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This article compares different methods for combining abundance data, phylogenetic trees and clin-
ical covariates in a nonparametric setting. In particular we study the output from the principal
coordinates analysis on unifrac and weighted unifrac distances and the output from a double
principal coordinate analyses dpcoa using distances computed on the phylogenetic tree.

We also present power comparisons for some of the standard tests of phylogenetic signal between
different types of samples. These methods are compared both on simulated and real data sets. Our
study shows that DPCoA is less robust to outliers, and more robust to small noisy fluctuations
around zero.
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1. Introduction

The activities of complex microbial communities are increasingly recognized as vital aspects
of the biosphere, often with direct relevance for humans. Since the transition from cultivation-
and microscopy-based techniques of traditional microbiology to the nucleotide sequence-based,
cultivation-independent techniques predominant today, and especially with the advent of high
throughput next generation sequencing technologies, microbial ecologists have had to contend
with high dimensional datasets representing the abundance of hundreds or thousands of marker
gene sequence variants across tens or hundreds of samples.

This challenge has resulted in the development of preprocessing pipelines such as qiime1

and mothur2 that deliver output in the form of abundance tables of various phylotypes or otus
(An Operational Taxonomic Unit is defined only by sequence data, lacking the physiological
characterization required to establish and name a traditional taxon, but serving as a proxy
for a microbial species, genus or other taxonomic entity). We will not go into the difficulties
of correctly assigning the sequence reads to otus. This is most often done by using a x%
similarity rule of thumb, e.g., x in the range 97-99 for the 16S rRNA gene sequences. The
assignments often include a complex denoising procedure dependent on the actual sequencing
technology (454 Life Sciences, Illumina). The goals of these studies include the comparison of



bacterial communities from samples subjected to an experimental intervention, or chosen to
represent a natural contrast of interest. Thus, values for a number of clinical or environmental
covariates are generally associated with each sample. The analysis of these studies needs to
be multivariate to capture complex high dimensional interactions. All current methods rely
on computations of relevant distances between communities and their representation using
standard multidimensional scaling (MDS/PCoA).

1.1. Challenges in including side information for contingency tables

The output from the standard pipelines mentioned above are contingency tables with abun-
dances in the cells, species, phylotypes or otus are the rows of the tables and columns of
the table represent the sampling locations, often different patients at different times. How-
ever, complementary side information is available, both about the relationships between the
otus and about clinical/environmental covariates measured on the sampling locations. From
a practical perspective this is handled by the phyloseq3 package. The advantage of a specific
structured data approach is that we can use many of the packages already developed for eco-
logical and multivariate data analysis; the R4 packages ape,5 picante,6 ade4,7 vegan,8 and
phyloseq3 were used in the current paper. Here, we will show a comparative study of some of
the multivariate visualization and testing procedures available in these packages, concentrating
on ways to incorporate side information effectively.

The most common statistical approach to date is to use either unweighted or weighted
UniFrac9 distances between communities. Here we compare these to DPCoA10 (defined in
section 2.2) a two step process that combines phylogenetic and abundance data for PCR
sequenced phylotypes in a geometric framework.

We also provide complementary visualizations of multivariate biases and a review of avail-
able nonparametric testing procedures in the presence of important covariates.

2. Description of Techniques

2.1. UniFrac

UniFrac11 is a distance between microbial communities for which phylogenetic information
about the otus is available. The UniFrac distance between community A and community B is
defined as the fraction of branches of the phylogenetic tree that lead to members of community
A or community B but not both. This definition only considers whether an otu is present or
absent in a community and not how abundant it is.

Weighted UniFrac12 incorporates abundances and is defined as wUF (A,B) =
∑

i bi|Ai/AT −
Bi/BT | where the sum is over the branches of the phylogenetic tree, bi is the length of the ith
branch, AT is the overall abundance of otus in community A, and Ai is the number of otus
in community A that correspond to descendants of branch i. It is also possible to normalize
weighted UniFrac by the average distance of members of the two communities to the root.
This normalization can help correct for unequal sampling effort or different evolutionary rates
between taxa, but for the purposes of this paper, we will take weighted UniFrac to be the raw
(unnormalized) weighted UniFrac distance given above.



