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Despite the success of genome-wide association studies in detecting novel disease variants, we are still far 

from a complete understanding of the mechanisms through which variants cause disease. Most of previous 

studies have considered only genome-phenome associations. However, the integration of transcriptome data 

may help further elucidate the mechanisms through which genetic mutations lead to disease and uncover 

potential pathways to target for treatment. We present a novel structured association mapping strategy for 

finding genome-transcriptome-phenome associations when SNP, gene-expression, and phenotype data are 

available for the same cohort. We do so via a two-step procedure where genome-transcriptome associations 

are identified by GFlasso, a sparse regression technique presented previously. Transcriptome-phenome 

associations are then found by a novel proposed method called gGFlasso, which leverages structure inherent 

in the genes and phenotypic traits. Due to the complex nature of three-way association results, visualization 

tools can aid in the discovery of causal SNPs and regulatory mechanisms affecting diseases. Using well-

grounded visualization techniques, we have designed new visualizations that filter through large three-way 

association results to detect interesting SNPs and associated genes and traits. The two-step GFlasso-gGFlasso 

algorithmic approach and new visualizations are integrated into GenAMap, a visual analytics system for 

structured association mapping. Results on simulated datasets show that our approach has the potential to 

increase the sensitivity and specificity of association studies, compared to existing procedures that do not 

exploit the full structural information of the data. We report results from an analysis on a publically available 

mouse dataset, showing that identified SNP-gene-trait associations are compatible with known biology. 

 

1.  Introduction 

Understanding the genetic basis of human diseases has the potential for improved treatment and 

prevention. Genome-wide association study (GWAS) is a popular approach that uncovers genetic 

variants associated with complex traits. Typically, GWAS uses machine learning or statistical 

approaches to search for genetic polymorphisms, often single-nucleotide polymorphisms (SNPs), 

which are associated with a disease. These studies find mutations in the genome that play a role in 

disease development and progression. Successful studies over the last few years have uncovered 

susceptibility loci for many diseases such as Crohn’s disease
1
, asthma

2
, and heart disease

3
. GWAS 

is commonly regarded as a powerful tool for uncovering the genetic basis of human diseases
4
.  

Despite its recent success and popularity, fundamental limitations of GWAS impede its ability 

to explain disease variation and lead to clinical treatments
5
. For example, while many studies have 

identified SNPs associated with different diseases, these SNPs often explain only a fraction of the 

heritability of the disease, suggesting that other genetic factors remain undiscovered
4
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Additionally, a majority of identified SNPs do not affect protein sequence; these SNPs may have a 

yet unknown regulatory role in the cell
6
. Hence, we are far from a complete understanding of how 

discovered SNPs actually regulate cellular pathways leading to disease
7
. Furthermore, without 

adequate understanding of how SNPs operate in a biological context, it is often impossible for a 

study’s results to lead to clinical applications
5
. Overcoming these barriers is a significant problem 

facing the genetics community today. A proposed solution to these barriers is the combination of 

additional data types to the traditional GWAS data (SNP genotyping and trait measurements)
5,8

.  

Recently, GWAS analyses have incorporated gene expression data
6-7,9

. Given gene expression 

data for a given cell type or tissue, SNPs can be mapped to the gene expression levels. SNP-gene 

associations can provide insight into regulatory patterns in the genome and help elucidate the 

mechanism by which a SNP leads to disease. Moreover, methods leveraging gene-network 

structure have been developed to enhance the discovery of associations from SNPs to cellular 

pathways
10-11

. The integration of expression data into GWAS analyses has led to the identification 

of new disease genes
12-14

, demonstrating the potential of this approach.  

To date, the general strategy has been to integrate gene expression data into a GWAS study 

after the main analysis and from individuals unrelated to the original study
6-7

. However, in the 

increasingly common scenario where expression, phenotype, and genomic data are available from 

the same cohort, expression data can be incorporated directly into the primary analysis. In this 

case, all the data guides the discovery of genome-transcriptome-phenome associations. This 

unified three-way association framework has the potential to reveal the functional relationships 

between associated genomic variations and physical phenotypes, via intermediate phenotypes. 

