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Drugs targeting specific kinases are becoming common in cancer research and are a basis for person-
alized cancer therapy. Some of these drugs have the capacity to target multiple kinases. Promiscuous
kinase inhibitors can be effective but the ”off-target” effects can bring in toxicity for the patient.
Thus the success of targeted cancer therapies with nominal harmful side effects is dependent on ad-
ministering a single or multiple combinations of kinase inhibitors that targets the minimum number
of kinases required to inhibit the tumor pathways. This requires a framework to predict the tumor
sensitivities of a drug or drug combination based on the knowledge of the kinase inhibitors of a drug.
In this article, we present a novel approach to predict the tumor sensitivities of a drug based on
the generation of deterministic and stochastic Kinase Inhibition Maps. We build sensitivity maps
or truth tables for a cell line from experimentally generated tumor sensitivities to kinase inhibitor
drugs and use them to predict the sensitivity of a new drug or drug combinations based on known
kinase inhibitor targets. We test our algorithms on a dataset of a dog osteosarcoma cell line with
317 possible kinase inhibitor targets after application of 36 targeted drugs. Our proposed algorithms
are able to predict the sensitivities with high accuracy based on the given kinase inhibitor targets.
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1. Introduction

Drugs that target specific kinases are becoming common in cancer research (see1–5). Cancer-
related kinases are the paradigm of molecularly-targeted therapies, and a cornerstone of Per-
sonalized Cancer Therapy. The kinome consists of greater than 500 diverse tyrosine- or serine-
threonine kinases (6). Some of these drugs have the capacity to target multiple kinases (7) and
effects of multiple kinase inhibition are still to be properly understood. A prediction problem
that we often encounter is predicting the sensitivity of a new drug for cell lines when the
kinases that are inhibited by the drug are known. To address this, we formulate the problem
as a boolean logic problem and build Kinase inhibiting maps for each cell line based on prior
data. The Kinase inhibiting maps are used to answer the prediction problem.

The structure of kinases have been well studied for increasing the specificity of targeted
drugs (see8) or high throughput kinase profiling has been used as a platform for drug discovery
(9). However, approaches for high throughput analysis of multiple kinase inhibitor data to
predict the behavior of new drugs are lacking in the literature. Prediction of tumor sensitivity
to drugs have been approached earlier as a classification problem using gene expression profiles
in Staunton et al.10 . In Staunton et al.,10 gene expression profiles are used to predict the
binarized efficacy of a drug over a cell line with the accuracy of the designed classifiers ranging
from 64% to 92%. In our proposed approach, we use the kinase inhibitor profiles of drugs as
opposed to gene expression profiles of cell lines. The kinase inhibitor profiles of a drug are
not dependent on a cell line and thus for a new cell line corresponding to a patient, we dont



need to measure the gene expression profiles and just have to measure the tumor sensitivity
after application of different drugs. Furthermore, our stochastic approach can predict the
effectiveness of a drug on more than binary levels and produce higher accuracy results. In Lee et
al.,11 a co-expression extrapolation (COXEN) approach is used to predict the drug sensitivity
in data points outside the training set with an accuracy of around 75% in predicting the
binarized sensitivity. Our proposed approach is unique in not using gene expression biomarkers
for prediction and using set theory and stochastic extensions to predict the non-binarized
tumor sensitivity with high accuracy.

Drugs like Staurosporine have numerous kinase targets and are extremely effective in in-
hibiting the tumor but also have high toxicity (7). In fact, the toxicity of Staurosporine is
similar to chemotherapy and thus working against the goal of targeted action on tumor cells
without damaging normal cells and tissues. On the other hand, Imatinib (Gleevec) that has
minimal kinase targets are being taken by leukemia patients for over a decade with no major
side effects. Thus, it is extremely important that the off target effects of drugs are taken into
consideration before prescribing a therapeutic regime for a tumor patient. Having a mathe-
matical framework for the possible tumor pathways can allow us to generate the minimal set
of kinase inhibition combinations that are required to block all the activated tumor pathways.
A combination of drugs can be selected that just targets a minimal set of kinase inhibitors,
with extremely few off target inhibitions. Majority of the current approaches for modeling
genetic regulatory networks are not well suited for tackling this issue as the data requirements
for model parameter estimation are significantly more in terms of number of samples and re-
quirement of primarily time series data for estimation of the model parameters.12 We propose
a novel way to utilize steady-state experimental data on drug sensitivities over cell lines or
animal models to generate robust maps for representing the tumor pathways. We exploit the
fact that if a drug with inhibitor set S is effective, then any other drug with inhibitor set
containing S will also be effective.
The paper is organized as follows: the mathematical formulation of the problem is provided in
Section 2, algorithms to generate kinase inhibition maps are provided in Section 3, Section 4
covers the algorithm to predict the sensitivity of a new drug based on kinase inhibitor targets,
Section 5 covers the probablistic maps; the results are presented in section 6 and finally section
7 considers the conclusions.

