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The decreasing cost of genotyping and genome sequencing has ushered in an era of genomic personalized 
medicine. More than 100,000 individuals have been genotyped by direct-to-consumer genetic testing 
services, which offer a glimpse into the interpretation and exploration of a personal genome. However, these 
interpretations, which require extensive manual curation, are subject to the preferences of the company and 
are not customizable by the individual. Academic institutions teaching personalized medicine, as well as 
genetic hobbyists, may prefer to customize their analysis and have full control over the content and method 
of interpretation. We present the Interpretome, a system for private genome interpretation, which contains all 
genotype information in client-side interpretation scripts, supported by server-side databases. We provide 
state-of-the-art analyses for teaching clinical implications of personal genomics, including disease risk 
assessment and pharmacogenomics. Additionally, we have implemented client-side algorithms for ancestry 
inference, demonstrating the power of these methods without excessive computation. Finally, the modular 
nature of the system allows for plugin capabilities for custom analyses. This system will allow for personal 
genome exploration without compromising privacy, facilitating hands-on courses in genomics and 
personalized medicine. 

 
1.  Background and Significance 

The rapid decrease in the price of genotyping and sequencing technologies, with the race to the 
$1,000 genome, has brought forth an age of genomic personalized medicine. The market of direct-
to-consumer (DTC) genotyping, with the emergence of companies such as 23andMe, Navigenics, 
and Lumigenix, has put personal genotype information in the hands of patients and health care 
providers, based around the central idea that individuals are the owners of their genotype data. 
However, the problem has now shifted from the generation of accurate genotype data to tackling 
the problem of the “$1,000,000 interpretation.” Without the proper tools, both patients and 
physicians will find it difficult to interpret and analyze the extraordinary amount of data, 
effectively rendering it useless. 

DTC genetic testing companies normally provide some data analysis, but such an approach has 
a number of drawbacks. First, DTC genetic testing companies may sometimes use proprietary 
algorithms that remain undisclosed, or use genetic data that are private and not available to the 
public. Hence, their analysis is not always transparent and the user may not understand how the 
analysis was done or be able to independently replicate the results. Second, the analysis can only 
be modified, expanded, or tweaked by the genotyping service itself, disallowing the application of 
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other analysis by a third party. Finally, and perhaps most importantly, the consumer’s information 
is necessarily stored in a company’s server, to which people other than the user may have access. 

In addition, the age of genomic personalized medicine has brought the use of genetic data into 
the clinical setting. However, the pace of medical education has not kept up with this demand and 
patients are beginning to enter clinics seeking guidance in interpreting their personal genomes. 
Stanford University has introduced a pioneering course in Personalized Medicine and Genomics, 
aimed at medical and graduate students interested in interpreting personal genomes. While 
interpretation is offered by these DTC genetic testing companies, medical schools and universities 
avoiding conflicts of interest may prefer to be independent and retain the ability to customize and 
expand their interpretations. 

Various tools that have been developed for genomic analysis can be extended to interpret 
personal genotype information. For instance, genome-wide association studies (GWAS) have 
discovered the genetic factors related to various diseases and traits, which can be applied in 
reverse to personal genotypes to predict traits based on genetics. Additionally, approaches from 
population genetics that distinguish populations can be used to infer an individual’s ancestry. 
Many such techniques already exist and more are being developed every day and a systematic 
evaluation of these methods is crucial to present a compact and informative report to the end users. 
Equally important is the way to present this report, with the necessary background to understand 
each analysis, including its accurate interpretation and limitations. Additionally, more 
knowledgeable users, such as physicians or bioinformaticians, may wish to fine-tune the 
parameters of these analyses to fully exploit the given data. 

We have developed a web-based genome interpretation engine that addresses these needs by 
providing comprehensive, secure, and highly customizable framework to analyze personal 
genotype information. Leveraging modern browser technology, including HTML5, CSS3, and the 
document canvas, we have built a system to analyze whole-genome genotype data within the 
user’s browser. The key feature of this approach is that the server is never sent any genotype data 
except when the user expressly requests to do so. 