2.2. Double Principal Coordinates Analysis

DPCoA13 is based on work by Rao14 that aimed to integrate diversity and dissimilarity mea-
sures. Rao’s description of diversity and distance starts with a distance between individuals
and builds up to a measure of the diversity of a distribution and a dissimilarity between
distributions. Briefly, he defines the diversity within a population to be the average distance
between members of that population. Similarly, the diversity between two populations is the
average distance between members of the two populations. He then notes that we expect the
average distance between members of two different communities to be larger than the average
distance between members within the individual communities. Therefore a natural distance
between community i and community j is

RDij = Hij − (Hi +Hj)/2 (1)

where Hij is the average distance between members of community i and community j, and
Hi is the average distance between members of community i. These definitions of diversity
within a community and distance between communities are fairly natural, and they are useful
because they allow for a decomposition of diversity of a group of communities similar to the
decomposition of variance in ANOVA. If we have k communities with frequencies λ1, . . . , λk,
the diversity of all k communities taken together can be written as

H0 =

k∑
i=1

λiHi +

k∑
i=1

k∑
j=1

λiλjDij = H(w) +D(b) (2)

where the first term is the weighted sum of the internal diversities of the communities and the
second term is the weighted sum of the pairwise distances between the communities.

DPCoA is based on the distance in formula (1). The idea is to define a typology for which
the inertia of the cloud of points representing the otus and communities decomposes the
same way the quadratic entropy does. To do this, the otu points are first positioned in a
high-dimensional space in such a way that the distances between them are the same as the
patristic distances defined by the tree. Then, if the community points are put at the barycenter
of their otu profiles, the distance between the community points will be the square root of
Rao’s distance, formula (1).

Distances between individuals in Rao’s definition of diversity and distance do not have
to come from a tree, so in some sense, DPCoA is more general than UniFrac and weighted
UniFrac. Here we will compare the two step DPCoA approach using the patristic distance
between otus to the standard approach of computing the weighted/unweighted UniFrac and
then using this in a MDS/PCoA plot.

2.3. A single framework

Although UniFrac, weighted UniFrac, and the community distances in DPCoA come from
very different theoretical perspectives, we find it useful to present them in a single framework
as weighted sums over the branches of a tree. Recall that the weighted UniFrac distance is
defined as

wUF (A,B) =
∑
i

bi|Ai/AT −Bi/BT | (3)



Method Original description New formula Properties

DPCoA square root of Rao’s
distance based on the
square root of the pa-
tristic distances

[
∑

i bi(Ai/AT −Bi/BT )2]1/2 Most sensitive to out-
liers, least sensitive to
noise, upweights deep
differences, gives otu
locations

wUniFrac
∑

i bi |Ai/AT −Bi/BT |
∑

i bi |Ai/AT −Bi/BT | Less sensitive to out-
liers/more sensitive to
noise than DPCoA

UniFrac fraction of branches
leading to exactly one
group

∑
i bi1{

Ai/AT−Bi/BT

Ai/AT+Bi/BT
≥ 1} Sensitive to noise, up-

weights shallow differ-
ences on the tree

Table 1: Summary of the methods under consideration. “Outliers” refers to highly abundant
otus, and noise refers to noise in detecting low-abundance otus (see the text for more detail).

Evans and Matsen15 showed that weighted UniFrac was the first Wasserstein distance on a
tree and that the second Wasserstein distance on a tree was the quantity in equation (1),
although they did not link that observation to Rao or to DPCoA. However, it follows from
their work that we can write the distances between communities in DPCoA as

[DPCoA(A,B)]2 =
∑
i

bi(Ai/AT −Bi/BT )2 (4)

with one caveat: the branch lengths of the tree that we sum over are slightly different in
DPCoA compared to weighted UniFrac. This comes from the fact that in DPCoA, the inertia
is supposed to decompose the same way that quadratic entropy does.

Finally, it is informative to rewrite the formula for unweighted UniFrac so that it is as
similar as possible to our formulae for weighted UniFrac and DPCoA. Weighted UniFrac
and DPCoA have been written in terms of bi, the branch lengths, and Ai/AT and Bi/BT .
Unweighted UniFrac can be written, in terms of those same variables, as

UF (A,B) =

{∑
i bi1

{∣∣Ai/AT−Bi/BT

Ai/AT+Bi/BT

∣∣ ≥ 1
}

Ai/AT +Bi/BT > 0

0 Ai/AT +Bi/BT = 0
(5)

where 1 is the indicator function (i.e. evaluates to 1 if its argument is true and 0 otherwise).
This seems like an unnecessarily complicated way of writing unweighted UniFrac, but it is
useful because it puts unweighted UniFrac in a form that is more comparable to weighted
UniFrac and DPCoA.