2. Mathematical Formulation

Let us a consider that we have drug sensitivity data for n cell lines after application of m

drugs. The known multi kinase inhibiting sets for these drugs are denoted by S1,S2,...,Sm.
The cardinality or number of elements of Si is given by ai for i = 1, 2, · · · ,m. Let S denote
the union of S1, S2, ..., Sm i.e. S = ∪m

i=1Si and a denote the cardinality of S i.e. a = |S|. Thus
there are a kinases that we are interested in and we will denote them as k1, k2, · · · , ka. The
elements of sets Si are denoted by [ei,1, ei,2, · · · , ei,ai

] for i = 1, 2, · · · ,m. The ei,j’s for j = 1, .., ai
and i = 1, 2, · · · ,m are elements from the set [k1, k2, · · · , ka]. For this scenario, the maximum
possible number of distinct multiple kinase inhibitor activities exhibited by drugs are 2a since
each kinase can be either inhibited or not and there are a kinases, thus number of possibilities



are (2 × 2 × · · · × 2)
a times = 2a. To solve our prediction problem, we will construct Kinase

Inhibiting Maps (KIMs) for each cell line similar to Karnaugh maps (13) to simplfy boolean
expressions.

As an example, let us consider the abstract representation of a biological pathway shown
in Fig. 1. We will consider that a drug works if it inhibits all the paths between X and Y .
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Fig. 1. Circuit 1

The circuit shown in Fig. 1 has three paths from X to Y through kinases {k1, k2}; {k1, k3}
and {k4}. To block all the paths from X to Y , we have to inhibit all these parallel pathways.
The first two pathways can be blocked by either inhibiting k1 or inhibiting both k2 and k3.
The third pathway has to be blocked by inhibiting k4. If we represent this information as a
map where a 1 indicates all pathways being blocked for that set of kinase inhibitions, then
the resultant maping will be as shown in Figure 2. For example, a 1 in the 2nd row and 3rd
column of the 4 × 4 matrix denotes that all the pathways for circuit 1 can be blocked by the
combination k1 = 0, k2 = 1, k3 = 1, k4 = 1 i.e. any drug inhibiting k2, k3 and k4 will have high
sensitivity for circuit 1. Similarly, a 0 in the 2nd row and 2nd column denotes that inhibiting
k2 (i.e. k2=1) and inhibiting k4 (i.e. k4=1) cannot produce high sensitivity for circuit 1.
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Fig. 2. Kinase Inhibiting Map (KIM) corresponding to Circuit 1

The map shown in Table 2 will be termed as Kinase Inhibiting Map (KIM) and can
be constructed from Circuit 1 by checking the output for all the 24 combinations of kinase
activities. The boolean logic for the circuit can be constructed based on the fact that each
series connection is like Boolean OR function and each parallel connection is like boolean
AND function, thus circuit 1 refers to (k1 OR (k2 AND k3)) AND (k4).



3. Constructing kinase inhibition maps from drug targets and sensitivity
data

For the construction of the kinase inhibition maps, the following two sets of rules relevant to
our problem will assist in filling the entries of the map.

Rule 1: If Si is the inhibiting set of kinases for drug i and the drug is successful in
inhibiting the circuit, then any set B containing the set Si (i.e. B is a superset of Si, B ⊃ Si)
will also be successful in inhibiting the circuit.

Rule 2: If Si is the inhibiting set of kinases for drug i and the drug is unsuccessful in
inhibiting the circuit, then any set B that is the subset of set Si (i.e. B ⊂ Si) will also be
unsuccessful in inhibiting the circuit.

Rule 1 essentially says that if inhibiting a number of kinases has blocked all the paths,
then inhibiting more kinases will not open any path. For instance, if we consider circuit 1 and
our experiments denote that the set {k1, k4} is able to inhibit the circuit, then any superset of
{k1, k4} such as {k1, k4, k2} will also inhibit the circuit. The number of possible supersets of a
set Si containing ai elements among possible a elements is 2a−ai . For circuit 1, if Si = {k1, k4}
, the number of possible supersets of Si is 24−2 = 4 and they are {k1, k4}, {k1, k4, k2}, {k1, k4, k3}
and {k1, k4, k2, k3}. If we consider the kinase inhibiting map in Fig. 2, then knowing the infor-
mation that {k1, k4} inhibits the circuit, we can fill the entries of its superset as 1. The entries
corresponding to its superset are [k1k2k3k4] = {1001, 1101, 1011, 1111} which fills the KIM(3,2),
KIM(3,3), KIM(4,2) and KIM(4,3) entries of the inhibition map. Here KIM(i, j) denotes the
ith row and jth column entry of the Inhibition map. The kinase inhibition map is a matrix of
size 2p1 × 2p2 where p1 + p2 = a and p1 = ⌊a/2⌋ and p2 = a− p1.

