy of the classifier. 
ROC curve is a graphical plot of true positive rate (TPR) vs. false positive rate (FPR). AUC is an 
important performance measure that provides an overall measure of accuracy for the prediction. 
Furthermore, accuracy, sensitivity and specificity are calculated as well. 

Also, given the sample survival time information, we conduct the Kaplan-Meier survival 
analysis [21] for the prediction results to generate plots for overall survival time. To compare the 
difference of two survival curves, p-value and hazard ratio are reported. P-value is calculated by 
using the log-rank test and hazard is calculated using the Cox proportional model.  

3.  Results	and	discussion	

Fig. 2 shows the heatmap of the TCGA copy number data and detected consensus regions for both 
amplification and deletion. There are 869 amplification regions and 979 deletion regions that are 



	

	

	

significantly consensus across all the high grade ovarian cancer tumor samples. 751 and 816 genes 
are located in the amplification regions and deletion regions, respectively. Some of these genes are 
functionally related to kinase, transcription factor, oncogenes, etc. For example, CCNE1 and MYC 
are located in the focal amplification regions and they are oncogenes. SMAD4 is located in the 
focal deletion region and it is a tumor suppressor gene. These findings are biologically interesting; 
however, many of them do not have clear functional annotation because of the limited knowledge. 
Most of genes are isolated in the context of PPI network; and it is difficult to understand the 
underlying biological mechanism even though they are important to sever as the potential ‘drivers’ 
in ovarian cancer. Therefore we treat these genes as the seed genes in the subnetwork 
identification methods.  

We also collect 74 genes associated with ovarian cancer pathways from literatures [2], which 
are functionally related to tumor suppressor, oncogenes, signaling and tumor biology. Finally we 
obtain 511 genes as the seed genes from DNA copy number data after mapping the genes to PPI 
network.  

 
 
 
 
 
 
 
 
 
 
 
 

(a)  (b) 

Fig. 2. (a) Heatmap of TCGA copy number data and (b) detected significant consensus regions. 

 
We identified subnetworks from TCGA gene expression data and the PPI network, using 

BMRF method for all seed genes. Based on the network score and network size, 36 subnetworks 
are significantly (p < 0.05) showing different expression patterns between ‘high risk’ and ‘low 
risk’ groups on the TCGA data set. We trained a classifier using netSVM based on these 
subnetworks with cross validation. The accuracy (standard deviation) of three-fold cross validation 
is 79.53% (0.0313) with 76.02% (0.0584) sensitivity and 82.26% (0.0312) specificity. The 
classifier is further validated on an independent gene expression data set [13] and achieves 74.47% 
accuracy with 62.22% sensitivity and 85.71% specificity. The ROC curves for cross validation 
and independent test are shown in Fig. 3. Kaplan-Meier analysis of independent test in Fig. 4 also 
shows significant different (p = 0.0003) in overall survival between two groups predicted as ‘high 
risk’ and ‘low risk’. We have also performed prediction using traditional gene selection method T-
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test (220 genes with p < 0.01) and conventional SVM and achieved 86.92% accuracy for cross 
validation and 69.15% accuracy for independent test. As a comparison, our proposed method 
achieves better reproducibility across different data sets. Moreover the identified genes by the 
proposed method are more biologically meaningful than the ones selected by T-test in terms of 
GO functional annotation, where many signaling pathway related genes are identified by the 
proposed method (see below), while no significant pathway is enriched in the genes selected by T-
test. 
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Fig. 3. ROC curves of three-fold cross validation on the TCGA data set and independent test on the public data set. 
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    (a)                                                                             (b) 

Fig. 4. Kaplan-Meier overall survival analysis of three-fold cross validation on the (a) TCGA data set and (b) 
independent test on the public data set. 
 

There are in total 224 genes in the identified subnetworks, grown from 36 seed genes. Among 
these seed genes, 29 genes are from copy number altered genes and 11 genes are from literature 
collection (four genes: CCNE1, JAK2, SMAD4 and MYC are overlapped). In terms of gene 
family of identified seed genes, seven are oncogenes (EGFR, JAK2, JUN, LPP, MYC, NOTCH2 
and RAF1); two are tumor suppressors: BRCA1 and SMAD4; and other genes are belonging to 
transcription factors, cell differentiation markers, protein kinases, etc. Note that CCN1, MYC, 
BRCA1 are also reported in the study of [10], which indicates that our proposed method could 
identify biological meaningful genes.   