Comparing these three formulae (see table 1) makes clear the differences between the three
ordination methods. Weighted UniFrac and DPCoA are quite similar: DPCoA is slightly less
robust to outliers (in our case, an otu is an outlier if it is much more abundant than the other
otus) than weighted UniFrac, but both suppress small “noisy” fluctuations around zero. This



noise can be thought of as the noise inherent in measuring otus that are present in abundances
near the detection limit. For example, if an otu is present in all samples but has a very low
abundance, it might be only be detected in half the samples. Unweighted UniFrac, on the other
hand, is quite different. It puts much more weight on shallow branches than either DPCoA
or weighted UniFrac. This makes it more sensitive to the kind of noise discussed before, but
also allows it to pick up shallower differences that the other two methods suppress. We will
see these properties illustrated in simulated and real data sets.

2.4. Runtimes

DPCoA’s runtime is quadratic in the number of otus but is not that dependent on the number
of samples. UniFrac’s runtime (as implemented in picante), in contrast, is linear in the number
of otus but super-linear in the number of samples. See figure S4 in the supplementary section.
The fact that DPCoA is O(n2) in the number of otus could potentially be a problem, but we
have performed DPCoA on abundance matrices with as many as 2,500 otus in forty minutes
in a 32 CPU linux cluster.

3. Simulations

As a first pass at comparing DPCoA with PCoA using weighted UniFrac, we looked at the
results of the two methods on simulated data. For the simulation, we imagine that we have
four subjects (A through D), each of whom is sampled in eight locations (1 to 8). For each
combination of subject and location, we have abundances for 300 species. The relationship
between the species is described by a random coalescent tree. The model is that one clade
varies along the location gradient (it is overrepresented in location 1 and underrepresented in
location 8) and another clade varies between two groups of patients (it is overrepresented in
patients A and B relative to patients C and D). This is a very simple data set, but it allows
us to look at both continuous and categorical covariates.

Figure 1 shows the ordination of the simulated data by both PCoA with weighted UniFrac
(a) and by DPCoA ((b) shows the community points and (c) shows the species points).
MDS/PCoA with weighted UniFrac and DPCoA both show the subject effect (in both cases
subjects A and B are to the left of subjects C and D) and the location effect (we see that the
locations are arranged roughly in order along the second axis in both methods). DPCoA gives
us some additional information, however: the locations of the species points. Since the species
points and the community points are built in the same space, the plots of the communities
and the species could be positioned on the same figure (we have separated them for readability
purposes). In figure 1(c), blue points indicate species that we modeled as being overrepresented
in subjects A and B relative to C and D, red points indicate species that we modeled as being
over- or under-represented along a gradient according to location, and green indicates all other
species. It looks like there are only four points in figure 1(c), but there are actually 300, many
of which are located in almost exactly the same place because the structure of the simulated
data is particularly simple.
Notice that the vector pointing to the center of the red (location effect) points is nearly

orthogonal to the vector pointing to the center of the blue (species effect) points. This is in
line with the fact that the species effect and the location effect are independent of each other.
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Fig. 1: (a) shows ordination of community points by PCoA with the UniFrac metric; (b) by
DPCoA. (c) shows ordination of species points by DPCoA: blue indicates species whose levels
change in subjects A/B versus C/D, red indicates species whose levels change along a gradient
related to location, and green indicates all other species.

Since we can see from the community plot that the first axis is primarily a subject effect and
the second axis is primarily a location effect, we could have guessed that species points that lie
close to the first axis would represent species related to the subject effect and species points
that lie close to the second axis would represent species related to the location effect. Since
we have simulated data, we know this is true.

3.1. Robustness to noise

One form of noise present in otu abundance tables can be thought of as noise around zero:
otus that are actually present might not be detected if they are present in very low abun-
dances. To look at the robustness of the two methods to this sort of noise, we looked at
another simulated data set. We simulated two groups of locations and 100 species related to
each other by a tree, each of which is either present or absent in each location. Splitting the
species approximately in half at the root, one half of the species are primarily present in group
“a” and the other half are primarily present in group “b”. We have three sets of simulations,
each one with a different amount of noise (see figure S1).