This has a direct impact on personalized medicine as different patients may have different 

regulatory mechanisms by which disease arises, but traditional SNP-trait association studies are 

insufficient to uncover the hidden mechanisms. Despite the promise of unified three-way 

association analysis, work done on this problem is limited
15-16

.  

In this paper, we present a new algorithmic and visualization strategy for three-way association 

analysis with GWAS and gene expression data. We use structured association mapping to find 

genome-transcriptome-phenome associations. In the framework of structured association mapping, 

the structure of the data guides the algorithm to find true associations and eliminate false positives. 

While incorporating gene expression data and its structure into GWAS can enhance discovery 

statistically, the additional data also increases the difficulty of interpreting the results. The results, 

with the trait and genetic structures, are a large, complex sea of data that must be explored, 

suggesting the applicability of a visualization approach
17

. Available visualization tools for general 

GWAS
18-19

 are not built for this type of data, thus new visualization tools are needed to use the 

structure of genome-transcriptome-phenome association data to guide the analyst to discover the 

biological mechanisms driving genome-phenome associations. 

In Section 2, we present a novel structured association mapping strategy that incorporates 

genome-wide SNP data, expression data, and phenotype data in a unified three-way association 

framework. We find genome-transcriptome-phenome associations through a two-step process. 

First, we find the association of SNPs to gene expression data by leveraging the genetic network 



 

 

 

structure among genes by applying GFlasso
10

. In the second step, we find associations from genes 

to phenotypes using a new proposed method called gGFlasso, which incorporates structure 

information from both the predictors (genes) and responses (traits).  

In Section 3 we present novel visualizations we have designed to guide geneticists through the 

exploration of three-way association results, guided by the structure of the data. We implement 

these tools in GenAMap, visual analytics software for association analysis
20

.  

Finally, we demonstrate our approach by simulation (Section 4) and on a NIH heterogeneous 

stock mice dataset
21

 (Section 5). Results on simulated datasets show that our strategy outperforms 

existing methods in terms of sensitivity and specificity. Using the mouse data, we have uncovered 

the associations of eight genes in the mouse H2 complex on Chr 17 with mouse immunology 

traits, compatible with current knowledge.  

 

2.  Statistical Model 

Let X be an N   P genotype matrix for N individuals where each row represents the allele states of 

an individual at P loci; let Y be an N   J gene expression matrix where expression levels of J 

genes are measured for the same set of individuals; finally, let Z be an N   K phenotype matrix 

where each row records K phenotypic traits of an individual. We assume that there are two 

undirected weighted relevance graphs            and            available for J genes and 

K traits, respectively. Each node in    represents a gene and each node in    represents a trait, 

hence       J,       K. There is a vast literature on network construction algorithms, and any 

strategy can be applied to create a network where a connection between nodes   and   represents a 

relationship between nodes. Each edge {   }      or    is associated with a weighted connection 

between nodes. The three-way association study is then performed in a two-step procedure: first, 

we find genome-transcriptome associations by applying GFlasso to X and Y; next, we search for 

transcriptome-phenome associations between Y and Z using a new structured sparse regression 

method called graph-graph-guided fused lasso (gGFlasso).  