	

	

	

We then conducted functional annotation and pathway analysis using MsigDB database [22] 
for the identified subnetworks. The functions of ‘Cell cycle’, ‘Apoptosis’, ‘Nucleus’ and ‘DNA 
repair’ are significantly enriched in some of the subnetworks, shown in Fig. 5. These findings are 
consistent with our understanding of the cancer development.  
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                           (a)                                                                (b)                                                                 (c) 
Fig. 5. Subnetworks identified from TCGA ovarian cancer gene expression data set. Subnetworks are merged if more 
than 2 genes are common. Node shape indicates the seed gene (hexagon) or non-seed gene (ellipse). Node color 
indicates the fold change between ‘high risk’ and ‘low risk’ groups. Red represents over-expressed in ‘high risk’ 
group and green reflects over-expressed in ‘low risk’ group. Enriched pathways and GO functional annotations are: 
(a) ErbB signaling pathway: p=2.43e-10; Cell cycle: p=1.47e-07. (b) Notch signaling pathway p=1.11e-16; Apoptosis 
p=3.76e-04. (c) Genes involved in Homologous Recombination Repair p=8.56e-08; Nucleus p=6.61e-04. 

 
Interestingly, many signaling pathways are also significantly enriched in several subnetworks, 

for example, ErbB signaling pathway (Fig. 5(a), Fig. 6(a)), Notch signaling pathway (Fig. 5(b), 
Fig. 6(b)), NFκB signaling pathway (Fig. 7(a)), and TGF beta signaling pathway (Fig. 7(b)). 
Signaling pathway is more complicated and diverse. Epidermal growth factor receptor (EGFR) 
and ERBB2/HER-2 are members of the ErbB family of tyrosine kinase receptors. The studies have 
shown that the aberrant activity of EGFR and ERBB2 are important in tumor growth and 
development. Moreover, the overexpression of EGFR and ERBB2 and their downstream targets is 
associated with resistance to ovarian cancer chemotherapy [23]. Notch signaling pathway has been 
studied in many papers showing that it is active in ovarian cancer [24-27]. It is suggested that the 
inhibition of Notch signaling may be a therapeutic strategy for ovarian cancer [27]. NFκB 
transcription factors are key regulators of cell proliferation and apoptosis [28]. It is believed that 
changes in the upstream pathways will deregulate NFκB activation in cancer. Notice that many 
studies have focused on gene RSF-1 in NFκB network (Fig.7 (a)) and shown that it is involved in 
paclitaxel resistance in ovarian cancer [29, 30]. Transforming growth factor-beta (TGF-beta) is a 
tumor suppressor, which is involved in many types of human cancer, including ovarian cancer 
[31]. Recent study also shows that the activated TGF-b signaling pathway in omental metastases 
of ovarian cancer is a potential therapeutic target [32].  
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(a)                                                                                         (b) 

Fig. 6. Enriched pathways and GO functional annotations are: (a) ErbB signaling pathway: p=9.10e-13; Signal 
transduction p=2.33e-07. (b) Notch signaling pathway p=2.86e-15. Figure legends are same as the ones in Fig. 5. 
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Fig. 7. Enriched pathways and GO functional annotations are: (a) NFκB signaling pathway p=7.03e-05. (b) TGF beta 
signaling pathway p=1.88e-06. Figure legends are same as the ones in Fig. 5. 
 

4.  Conclusion	

We have proposed an integrative framework to analyze TCGA ovarian cancer data by integrating 
DNA copy number data, microarray data, protein-protein interaction data and patient clinical 
information. After detecting highly conserved copy number altered genes, we have applied 
network-based methods to identify pathway networks that can differentiate different expression 
patterns between different phenotypes. The experimental results have shown that our identified 
subnetworks could achieve good prediction performance and generalizability on independent data 
set using a network-constrained classifier. The results also show that our integrative approach can 
identify biological meaningful subnetworks that related to the development of ovarian cancer and 
drug resistance. 



	

	

	

 For the future work, the proposed method will be further enhanced through optimal parameter 
selection, statistical assessment and multiple hypothesis testing. Moreover, more ovarian cancer 
samples from TCGA portal and public data sets will be investigated.   
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