2.  Methods 

To accomplish these goals, we have built a client-side genome interpretation system, have 
implemented and developed advanced analyses for personal genomes, and built a framework for 
customization of annotations. 

2.1.   Client-side system 

We leveraged several application and user interface (UI) frameworks for use on the client-side. 
We chose Backbone as an application framework, which separates client-resident code (Figure 1) 
into models (managing and manipulating data), views (responsible for the user interface of any 
particular section), and controllers (which route requests and manage application-level logic, e.g. 
session and history). In this terminology, the models correspond to a user, the views correspond to 
each analysis module, and we have a single application-level controller. 
 



 
 

 

As the ultimate goal of this application is to communicate genetic information in a clear and 
concise manner, making informed decisions about the user interface and representation of data 
was critically important. We conducted a survey of health-related websites in order to gauge the 
‘state of the art’ in this domain. All attempt to balance accessibility and information content - 
many erring on the side of data overload. We decided to maintain a sparser interface, employing 
widgets from the jQueryUI, Google charts, and Highcharts libraries. 
 
Since the entire application is loaded dynamically, our Backbone views utilize jQuery and 
jQueryUI to update the interface in response to user interaction. The clear separation of interface 
and logic afforded by our design choices enabled us to preserve application state across different 
modules. As users navigate to new modules, the Javascript logic and HTML content 
corresponding to those modules are loaded dynamically. 

2.1.1.   The user model 

Determining how to load user genomes and how to represent a user was one of the first challenges 
in building Interpretome. Even a year ago, it would not have been possible to load a file into the 
Javascript machine without using obscure developer versions of a web browser. Since then, the 
newest releases of Chrome and Firefox have added support for the FileReader API, a new standard 
developed to support reading of text and other files in Javascript. Notably, this API does not have 
access to the filesystem, only to files the user has selected explicitly.  
 
The user supplies a tab-delimited file (with RSID, chromosome, position, genotype), a format 
utilized by many DTC companies; additionally, we provide conversion scripts on request for all 
major DTC vendors, as well as other formats, including VCF files for full genomes. We parse 
these files line-by-line and store each SNP as an object in a hash table associated with a newly 

Figure 1: Interpretome is designed along the Model-View-Controller pattern, separating the application 
into distinct components corresponding to data, analysis, and navigation. 

 



 
 

 

 

created user instance, and a progress bar provides a visual cue of the process. Even with larger 
files (several million SNPs) and older computers, this takes no more than thirty seconds. 

2.1.2.  Analysis views 

When a user runs an analysis, a function is dispatched that runs the main computation. In many 
cases, the result of the first function is a block of data received from the server, which defines 
parameters of the exercise (e.g., a set of SNPs). Specifically, when genotype-specific information 
is requested, data for all possible genotypes are typically retrieved, preventing the deduction of the 
individual’s genotype by intercepting this query. After receiving the relevant data, the client 
queries the model for a user’s genotype at these SNPs (which may be measured directly in the 
user’s genotype or imputed using public data, as described below). Once the client receives the 
necessary data, the algorithm is run, without sending any genotype information to the server. 
Finally, the view updates the interface with the results and generates associated plots and figures. 

2.1.3.  Scalability 

Delegating most of the computation into the browser has major advantages for scalability. Since 
our backend server is largely responsible for sending (as opposed to receiving) content, and 
database access is mostly limited to large cacheable chunks, scaling the application is relatively 
simple. We are able to increase site availability by simply adding more database servers and can 
ignore issues of synchronization across database replicates, which are huge challenges for other 
dynamic web applications. 

Figure 2: Imputation of a user’s genotype is done directly in the browser. Allele data from public databases 
needed to impute a user’s genotype can be obtained by just requesting the necessary SNPs through their rsids or 
genomic coordinates. No genotype information from the user is ever sent through the network. 
 



 
 

 

2.2.   Analyses 

We have implemented a set of standard genome analysis modules for the Interpretome. These 
analyses utilize our client-side imputation method, which demonstrates the power and features of 
the private analysis system. Additionally, we have implemented clinical and ancestry analysis 
methods, as well as a number of exploratory tools, which are easily expandable. 