2.1.  Finding genome-transcriptome associations using GFlasso 

To find associations between SNPs and gene expression levels, we use GFlasso
10

, a structured 

association mapping approach that estimates the association strengths of predictors jointly for 

multiple correlated responses by a sparse regression strategy. In our case, SNPs are treated as 

predictors and gene expression levels are treated as responses. GFlasso assumes that a relatively 

small number of markers are associated with each gene and that highly correlated genes tend to be 

influenced by a common subset of SNPs. This assumption is explicitly expressed as two 

regularization terms in a linear regression model (Eq. 1). Input to GFlasso includes X, Y, and   ; 

the output is a regression coefficient matrix   , where     denotes the strength of pth SNP 

associated with vth gene.    is estimated by solving the following optimization problem
22
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where ||.||F is the Frobenius norm of the matrix. The second term is the    lasso penalty
23

, which 

has the property of shrinking the strengths of irrelevant SNPs towards zero; the last term is the 

graph-guided fused lasso penalty, which encourages highly correlated genes (connected by an 

edge in   ) to be associated with the same SNPs.           controls the pattern of fusion applied 

to the association strengths: if two genes are negatively correlated, their corresponding association 

strengths are encouraged to have different sign. λ and γ are the regularization parameters and can 

be estimated by cross-validation on a validation set. For each gene, the set of associated SNPs are 

those with non-zero association strengths in the estimated coefficient matrix   . 

2.2.  Finding transcriptome-phenome associations using gGFlasso 

To find associations between genes and phenotypic traits, we develop a new method by extending 

GFlasso, called gGFlasso, which incorporates the correlation structure of genes    as well as the 

dependency graph of traits   . In this setting, expression levels are treated as predictors and traits 

are regarded as responses. The GFlasso framework only uses the dependency structure on 

responses and assumes that variations of correlated responses (traits) are likely to be explained by 

a common set of predictors (genes). However, predictors can also be correlated, such as co-

expressed genes, and it seems natural to also exploit the predictor’s dependency graph.  Given   , 

gGFlasso assumes that correlated (connected) genes tend to influence the same subsets of traits. 

This assumption is encoded as an additional fusion penalty in the linear regression model: 
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                              ∑ ∑                    {   }   
  (2) 

As in Eq. 1, λ, γ1, and γ2 are regularization parameters and     is the association strength of jth 

gene with kth trait. Note that there are two graph-guided fused lasso penalty terms in Eq. 2: if two 

genes   and   are connected in   , the fusion penalty encourages their influence on each trait to 

be similar; if two traits   and   are connected by an edge in   , the association strength     and 

    for each gene   is encouraged to have the same absolute value. As we will demonstrate in our 

experiments, this joint framework that accounts for the information in the correlation structure of 

predictors (gene expressions) and responses (traits) has the potential to increase the sensitivity and 

specificity of association studies. Combined with the    lasso penalty, the estimated coefficient 

matrix    has a large fraction of zero entries and the remaining non-zero entries tend to show a 

block structure (see Figure 4). 



 

 

 

2.3.  Implementation notes 

We have automated GFlasso-gGFlasso in GenAMap. We use a coordinate descent approach and 

the “η-trick”
24 

to optimize Eq. 2. The update equations and a C++ implementation of gGFlasso are 

available for download from sailing.cs.cmu.edu/genamap. GenAMap uses a linear search strategy 

and hold-out validation to find values for the regularization parameters λ, γ1, and γ2. For our 

simulated data with 100 SNPs, 500 genes, and 20 traits, the full GFlasso-gGFlasso runs in less 

than one day. Using GenAMap to run the GFlasso-gGFlasso for 2500 SNPs with associations to 

2000 genes would return results in less than one week.  

 

 

Fig. 1. Overview of three-way association visualization using the KK-layout
a
 . (a) The structure (edges) of 

the traits (blue hexagons) and gene groups (circles) are displayed without showing the association edges. 

(b) The red association edges from gene groups to traits are shown. SNPs are represented at the bottom of 

the display as green circles in GenAMap’s genome browser.  

 

3.  Visualization Strategies in GenAMap 

The GFlasso-gGFlasso analysis of a genome-transcriptome-phenome dataset leaves the genetics 

analyst with a large, complex sea of data to interpret. In addition to the gene-gene and trait-trait 

relationships, potentially hundreds of SNP-to-gene and gene-to-trait associations are identified. 

The analyst must explore this data to pinpoint the associations that lead to insight into disease.  