We then used DPCoA and PCoA/MDS with UniFrac to analyze these data sets. The
ordination method should correctly form two clusters and recognize that this is essentially a
one-dimensional problem (each community is in one of two groups). The results can be seen
in figure 2. Both of the techniques separate the two groups along the first axis for all noise
levels, but DPCoA keeps most of the variance along the first axis, while in PCoA/MDS with
UniFrac, increasing the noise causes the data to spread out along the higher axes. As predicted
by our results from section 2.3, DPCoA is more robust to noise than UniFrac. This simulation
demonstrates how strongly UniFrac upweights shallow differences compared to DPCoA. We
ran a second simulation to look at the kind of noise that is more likely to come up in 454
sequencing (that is, noise resulting in fake otus), and we saw a similar effect (see figure
S2). Considering the comparative formulae in table 1, we should not be surprised that many
different kinds of noise are suppressed by DPCoA.



 d = 0.2 

 a1  a2  a3  a4  b1  b2  b3  b4 

Axis 1:  100 %

A
xi

s 
2:

  0
 %

Total:  100 %

DPCoA, noise level 0.01

 Eigenvalues 

 d = 0.2 

 a1  a2  a3  a4  b1  b2 
 b3  b4 

Axis 1:  100 %

A
xi

s 
2:

  0
 %

Total:  100 %

DPCoA, noise level 0.2

 Eigenvalues 

 d = 0.1 

 a1  a2  a3 
 a4 

 b1 
 b2 

 b3 
 b4 

Axis 1:  97 %

A
xi

s 
2:

  1
 %

Total:  98 %

DPCoA, noise level 0.39

 Eigenvalues 

 d = 0.2 

 a1  a2  a3  a4 

 b1 
 b2 

 b3  b4 

Axis 1:  96 %

A
xi

s 
2:

  3
 %

Total:  99 %

UF/PCoA, noise level 0.01

 Eigenvalues 

 d = 0.1 

 a1  a2 

 a3 

 a4  b1 

 b2 

 b3 

 b4 

Axis 1:  70 %

A
xi

s 
2:

  1
1 

%
Total:  81 %

UF/PCoA, noise level 0.2

 Eigenvalues 

 d = 0.05 

 a1 

 a2 

 a3 

 a4 

 b1 

 b2 

 b3 

 b4 

Axis 1:  42 %

A
xi

s 
2:

  2
5 

%

Total:  67 %

UF/PCoA, noise level 0.39

 Eigenvalues 

Fig. 2: Comparisons of DPCoA (row 1) and PCoA/MDS with unweighted UniFrac (row 2)
for different noise levels. Columns correspond to data sets with noise levels .01, .2, and .39.

4. A Real Dataset

We then looked at the two methods on a real dataset. The data come from stool samples of
three subjects, each of whom took two courses of ciprofloxacin over the course of ten months.
Each patient was sampled about fifty times over those ten months, and we have abundance
data for about 2500 otus for each time point and patient. The otus are related to each other
by a phylogenetic tree, and the time points are categorized as pre-cipro, 1st cipro, 1st
week post cipro, interim, 2nd cipro, 2nd week post cipro, and post-cipro. We looked at the
data using unweighted UniFrac with PCoA/MDS, weighted UniFrac with PCoA/MDS, and
with DPCoA.

4.1. PCoA with UniFrac

We can see from figure 3 that the unweighted UniFrac distance emphasizes different aspects of
the data from weighted UniFrac. Unweighted UniFrac separates the subjects into fairly distinct
clusters, while weighted UniFrac shows much less of a subject effect. We know that the primary
difference between unweighted and weighted UniFrac is that unweighted UniFrac upweights
shallow differences, and we can therefore infer from the plots that the differences between the
subjects that we see in the unweighted UniFrac plot are probably due to shallow differences in
species composition. To show that the difference between unweighted and weighted UniFrac is
not merely due to the fact that weighted UniFrac takes into account abundances, we also show
the result of using weighted UniFrac on presence/absence data. Comparing figures 3(c) and
(b) shows us that the fact that weighted UniFrac can “see” abundances whereas unweighted
UniFrac cannot is not the source of the difference between the two methods.
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Fig. 3: Comparing the UniFrac variants. From left to right: PCoA/MDS with unweighted
UniFrac, with weighted UniFrac, and with weighted UniFrac performed on presence/absence
data extracted from the abundance data used in the other two plots.