2.2.1.  Imputation 

To expand the number of SNPs available for analysis, we first implemented a client-side 
imputation by proxy method. In this scheme, all the computation required for the task is performed 
on the client-side, with public information downloaded as required from the server (Figure 2). The 
user requests a number of SNPs not in the personal genotype file and a request is sent with RSID 
identifiers and a target population. The server responds by providing all SNPs in linkage 
disequilibrium with the requested SNP in the selected population (from Hapmap data). On the 
client side, the system determines which of these SNPs are contained in the personal genotype file, 
and thus, will be suitable for imputation. The client requests phase information for these SNPs 
from Hapmap genotype data from the server. These data are returned and the resulting SNPs are 
“imputed” from the returned phases in the browser. 

2.2.2.  Clinical analysis 

 We have implemented a number of analyses that demonstrate the methods available for clinical 
interpretation of a personal genome. First, we have implemented a disease risk calculation, as in 

Figure 3: Diabetes risk calculator. Using likelihood ratios calculated from published association studies, the 
diabetes risk exercise computes a user's risk of developing Type 2 Diabetes. The estimate is based on a 
population and sex-specific prior for each user, adjusted by the user’s genotypes. 

 

Diabetes Risk

dbSNP Genotype Study size Imputed from R squared LR Running LR Probability

Prior 0.311 0.311 23.700% 

2237897 CC 9387 1.023 0.318 24.116% 

2237895 AA 9387 0.836 0.266 20.994% 

2283228 AA 9387 1.031 0.274 21.501% 

4712524 AG 9294 0.972 0.266 21.019% 

9295475 AA 9294 0.922 0.245 19.700% 

6769511 CT 9294 1.066 0.261 20.726% 

9460546 GT 9294 0.972 0.254 20.271% 

Clinical Assessment
Type 2 diabetes mellitus is a complex polygenic trait and is
the most common form of diabetes. Heritability is
estimated at about 20%, but thus far, variants discovered
by GWAS have only been able to explain a fraction of the
heritability.

In this exercise, you can profile your risk for this common
disease using a few of the SNPs identified by association
studies. We will use the method demonstrated by the first
clinical assessment of a personal genome. For this
assessment, we require likelihood ratios conferred by each
SNP (which are not always provided by the initial GWAS).
The likelihood ratio is then multiplied by your prior
probability (given the background population selected) to
obtain a posterior likelihood. This likelihood represents the
likelihood of the disease given the data observed so far,
and is converted to a probability, which is shown here. This
process is repeated for all the SNPs in the dataset (ordered
by discovery study size) to obtain your final probability.

Note that this does not include all the SNPs associated with
the disease (nor are all these SNPs even known, as the
heritability is not yet fully explained). Note that because of
this:

This analysis is incomplete, as plenty more variants may be
identified
This analysis may di!er from other interpretations offered
by other companies (such as 23andme) or programs, which
may consider different SNPs for their interpretation.

Again, note that this information is not intended as a
diagnosis. First, even a full clinical genomic assessment
would not constitute a diagnosis, as these variants simply
alter the disease risk of an individual. In addition, this
exercise does not consider all variants, but simply
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the first clinical assessment of a personal genome [Ashley et al., 2010]. We have employed the 
risk calculation method of likelihood ratios and demonstrate how each variant affects an 
individual’s risk of Type 2 Diabetes (Figure 3). Prior to the computation, the likelihood ratio for 
each genotype is downloaded from the server (with no genotype data sent to the server). The user 
inputs a population and sex, which define a prior probability for the disease. Then, the likelihood 
ratios are chained together (using the actual genotypes for the individual) as in [Morgan et al., 
2010] to determine a posterior probability. 
 