The analyst explores the data with different strategies, depending on what questions he is 

interested in. In one scenario, the analyst comes into the study with questions about specific traits. 

The analyst explores the network relationships between these traits and looks for associated gene 

networks. He then examines the gene networks for genomic associations, leading to the discovery 

of SNPs that perturb the gene networks associated with the phenotypes of interest. Alternatively, 

                                                             

a Large, high resolution figures from this paper are available at http://sailing.cs.cmu.edu/genamap/threeway.html 



 

 

 

the analyst starts with a genomic region of interest. In this case, the first considers the genomic 

region and its associations to genetic pathways. He then identifies the traits associated with the 

discovered genes. In either scenario, analysts have to filter through the dataset in an exploratory 

fashion. As visualization methods are particularly adept at guiding the identification of interesting 

data through exploratory analysis
17

, visualization can be a powerful tool in either scenario.  

To design a visualization system that would facilitate the exploration of three-way association 

results with gene and trait structure we follow Shneiderman’s mantra
25

: 1) overview first, 2) zoom 

and filter, and 3) details on demand. In this section, we discuss our design of the visualizations, 

which are implemented in GenAMap using JAVA and the JUNG toolkit
26

. A video overview of 

our visualization tools is available online at http://sailing.cs.cmu.edu/genamap/threeway.html. 

3.1.  Overview first: an introduction to the visualization 

When the analyst first examines three-way association results in GenAMap, he is presented with 

an overview of the data (Figure 1, 2). Traits are represented as blue hexagons and edges in the trait 

network are displayed as weighted (by strength of correlation) gray lines. Genes are grouped 

according to GFlasso results: genes associated with common SNPs form a group. Visually, gene 

groups are represented as circles where the size of the circle represents the size of the group. 

Edges between genes groups are shown as black lines, the thickness of the line representing the 

number of edges between the genes in the two groups. 

GenAMap enables the analyst to explore the three-way results through two different layouts. 

The KK-layout is designed to present trait-trait and gene-gene structures separately (Figure 1). The 

positions of traits are determined by the KK-layout algorithm
27

 and gene groups are plotted in a 

half-circle with the ten largest groups placed in an arc. Association edges are shown in red. When 

the analyst hovers over a gene group, a tool-tip reports the group’s gene count and significant gene 

ontology (GO) enrichment.  

 

 

Fig. 2.  GenAMap overview of three-way association results using the force-directed layout. 

 

Analysts can also explore three-way association results using a force-directed layout (FDL). In 

this layout, gene and trait nodes repel each other and edges act as springs that pull nodes together. 

http://sailing.cs.cmu.edu/genamap/threeway.html


 

 

 

The analyst can adjust the repulsion and attraction parameters to adjust the display. In Figure 2, we 

show the data from Figure 1 now represented in the FDL. In Figure 2a, the association and 

correlation edge spring tension is high, causing connected nodes to pull into a tightly clustered 

group. As the spring tension is relaxed (Figure 2b), the structure of the connected gene-trait 

clusters is visible. In both the KK-layout and FDL, the analyst can customize the display by 

turning labels on and off, adjusting parameters, or manually repositioning nodes. 

GenAMap enables the analyst to simultaneously explore SNP-gene and gene-trait associations. 

The SNP-gene association strengths are visualized using color-encoding. For example, the analyst 

selects SNPs of interest and clicks to color all genes by association. The gene view updates so that 

the brightness of the color of each group represents its strongest association to the selected SNPs. 

Alternatively, the analyst selects gene groups of interest and colors the SNPs by association. SNPs 

are then colored: white represents a strong association and black represents no association. In 

Figure 3e we demonstrate both of these encodings: SNPs are colored by association to the teal 

gene group, and groups are colored by association to selected SNPs.  
 

 

Fig. 3.  Demonstration of zoom and filter tools in GenAMap. (a) The analyst starts with all data visible and 

filters data based on association resulting in (b). He adjusts the association edge threshold and groups traits 

into trait groups (c). Trait groups and gene groups not connected/associated with a trait group are removed 

(d). A trait group and gene group of interest are expanded and the analyst considers gene-transcriptome-

phenome association simultaneously (e).   

