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Introduction

Biological functions are often explained in terms of networks and pathways. Innumerable
college students have memorized canonical metabolic pathways, and signal transduction
pathways such as MAPK, JAK/STAT and WNT have entered the biological lexicon. Inas-
much as these pathways provide a useful abstraction of biology, they can be used as a
framework for understanding how mutations affect life processes and potentially cause
disease.

Much work has been invested in mapping these and other pathways in human and
simpler model organisms. Data sets are not pathways per se, but rather measurements of
the individual interactions between proteins, genes, metabolites, drugs, and other species
that define a network. In model organisms these networks can be perturbed by directed
experiments. The first series of papers in this session explores how the experimental data
sets can be analyzed and explained.

Directed perturbations of human networks in vivo are not possible, but genotype and
phenotype data sets from individuals present a rich spectrum of information. The session
concludes with analyses of the effects of primarily somatic mutations in cancer, focusing
on the identification of subnetworks that may be responsible for disease phenotypes.

Genetic interaction networks in model organisms

Genetic epistatic interactions occur when mutations in two genes simultaneously create a
phenotype different from the expectation from the two individual mutations. Genetic inter-
actions are distinct from gene regulatory interactions, which refer to physical interactions
between transcription factors and promoters. Large data sets of genetic interactions have
been generated for yeast using a variety of experimental methods, which has motivated
several contributions investigating the properties of these networks.

Bandyopadhyay et al. use gene expression data to assist in the prediction of genetic
epistatic interactions in “SSLPred : Predicting Synthetic Sickness Lethality.” The concept
explored in this work is the feasibility of using network information to guide the generation
of features to use in a predictive regression model. This work illustrates a recent theme
in regression in a large feature space, the use of L1 regularization known as the lasso [1].
Lasso regression adds a penalty term that is related to the absolute value of parameter
estimates. Quadratic programming and other methods permit fast identification of the
global optimum, and, unlike ridge regression using L2 regularization, features can have
regression coefficients that are set strongly to zero.

While Bandyopadhyay et al. provide global predictions for a genome-scale network,
Carter et al. focus on quantitative understanding of a single network in “Predicting The Ef-
fects Of Copy-Number Variation In Double And Triple Mutant Combinations,” investigate
the contribution of genetic interactions to quantitative traits. The problem is important
because of current interest in what has been called “missing heritability” in the context
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of human genome-wide association studies, where the contributions of known genetic fac-
tors remain below the total genetic contributions, which can be estimated accurately from
epidemiology [2]. One possibility is that most analyses consider only additive models, in
part because populations are not yet sufficiently large to have power to detect interaction
terms. This work by Carter et al. is valuable in investigating non-additive contributions
to a quantitative trait, defined by gene expression levels within the context of a detailed
model of filamentous growth in yeast. The authors build on their earlier model of the gene
regulatory network for filamentous growth [3] and use singular-value decomposition to in-
vestigate the dominant modes of transcriptional output [4]. The computational models
are able to predict transcriptional phenotypes for perturbations including deletions, hypo-
morph alleles, and copy number variations, all important for human studies. Predictions
for novel mutant combinations are in general concordance with experimental results. This
manuscript points to the complexity of predicting phenotypes for multi-mutant combina-
tions in yeast and illuminates the challenges ahead for predicting phenotypes from personal
human genome data.

The subject of “Role of Synthetic Genetic Interactions in Understanding Functional
Interactions Among Pathways” by Mohammadi et al. is the interpretation of genetic inter-
actions in the context of other network data. Previous efforts have described genetic inter-
actions in terms of within-pathway models (genetic interaction partners reside within the
same pathway) and between-pathway models (genetic interactions occur between pathways
with compensating or overlapping function). Comparisons with physical interactions [5, 6]
and metabolic pathways [7] have typically favored the between-pathway model, particularly
for deletion mutations that destroy the functionality of a linear pathway. The current con-
tribution reexamines this problem using more recent data sets and pathways from KEGG
to suggest functional connections between biological pathways in yeast.

Human data and local subnetworks

Data sets revealing network activity in human cancer are becoming available through The
Cancer Genome Atlas (TCGA). These data sets provide an important test of the ability of
methods developed for model organisms, primarily yeast, to scale to much more complex
human systems involving more genes, larger networks, and distinct cell types.

In “Integrative Network Analysis to Identify Aberrant Pathway Networks in Ovarian
Cancer,” Chen et al. investigate the challenge of predicting cancer survival from genome-
scale TCGA data involving copy number alterations, gene expression changes, and protein
interactions. The rationale of TCGA is the hypothesis that genome-scale data will indeed
result in improved methods for detecting, grading, and treating cancers. Demonstrations
of effectiveness, including this work, are crucial for making progress and justifying future
efforts related to TCGA. The authors approach this problem by identifying subnetworks
of genes linked by protein-protein interactions that are effective at classification, then
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using support vector machines (SVMs) to perform the classification. The subnetwork
learning illustrates an important theme in biological network analysis known as the “active
subnetwork problem,” in which a subset of genes or proteins strongly implicated in a process
are linked together parsimoniously [8]. This problem can be expressed as a version of a
classic problem in computer science known as the prize-collecting Steiner tree, known to
be NP-hard, but for which efficient solvers have been recently invented [9, 10, 11].

Vandin et al. also analyze TCGA data in “Discovery of Mutated Subnetworks As-
sociated with Clinical Data in Cancer,” but with the goal of identifying subnetworks of
genes with high mutation rates whose proteins are known to interact. This method adds
to exploratory tools for investigating data from next-generation sequencing of tumors. The
methods make use of graph diffusion kernels, which provide robust measures of associa-
tion or similarity for graphs [12] and are the basis of the Google PageRank algorithm [13].
Graph kernels are a method of choice for extracting features for machine learning from net-
work data, with applications ranging from predictions of protein similarity [14] to genetic
epistasis [15].

The local subnetwork problem attacked by Chen et al. and Vandin et al. in these
contributions has an analogous global subnetwork problem, carving a large network into
subnetworks that reflect discrete biological processes or functions. Algorithms developed
for clustering in other contexts, including powerful spectral clustering techniques [16, 17],
have not performed well for biological networks or social networks. Modularity scores
that maximize the enrichment of edges within groups are closely related to spectral clus-
tering [18] and suffer from resolution limit problems in which small groups are merged
inappropriately into larger groups [19]. Important recent progress has come from proba-
bilistic models for hierarchical networks, essentially hierarchical stochastic block models.
These methods can identify groups through Monte Carlo searches for small networks [20]
and by approximate greedy algorithms for genome-size networks [21]. These methods have
the advantage of extending readily to joint analysis of physical, genetic, gene regulatory,
metabolic, and other types of interactions.

Converging problems and challenges

These examples highlight the use of networks as a framework for interpreting genome-
scale data and predicting the response to new mutations. Important new challenges are
motivated by the growing ability to obtain personal genome sequences, identifying variants
that are unique to individuals. The future may involve a synthesis of methods designed
for common variants, such as the copy number variants seen across TCGA samples, with
methods designed for rare variants, leading to predictions of personal pathway activities
and therapeutic options.
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