4.2. DPCoA

The result of DPCoA can be seen in figure 4 (b) and (c). Since, as we saw from equation 4,
DPCoA is more sensitive to outliers than either weighted or unweighted UniFrac, we had to
remove any outliers, which would otherwise dominate the ordination. The result of DPCoA
on the full abundance matrix is given in figure S3 for comparison. The second axis seems to
separate the three subjects to a greater extent than weighted UniFrac, but not as much as
unweighted UniFrac. The otu plot can give us some more insight into the ordination given
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Fig. 4: (a) PCoA/MDS of the otus based on the patristic distance, (b) community and (c)
species points for DPCoA after removing two outlying species.

by DPCoA, particularly when we compare it to PCoA/MDS of the otus. Since the otu plot
in DPCoA shows the otus from the perspective that maximizes the inertia of the community
points, while a simple PCoA/MDS of the otus would show the otus from the perspective
that maximizes the inertia of the otus, groups of otus that are more spread out in DPCoA
compared to PCoA/MDS are likely to be important to the ordination. When we compare the
otu plot from DPCoA versus the otu plot from PCoA/MDS, we see that in the DPCoA otu

plot, Bacteroidetes are much more spread out in the DPCoA plot, and Firmicutes are much



closer together. This indicates that the first axis primarily represents the difference betwen
Bacteroidetes and the rest of the tree, and the second axis primarily represents differences in
the specific Bacteroidetes otus present in the different communities.

4.3. Antibiotic Stress

We next wanted to visualize the effect of the antibiotic. Figure 5 shows the ordinations of the
communities due to DPCoA and UniFrac with information about the whether the community
was stressed or not stressed (pre cipro, interim, and post cipro were considered “not stressed”,
while first cipro, first week post cipro, second cipro, and second week post cipro were considered
“stressed”). We see that for UniFrac, the first axis seems to separate the stressed communi-
ties from the not stressed communities. DPCoA also seems to separate the out the stressed
communities along the first axis (in the direction associated with Bacteroidetes), although
only for subjects D and E. Since UniFrac emphasizes shallow differences on the tree and since
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Fig. 5: Community points as represented by DPCoA (left) and PCoA/MDS with unweighted
UniFrac (right). The labels represent subject plus antibiotic condition. The ordinations are
the same as in figures 4 and 3.

PCoA/MDS with UniFrac seems to separate the subjects from each other better than the
other two methods, we can conclude that the differences between subjects are mainly shallow
ones. However, DPCoA also separates the subjects and the stressed versus non-stressed com-
munities, and examining the community and otu ordinations can tell us about the differences
in the compositions of these communities.

5. One step further: confirmatory analyses

The previous methods were purely exploratory and allow us to visualize the effect of the
covariates in principal coordinate plots. In reality we would like to be able to test the effect
of the covariate through a non parametric test. There are a number of methods available for
this sort of testing. One example is the UniFrac test, which tests whether two groups have
significantly different species compositions by calculating the amount of branch length unique
to each environment, permuting the labels, and re-calculating the amount of unique branch
length. The p-value is then the fraction of trials for which the permuted unique branch length
was longer than the observed unique branch length. The downside of this test is that it only



tests differences between individual locations or communities, not groups of communities, and
so it is more useful when you are working with small numbers of communities.

adonis (in the package vegan) provides a nonparametric multivariate analysis of variance
using distances. Given a set of distances between observations, it decomposes the weighted
sums of distances according to a linear model and calculates p-values associated with those
decompositions by permutation of the labels.

Mantel’s test16 and the RV test (both implemented in ade4) test correlation between
matrices. Mantel’s test takes two distance matrices X and Y and uses as a test statistic∑

i<j XijYij. The null distribution is generally estimated by a Monte Carlo method: keeping
the entries of one matrix fixed, permuting the entries in the rows and columns of the other
matrix, and recomputing the test statistic. The RV test is similar, it is based on a multi-table
generalization of the correlation coefficient. (RV (A,B) ∝ Trace(t(A)B)).17 This nonparametric
test estimates the null distribution of the RV coefficient between two matrices by permuting
the rows of one matrix and recomputing the RV coefficient for each permutation.