3.2.  Zoom and filter: identifying interesting signals in the data 

GenAMap is designed to enhance the analyst’s ability to filter through the dataset to identify 

genome-transcriptome-phenome associations. We demonstrate GenAMap’s filter and zoom tools 

through a series of steps shown in Figure 3. In Figure 3a, the data is loaded in the KK-layout. The 

analyst uses a filter to removes all genes and traits without associations (Figure 3b). Next, the 

analyst adjusts the association edge threshold to remove weak associations. Interested in the 

largest gene group (Group 2, teal color), he removes all groups that do not have a network edge to 

Group 2. Each connected component in the trait graph is then collapsed into a trait group 



 

 

 

(represented as a triangle) to simplify the display (Figure 3c). To explore only the trait group with 

the most associations to Group 2 (thickest edge), all trait groups and gene groups not connected to 

this trait group are manually removed (Figure 3d). Finally, the analyst expands the trait group and 

a strongly-associated gene group. He colors the SNPs by association to the now-visible genes 

(squares) in this gene group. After identifying associated SNPs, the analyst colors all genes by 

association to the identified SNPs (Figure 3e). In summary, GenAMap allows the analyst to filter 

and explore based on network connectivity, association, edge thresholds, and grouping strategies. 

These strategies can be employed in any three-way analysis, starting from traits, SNPs, or genes. 

3.3.  Details on demand: resources for further exploration 

Once the analyst has found interesting gene-trait associations, GenAMap directly links the analyst 

to more information. The analyst can directly link to the UniProt database
28

, Google search, or to 

dbSNP
29

. GO information for genes is available through GenAMap’s integration with BiNGO
30

. 

 

 

Fig. 4. Results of a simulation study on a dataset simulated with   
    

   . Dark pixels indicate large 

values. (a) Correlation matrix of genes thresholded at 0.5 (b) Correlation matrix of traits thresholded at 0.5 

(c) True B1 matrix (d) Recovered B1 matrix by lasso (e) Recovered B1 matrix by GFlasso. (f) True B2 

matrix (g) Recovered B2 matrix by gGFlasso. (h) Recovered B2 matrix by GFlasso (i) True SNP-trait 

association matrix B3 (j) Recovered B3 by GFlasso-gGFlasso strategy. (k) Recovered B3 by GFlasso-

GFlasso strategy (l) Recovered B3 by lasso (m) Recovered B3 by plink, values plotted are –log10(p-value).  

 

4.  Simulated Data Analysis 

We performed a simulation experiment to validate our GFlasso-gGFlasso strategy for three-way 

association analysis, comparing the results with a GFlasso-GFlasso strategy, a lasso-lasso strategy 

and PLINK
31

, a popular pairwise GWAS tool. We randomly selected N = 250 individuals and P = 

100 SNPs from the mice dataset
21

 to create a genotype matrix X. The number of genes J was set to 

500; we assumed 50 correlated gene groups of equal size. The true P   J association matrix B1 



 

 

 

was created as follows: for each group, we randomly selected three causal SNPs; one (random) 

housekeeping SNP was assumed to be associated with all genes. Strengths of association for 

selected SNP-gene pairs were set to 1 (Figure 4c). Given X and the association matrix B1, the gene 

expression matrix Y was simulated as Y = XB1 +   , where    is an N   J matrix with entries 

independently generated from N(0,   
 ). The gene correlation matrix, simulated with noise level 

  
    and thresholded at 0.5, reveals the inherent structure of the genes (Figure 4a). We set K = 

20 traits. To generate the trait matrix Z, we first created a J   K association matrix B2 similar to 

the procedure for obtaining B1: we assumed five groups of correlated traits of equal size each with 

three causal gene groups (Figure 4f). Then, Z = YB2 +   , where entries of    were independently 

generated from N(0,   
 ). We also calculated the true SNP-trait association matrix, B3 (Figure 4i), 

by assuming that if a SNP is associated with a gene and that gene influences a trait, then there is 

an association between the SNP and the trait.  