Additionally, we demonstrate the applications of a personal genome in pharmacogenomics, or the 
study of genetic variation related to drug response. For instance, warfarin, an anti-coagulant 
prescribed to millions of patients every year, has a high therapeutic range and genetic variants in 
genes such as VKORC1 and CYP2C9 have been implicated in this variation. These variants, along 
with clinical factors such as age and weight, can be used to predict an optimal predicted starting 
dose of warfarin [Consortium, 2009]. We have implemented this warfarin dose calculator, which 
predicts an optimal starting dose given a personal genotype and clinical parameters. In addition, 
we extend the pharmacogenomic application of personal genomes to other drugs, using a set of 
annotations from PharmGKB (www.pharmgkb.org; Michelle Carillo; personal communication). 
 
Finally, we include a section for further exploration of rare pharmacogenomics variants (Table 1). 
This analysis searches for rare, non-synonymous variants in putative pharmacogenes (genes with 
drug-gene interaction data from DrugBank; www.drugbank.ca). The functional impact of these 
variants is predicted by PolyPhen2 [Adzhubei et al., 2010], which are pre-computed for all 
variants in dbSNP. 
 

dbSNP Genotype MAF Gene Name Drug Name PolyPhen 
Class 

PolyPhen 
Score 

rs16985442 CG 0.041 SLC12A5 Bumetanide benign 0 
rs10075302 AC 0.049 SLC25A2 L-Ornithine benign 0.064 
rs11548670 AG 0.022 NDUFS1 NADH probably 

damaging 
0.999 

rs933135 CT 0.022 Plcd1 Acetate Ion possibly 
damaging 

0.822 

rs9332608 AG 0.049 F5 Phenylmercury benign 0.021 
rs4252128 CT 0 PLG Bicine possibly 

damaging 
0.418 

rs363504 AG 0.022 GRIK1 Topiramate benign 0 
rs1801690 CG 0.046 APOH Alpha-D-

Mannose 
probably 
damaging 

0.938 

rs1805321 AG 0 PMS2 Adenosine-5'-
Diphosphate 

benign 0.002 

 
Table 1: Rare Pharmacogenomic Variants. Non-synonymous, rare variants (MAF < 5%) in genes predicted to interact 
with drugs from DrugBank are shown for a personal genome. The PolyPhen Class and Score predict whether a 
variant may be damaging to the function of the protein, which may affect an individual’s drug response. 



 
 

 

2.2.3.   Ancestry analysis 

As methods for population genetics can be applied to infer ancestry from personal genomes, we 
have implemented client-side methods for global ancestry similarity, individual similarity, and 
chromosome painting. First, we have enabled individuals to compare their personal genomes to a 
reference panel, using principal component analysis (PCA). Typically, to run such an analysis, an 
individual genotype would be added to a reference panel, such as the HGDP [Cann et al., 2002] or 
POPRES [Novembre et al., 2008] datasets, and principal components would be calculated for the 
combined dataset, which can take from 10 minutes to an hour for each dataset. In this method, we 
have instead pre-computed the eigenvectors and loadings for each SNP, as well as projections of 
the individuals in the reference panels. When the analysis is run, the client downloads these data 
and then projects the user’s genotype onto the same dataset to compute the principal component 
coordinates, and the resulting projections are plotted using the Highcharts library (Figure 4). One 
limitation to this approach is that the user requires the same SNPs as those used to pre-compute 
the PCA results. We avoid this problem by providing multiple options for performing the 
projections, based on common platforms (Illumina Hap550+ and Illumina OmniExpress+) and this 
problem will be solved when full genomes are supported. 

Figure 4: Ancestry analysis by PCA. Loadings for numerous population data sources are precomputed, allowing a 
user to project their data onto any one of those datasets. Here, an Eastern European individual is plotted in the 
upper-left quadrant among the POPRES European reference panel. 