Finally, the Abouheif test tests traits for a phylogenetic signal. It was originally described
as a version of a test for serial independence on the leaves of a phylogenetic tree where the
null distribution was determined by permutation of the leaves,18 but was later shown to be a
a version of Moran’s I with a certain distance on the tree.19

5.1. Testing our data

Our ordination of the simulated data suggested two hypotheses to test: first, that subjects
A and B are different from subjects C and D, and second, that the species composition of
each subject changes along a gradient associated with the location. Since the simulated data
looked fairly similar in DPCoA and PCoA with the UniFrac distance, we will do all the testing
on the DPCoA results. To test whether the species composition changes along the location
gradient, we can use Mantel’s test, the RV test, or adonis. For Mantel’s test and the RV test,
we compare the distances between communities given by DPCoA with distances between the
covariates (for example, if we were testing a location effect, we could test the DPCoA distances
with the distances between the locations). For adonis, we will be testing whether location
explains a significant amount of the distances between the communities (distances again as
given by DPCoA). Figure 6 shows the p-values we get from each test for varying magnitudes
of the effect (0 is no location effect, and 5 is a pretty strong location effect), and we can see
that the Mantel is the most sensitive here, followed by adonis, followed by the RV test.

To test whether species composition is different in the group containing subjects A and B
compared to the group containing subjects C and D, we can use adonis, the Abouheif test, or
the UniFrac test. For the Abouheif test, we can look for a phylogenetic signal in the difference
in the abundance of each species between subjects A/B and C/D. Adonis, as before, will look
at the amount of variance explained by the groups. For the UniFrac test, if we just want to
test the difference between the two groups of subjects, we need to take the average species
composition over all the samples from subjects A and B and compare it to the average species
composition over all samples from subjects C and D. If the distance between the two averages
is significant, we can say that the difference between the groups is significant. Figure 6(b)
shows the p-values for the Abouheif, adonis, and UniFrac tests at different magnitudes of the
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tests for a location effect at different magnitudes of the effect. The right shows the p-values of
the Abouheif (x’s), adonis (diamonds), and UniFrac (triangles) tests at different magnitudes
of the group effect.

group effect. We see that all three tests have similar performance on these data, and the adonis
and UniFrac tests give remarkably similar results.

Our ordination of the real data suggested that we should test whether there is a difference
in intestinal bacteria composition between times of antibiotic stress and no stress. Adonis
seems to be the most appropriate method in presence of a patient effect, an antibiotic stress
effect, and maybe an interaction between the two. Carrying out this analysis gives the result
that, for both the distances given by DPCoA and the distances given by UniFrac, the patient
effect and the antibiotic stress effect are significant at the .001 level. The interaction term
between patient and antibiotic stress is significant at the .05 level for the UniFrac distances
and at the .001 level for the DPCoA distances. We can also try the UniFrac test on this data,
aggregating by subject or by stress condition as before. We find that the unweighted UniFrac
test gives a significant result for both the subject effect and the antibiotic stress effect, but
the weighted UniFrac test gives significant results for neither.

6. Summary

This article presents comparisons of some of the current techniques available for analyzing
abundance tables in the presence of side information on the otus and covariates on the
samples. The classical framework for analyzing abundance tables using parametric models or
multivariate analysis of variance does not apply in the microbiome studies and recent papers
have used UniFrac20 and DPCoA21 with success. Both approaches are similar in their use
of phylogenetic distances between otus and projections using PCoA. However whereas the
UniFrac approach allows the comparison of two samples at a time, DPCoA provides a more
complex framework enabling different categorical and continuous covariates to be taken into
account. In our comparisons of weighted and unweighted UniFrac approaches the unweighted
UniFrac seems to distinguish a much clearer separation between subjects for instance, both
on simulated and real data. We compared DPCoA and unweighted UniFrac on simulated
data to test their performances in the presence of noise. The results show that when there is a



simple one dimensional contrast between the data, DPCoA is impervious to a substantial noise
component, whereas the first axis in an unweighted UniFrac PCoA plot has a much smaller
eigenvalue. The consequence in more complex studies is that the subsequent components
of variation can be interleaved with the main phylogenetic effect leading to difficulties in
interpreting the results.
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