In Table 1, we present a summary of performance results evaluated by the true positive rate 

(TPR) and false positive rate (FPR). As the table and Figure 4e show, in a low noise setting, 

GFlasso is able to recover SNP-gene pairs with true association with a tiny FPR. We compared the 

performance of GFlasso and gGFLasso in recovering B2. Although both methods successfully 

recover true gene-trait pairs, GFlasso tends to produce a number of false positive pairs with weak 

associations  (Figure 4h) and hence has a higher FPR. Both GFlasso-GFlasso and GFlasso-

gGFlasso have a much lower FPR than the lasso-lasso strategy in terms of recovering B3 (Figure 

4l). We were interested in whether the methods that do not incorporate the gene expression data 

would similarly recover B3, and so we ran the default association algorithm in PLINK to find 

SNP-trait associations (Figure 4m). We found that although there is a low FPR, the power of 

detecting true associations decreases significantly (Figure 4m). 

 

5.  Mouse Data Analysis 

We ran GFlasso-gGFlasso on the NIH heterogeneous stock mice dataset
21

 using GenAMap to 

demonstrate that: 1) our method scales to real-world problems, 2) the visualization tools can filter 

Table 1. True positive rates (TPR) and false positive rates (FPR) of different methods in recovering the 

association matrices at different noise levels. 
 

   
    

        
    

      
      

   6 

 TPR      FPR TPR        FPR TPR        FPR 

B1 by GFLasso 0.9454    0.0060 0.8965    0.0057 0.7884    0.0092 

B1 by Lasso 0.9758    0.7632 0.9535    0.0763 0.9081    0.7528 

B2 by gGFLasso 1.0000    0.0000 0.9333    0.0016 0.7067    0.0205 

B2 by GFLasso 0.9800    0.0004 0.9233    0.0039 0.7000    0.0207 

B3 by GFlasso-gGFlasso 0.9200    0.0266 0.8600    0.0305 0.8400    0.2450 

B3 by GFlasso-GFlasso 0.9200    0.0266 0.8600    0.0615 0.8400    0.2500 

B3 by Lasso-Lasso 1.0000    0.8803 1.0000    0.9030 1.0000    0.8559 

B3 by PLINK 0.6300    0.0150 0.5357    0.0234 0.5000    0.0294 

 



 

 

 

and zoom to find association signals in real data, and 3) the method finds genome-transcriptome-

phenome associations compatible with established biological knowledge.  

The NIH heterogeneous stock mice dataset has data for 259 mice with 12545 SNPs, gene 

expression data (from the liver) for 46147 genes, and 178 phenotypic traits. We excluded genes 

that did not have signals in at least 50 mice, leaving 9742 genes, and normalized the expression 

values using lumi
32

. All traits with more than 30% of the mice having missing values were 

excluded, leaving 161 traits. Missing values were imputed using k-nearest neighbor imputation
33

. 

The network was created using a soft-threshold method for finding scale-free networks
34

. 

We compared the results from the GFlasso-gGFlasso strategy to results found from PLINK on 

the SNP-trait data, where all SNP-trait pairs with a p-value < 1e-4 were considered significant 

associations. We found that 1385 SNPs had associations to 131 traits in the PLINK results. In the 

two-step results, we found that 943 SNPs were associated with 746 genes and that 412 genes were 

associated with 133 traits. We found 604 SNPs that were associated to a trait in the PLINK 

analysis and were associated to a gene using GFlasso-gGFLasso. Of the 604 SNPs with an 

association to a trait using PLINK and to a gene using GFlasso, we found that 546 also had at least 

one associated gene that was associated with the same trait in the gGFlasso results. These findings 

suggest that the GFlasso-gGFlasso has found SNP-gene-trait associations that may help to explain 

associations found in the data by the PLINK analysis, in addition to the new signals that were not 

found by PLINK. 