 



 
 

 

 

Additionally, we implemented a heuristic algorithm for chromosome painting. The state-of-the-art 
algorithms were not suitable for this task, as they require phased data and employ computationally 
expensive hidden Markov models (HMMs) to determine the most likely ancestry for each allele. 
Therefore, we designed a Monte Carlo simulation method to generate an approximation. First, we 
pre-computed the most informative population-differentiating SNPs and the client requests the 
allele frequencies for these SNPs in the selected reference panel. Then, for each “block” of the 
genome, we sample an allele from each genotype randomly (since we cannot determine phase) and 
use the allele frequency for that SNP to update a Bayesian model, which represents the likelihood 
of the block originating from each population given the data. For each iteration, the most likely 
population is chosen for each block, and this simulation is run multiple times to generate a number 
of votes for each block. These votes are then aggregated and ancestry is assigned: if the proportion 
of votes crosses a “heterozygosity threshold,” both blocks are painted with the highest voted 
ancestry; otherwise, the highest and 2nd highest ancestries are chosen. The results are then 
smoothed and the results are plotted in Canvas (Figure 5). 

 

2.2.4.  Exploratory analysis 

Finally, we also implement a number of exploratory analyses and modules that were integrated 
with lectures of the Stanford course in Personalized Medicine and Genomics (Figure 6, left). For 
instance, we aggregated the SNPs associated with height from the GWAS catalog [Hindorff et al., 
2009] and combined their effect sizes to create an approximate height prediction algorithm. 
Additionally, we created a widget to count the number of Neandertal-derived alleles [Green et al., 
2010] in a personal genotype (Figure 6, right). Other exercises were developed to explore “SNPs 
of interest” that would integrate with a lecture, where students could optionally submit their allele 
information for real-time aggregation of allele frequencies.  

Figure 5: Chromosome Painting. The first two chromosomes from a half-European, half-Asian individual are 
shown. CEU, YRI, CHB, and JPT refer to European, African, Chinese, and Japanese Hapmap populations, 
respectively. 



 
 

 

 

Through the development of these exercises, we observed that one major use case involved the 
counting of “risk” alleles (or alleles of some effect or significance), possible weighted by some 
“effect size” measure, such as odds ratios for traits, or centimeters for height. Therefore, we 
developed a customization framework for users to perform their own analyses. 

2.3.  User Customization 

Although we wanted to provide curated datasets for standard analysis of a user’s personal genome, 
we also wanted to allow the possibility of custom analyses. We therefore added functionality that 
allows the user to load custom annotated SNP lists. The user can then compare personal genotype 
information to this SNP list, as with the default exercises. For instance, a user may be interested in 
how many rare variants in a specific gene are found in a personal genotype and compare their 
results with those of colleagues or other personal genotypes. 
 
The custom SNPs are loaded as a tab-delimited file, containing a header line (that correspond to 
the header of the output table) and the first column must indicate the SNP rsid(s) in question. An 
example custom annotation file snippet can be viewed by clicking on the ‘Example Annotation 
File’ link. As with the default exercises in the Explore tab, a table showing the user’s genotype of 

Figure 6: Exploratory analysis. (Left): Numerous exercises are predefined, some with content from lectures 
of the Stanford Personalized Medicine course. Each of these is implemented independently, but all share a 
common data table format. (Right): One such analysis; Neandertal alleles in a personal genotype. 

 



 
 

 

 

his SNPs that were contained in the custom file, as well as its respective annotations, is presented 
to the user upon clicking the ‘Lookup custom exercise’ button. 
 
In the course of development, we have noticed that one major use case involves reporting the 
allele count of the user’s genotype against particular annotated columns. Therefore, we also allow 
the user to specify which columns should be used for allele counting by surrounding the column 
header with the count( . ) syntax. It is worth noting that further functionality can be easily added to 
the custom exercise lookup; such as ethnicity specific SNP filtering or further aggregation, 
perhaps even SQL-like, functions. This could eventually allow researchers and developers to 
distribute custom annotation files and queries to expand the interpretive power of this system.  
 
While a main focus of Interpretome is to maintain privacy of the user’s genotype data, we are 
aware that users may want to share their results with others or even submit their genotype 
information to contribute to the enhancement of Interpretome. We have thus included both the 
option to share the exploration exercises results through a social network site and to submit their 
raw genotype information in an anonymous fashion. These two options give the user the 
possibility to explore a spectrum of privacy restrictions: from the default, most restrictive setting 
in which the user does not choose to share any of his information, to the other extreme of sharing 
both the results from the analysis and even genotype information. Sharing is an opt-in choice left 
to the user, and we have included a detailed description of the possible consequences of sharing in 
the Start page, as well as pop-up dialogs that ask the user to confirm all submissions of results or 
genotype information. 

