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Joint genotyping and large-scale phenotyping of molecular traits are currently available for a 
number of important patient study cohorts and will soon become feasible in routine medical 
practice. These data are one component of several that are setting the stage for the 
development of personalized medicine, promising to yield better disease classification, 
enabling more specific treatment, and also allowing for improved preventive medical 
screening. This conference session explores statistical challenges and new opportunities that 
arise from application of genome-scale experimentation for personalized genomics and 
medicine. 

  



  

 

1. Overview of major statistical and computational challenges 

Realizing the promises of personalized medicine requires robust analysis approaches, 
handling the breadth of data types and addressing key statistical challenges. Examples of 
these challenges include hidden structure within the data that can confound analysis results 
and lead to loss of power; missing or incomplete information; data heterogeneity; and the 
burden of multiple testing.  

While these statistical challenges are not new, per se, the scale of genomic datasets comes 
along with additional difficulties but also opportunities for methodological innovation. For 
example, genome-wide association studies (GWAS) generate millions of hypotheses; it 
requires special consideration to reduce the burden of multiple testing so that the rate of false 
discoveries can be controlled1 while retaining sufficient statistical power to detect true 
genetic associations, for example with single nucleotide polymorphisms (SNPs). One can 
begin to tackle these issues by incorporation of prior information (e.g. Lee et al.2 and Sun et 
al.3), or using multivariate modeling4. Tied in with these techniques are also methods that 
combine groups of candidate features (e.g., SNPs) in such a way as to obtain higher power, 
thereby attributing larger effect sizes, and uncovering a more complete picture of the 
underlying sources of heritability (e.g. Yang et al.5 and Tatonetti et al.4). 

Very large-scale datasets also support analysis strategies not available on smaller datasets. 
These include the ability to deduce and model hidden confounders from high-dimensional 
measurements, by way of Principal Components Analysis (e.g. Eigenstrat6), Factor 
Analysis7,8, and Linear Mixed Models9,10,11, for example. All of these approaches leverage on 
high data dimensionality, assuming that confounders act similarly on a large fraction of SNPs 
or phenotypes, which allows these factors to be reconstructed solely from the observed data. 

Another challenge is the development of high quality software for the community, so that 
resources and expertise can be appropriately leveraged and shared. Use of such software 
exposes weaknesses that can then be addressed by further developments. For example, Linear 
Mixed Models software for GWAS has been increasingly made faster and faster, as the speed 
and memory constraints of each new software release becomes the bottleneck for larger and 
larger data sets9,10,11. 

 

2. Open statistical challenges 

Statistical genomics is further complicated by the fact that, in real world settings, multiple 
confounders with intertwined impacts affect data, and as such, heterogeneous data need to be 
analyzed together rather than independently. Thus, tools are needed that tackle these 
statistical challenges in a joint fashion.  

For example, when relating genotype to phenotype in a GWAS, population structure and 
family relatedness can reduce power to detect true associations and cause spurious 
associations6. Most molecular phenotypes, such as gene expression, are additionally 
contaminated with experimental artifacts or environmental influences. Such confounding 
factors, sometimes termed expression heterogeneity, have been shown to severely corrupt 



  

results of naïve analyses7,8,12. When seeking the genetic underpinnings of gene expression, 
such as in an expression quantitative trait loci analysis, problems of population structure, 
family relatedness and expression heterogeneity can be jointly present, and therefore models 
that address all of them simultaneously are required12.  Additionally, individual readings of 
high-dimensional cellular phenotypes cannot be considered as independent, and thus 
hypothesizing and learning hidden regulatory causes of co-expression, such as cell type or 
transcription factor activity, has been shown to shed light on otherwise incomprehensible 
expression patterns13.  However, further work in this area is still needed. 

 

3. Open and usable software tools  

Ultimately, personalized medicine needs to make its way into the clinic and the results of 
statistical inference need to be communicated to both clinicians and patients.  How much 
statistics, molecular genetics and machine learning do users need to know to be able to 
interpret the results? Should software come with user-friendly tutorials on overfitting, 
multiple testing issues, p-values, false discovery rates and the ‘winner’s curse’? Although 
physicians and patients may be interested in inferences about health and disease, what they 
most require is assistance in acting on these inferences, i.e., making medical and lifestyle 
decisions that maximize expected benefit to the patient.  So, is there another way to 
communicate an intuition about what it was about the primary data that led to the inference so 
that users can place their results in the context of current knowledge and evolving expertise? 
On top of addressing these difficult requirements, software must also safeguard patient 
privacy. 

 

4. Session contribution  

Our session explores these statistical and software development challenges within the context 
of personalized medicine. 

In this session, Karczewski et al. propose new software, which allows the lay user to view 
and draw understanding from their genome sequence.  It allows users to browse individual 
genome information in an interface that pays heed to security and privacy concerns.  Of 
particular interest to computational biologists and statisticians engaged in tools development 
for personal genomics is a plugin interface that promises to ease the transition from ideas to 
implementation to wide use by physicians, patients and curious consumers.  

Other directions of development addressed in the session are uncovering relationships 
between genotype and phenotype. Established modeling approaches are predominantly based 
on a linear model to predict the phenotypic readout from genotype, whereas heterogeneous 
disorders such as diabetes group distinct genetic diseases together. Warde-Farley et al. 
investigate using a mixture model of phenotypes and genotypes to map the age of diagnosis 
of type 2 diabetes. Using this simple, non-linear mapping, allows them to fit a set of simple 
genotype models that collectively predict phenotype. Perhaps many complex disorders with 
related phenotypes can be decomposed into multiple simple genetic disorders. 
Complementary to this work, Curtis et al. propose a new method to identify important 
transcriptome and phenome relations in the GWAS data by incorporating relational  



  

 
information on the gene and trait level. This new framework is based on a two-step 
procedure, where the first step identifies the important transcriptome relations (from SNPs to 
genes) and the second step identifies gene-to-trait relationships, thereby simplifying the 
problem of mapping from SNPs to traits. 

Finally, our session explores computational methods to predict the sensitivity of tumor 
disease systems to external drug therapy. Pal et al. propose a novel approach that derives an 
abstract representation of cancer pathways from data, yielding Boolean drug kinase inhibition 
maps, which can then be used to predict sensitivity of systems with respect to a previously 
unseen drug treatment.  
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