We wanted to explore this large results dataset to find biologically interesting results. We 

explored the association results using GenAMap’s three-way visualization tools (see 

supplementary website for video). In our analysis, we found a group of 15 genes that was enriched 

for the GO process antigen processing (p-value = 4.54e-6). Using GenAMap, we identified eight 

genes in the group (H2-T23, H2-Q1, H2-Ab1, Bat5, Tmem63b, C4a, Psmb9, NM_010396) that 

were associated with a sub-network of seven immunology traits (%CD8+/CD3+, CD4+/CD8+, 

%CD4+/CD3+, %CD8+, %B220+, %CD4+, %CD3+). We found that these genes were associated 

to SNPs on Chr 17 (Figure 5), with the strongest signals to rs8242408.  

rs8242408 is located on Chr 17 in the intron region of Tap1 and 6kb upstream from Psmb9. 

All of the identified SNPs are part of the mouse H2, the major histocompatibility complex (MHC). 

The eight genes we identified are also located in the H2 region; three (H2-T23, H2-Q1, H2-Ab1) 

are known H2 genes and Psmb9 is known to be involved in antigen processing to create class I 

binding peptides (http://www.phosphosite.org). The H2 region is the mouse ortholog to the human 

HLA region and encodes genes involved in the mouse immune response
35

. Two classes of H2 

genes are presented to immune cells for identification. Some H2 genes (class I) are expressed in 

virtually all cells and display “self” antigens, while others (class II) are expressed only in antigen-

presenting cells
36

. CD8+, CD4+, etc., refer to proteins on the surface of immune response cells 

that bind to the antigens on the surface of the other cells in the organism.  

Despite the known association of H2 genes and immunology traits, the precise mechanism of 

how the identified SNPs influence the expression of these associated H2 genes is yet unknown. It 

is likely that the discovered SNPs act as cis-regulatory elements of these genes, which in turn have 

http://www.phosphosite.org/


 

 

 

effects on the immunology traits. Although this investigation merits further study, the discovered 

SNP-gene-trait associations are compatible with current biological knowledge and could lead to 

further insight into how SNPs in the H2 region affect the immune system. Of note is the strong 

association to rs8242408 in the promoter region of Psmb9, which suggests expression levels of 

Psmb9 could have a regulatory effect on other identified genes.  

 

 

Fig. 5. Results of mouse analysis. In our mouse three-way association analysis we found eight genes 

associated in cis to the mouse H2 region and are associated with immune response phenotypes.  

 

6.  Discussion 

High-throughput sequencing technology has advanced rapidly over the past few years and it will 

soon become routine to obtain personal genome information. Personal genomic data will possibly 

allow us to provide personalized treatment for each individual. While a number of exciting 

findings have emerged from genome-wide association studies, many results haven’t translated to 

the clinic for improved patient care. In the post-GWAS era, it has been suggested that the GWAS 

data could be more insightful when integrated with other data types. In this paper we considered 

the problem of combining GWAS and gene expression data to find genome-transcriptome-

phenome associations from an algorithmic and a visualization perspective. We have proposed a 

novel two-step strategy that employs structured association mapping to find associations from 

genome to phenome by leveraging gene expression data and its network structure. Using 

simulated and mouse datasets, we demonstrated that integrating this intermediate data type into a 

unified framework has the potential to increase the accuracy of studies and offer more insights on 

the functional relationships between identified GWAS loci and associated phenotypic traits. 

Although it is challenging to have a full understanding of such relationships and translate them 

into medical practice, we believe we have taken an important step forward.  

We are currently undertaking further steps to demonstrate our approach with biological 

analysis using the NIH heterogeneous stock mice. Additionally, more sophisticated optimization 

algorithms could be developed to increase the computational efficiency of gGFlasso. 
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