3.  Results 

We present the Interpretome at www.interpretome.com, a system for exploratory personal genome 
analysis, including guided explanations for clinical and ancestry analysis. The system is fast and 
easy-to-use and has been demonstrated in the Stanford course in Personalized Medicine and 
Genomics. 
 
This system can load 1 million SNPs from a personal genotype into modern browsers (including 
Chrome and Firefox) in ~5-10 seconds. Further analyses require a server query, which range from 
~1 KB to ~15 MB. These downloads typically take a few seconds to less than a minute for 
relatively local users (Northern California users with at least a cable modem connection). Once 
downloaded, the computational load on the client-side is very light for most applications (running 
in <5 seconds). A notable exception is the chromosome painting algorithm, which utilizes a Monte 
Carlo simulation to infer ancestry for specific chromosomal regions. However, even this analysis 
runs in ~15-20 seconds on a new laptop using the default parameters. 
 
We have demonstrated the use of this system in the pioneering course on Personalized Medicine 
and Genomics at Stanford University. In this course, medical and graduate students learned about 
genomic personalized medicine through a hands-on analysis of their personal genotypes, for which 



 
 

 

we required an easy-to-use system that could accomplish sophisticated genotype interpretation 
tasks. The system was deployed for the Spring 2011 course and accomplished these goals. Overall, 
course students gave positive feedback on the system, expressing that its interactivity and ease of 
use enabled non-experts to extract meaning out of their genomic information. Particularly, they 
found the ability to instantly see their personal alleles for specific traits accompanied by relevant 
descriptions and annotations useful to interpret the results. Furthermore, advanced users liked 
having the option of tweaking the parameters for each module, as they found it useful to see how 
the methods performed with different values. These comments emphasize that a system of 
genomic interpretation must have both experts and non-experts in mind to both gain acceptability 
by the general public and convince experts of its usability. 
 
The speed of the system and submission logic also allowed for further integration with lectures. 
Throughout the course, instructors were able to discuss SNPs for which there was an interesting 
association and students would have an option of submitting their genotypes for each SNP 
anonymously. The submitted genetic information was then aggregated and real allele frequencies 
were displayed to the instructor and the class, allowing for interactive participation in course 
material. 

4.   Discussion 

In this work, we present the Interpretome, a system for private personal genotype interpretation 
and education. We believe that this approach will overcome a major hurdle to wider adoption of 
personal genotyping: the question of privacy and ownership. Users of Interpretome are assured 
privacy, as their data remains on their computer and in their browser. There exists no mechanism 
to track a user across uses of the website or to correlate data requests with client profile 
information (sex, population, etc.). However, genotyping services, such as direct-to-consumer 
companies, currently store the consumer’s genomic information in their own servers. It may be 
preferable for service providers to provide users with an option for whether their genotype data 
should be stored at the company. Indeed, it would be ideal if the notion of privacy persisted 
through each step of the genotype pipeline, ensuring that only the consumer has exclusive access 
to their data.  
 

The customizable nature of the Interpretome provides a platform for researchers to make their 
genomic annotations available to the general public. While we already enable the user to use their 
own SNP annotations, it would be straightforward to implement a web development framework, 
perhaps based on Javascript, for external modules that could be loaded at runtime. Such 
functionality would allow researchers to publish their methods as “Interpretome modules” for 
experts and non-experts to evaluate. 
 

At present, we have included options for sharing of analysis results. While including these 
options may be considered controversial, it is our belief that enabling people to make informed 
choices about sharing their own genetic information will lead to an optimal trade-off between 



 
 

 

 

privacy and actionability of personal genomic data. The debate over privacy issues on genotype 
data is far from over. Thus, we believe that providing a genotype interpretation system that 
accommodates both extremes is essential to solving such conflicts. 
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