Rule 2 captures the fact that if a set of kinase inhibitors is unsuccessful in blocking the
paths of a circuit, then any reduced number of kinase inhibitors among the inhibiting kinases
cannot block all the paths. For instance, in circuit 1, if our experiments denote that the
set {k1, k2, k3} of kinase inhibition is not sucessful in blocking all the paths of the circuit,
then any subset of {k1, k2, k3} such as {k1, k2} will also be unsuccessful in blocking the paths
of the circuit. The number of possible subsets of a set Si containing ai elements is 2ai . For
circuit 1, if Si = {k1, k2, k3} , the number of possible subsets of Si is 23 = 8 and they are
{k1, k2, k3}, {k1, k2}, {k1, k3}, {k2, k3}, {k1}, {k2}, {k3} and {}. In the boolean logic, the subsets
will be as follows [k1k2k3k4] = {1110, 1100, 1010, 0110, 1000, 0100, 0010, 0000}. Thus, if a drug
with set Si of inhibitors is unsuccessful, then we can mark the states in the kinase inhibition
map that has zeros for the S − Si kinases as zeros. Thus for our example, S − Si = {4} and
any state having zero for k4 will be marked zero in the kinase inhibition map. So the first
and fourth column of the kinase inhibition map will be marked 0 based on the experimental
piece of information that the set {k1, k2, k3} is unsuccessful. This approach fills up a large
number of entries of the kinase inhibition map based on limited experimental knowledge. For
our example, the two experimental results that {k1, k4} is successful and {k1, k2, k3} is not
successful fills in 12 out of 16 entries in the kinase inhibition map. Higher number of entries
are filled when a large set of kinase inhibitors is unsuccessful or a small set of kinase inhibitors
is successful.

The algorithm for constructing the kinase inhibitor map is shown in Algorithm 3.1.



Algorithm 3.1 Algorithm for constructing Kinase Inhibitor Map KIM

for i = 1 to m do
for j = 1 to n do
if Drug is successful then
{Use Rule 1 to fill up entries in the kinase inhibition map for cell line j (KIMj)}
for all R such that R ⊃ Si do
KIMj (R) = 1;

end for
else
{Use Rule 2 to fill up entries in the kinase inhibition map for cell line j (KIMj)}
for all R such that R ⊂ Si do
KIMj (R) = 0;

end for
end if

end for
end for

4. Predicting sensitivity of a new drug based on its set of kinase inhibitors

If the set of kinase inhibitors is known for a new drug, then we can check the kinase inhibition
map entry for that set of inhibitors for each cell line and predict the outcome of the drug
when applied to that cell line.

Example 4.1.
Let us consider that we have two cell lines whose abstract circuit representation of the

pathways are shown in Figures 3 and 4. Based on experimental data on these cell lines, we can
construct the Kinase Inhibitors Maps KIM1 and KIM2 as shown in Figures 5 and 6. Here S =

{k1, k2, k3, k4} and k4 is not directly involved in pathway 1 whereas k1 is not directly involved
in pathway 2. If a new drug Dm+1 has the kinase inhibition set Sm+1 = {k2, k3, k4} = {0111},
then based on the 2nd row, 3rd column entries of the inhibition maps IM1 and IM2, the drug
will be ineffective for CP1 and effective for CP2.
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Fig. 3. CP1: Cellular pathway representation 1
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Fig. 4. CP2: Cellular pathway representation 2
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Fig. 5. KIM1: Kinase Inhibition map corresponding to Cellular pathway representation 1 shown in Fig. 3

0      0 0      1 1 1 1    0

0     0 0 0 1 0

0     1 1 1 1 1

1 1 1 1 1 1

1 0 0 0 1 0

k
3
k
4

k
1
k
2

Fig. 6. KIM2: Kinase Inhibition map corresponding to Cellular pathway representation 2 shown in Fig. 4

5. Stochastic Extension

The approach described in the previous sections depend on the accuracy of the experimental
data and accurate modeling assumptions. When there is a mismatch in the biological pathway
and its abstract modeling and there are noises in the extraction of the data, we have to consider
modifications of our algorithm to make it robust to uncertainties. Currently, the entries of the
kinase inhibition map are updated based on the latest experimental data and in the process,
the inferences of previous experimental data can be lost. For instance, let us consider the
pathway representation of Figure 1 and our first experiment states that a drug combination
of {k1, k2, k3} is ineffective, then the third row fourth column entry is zero. If now, an error
in the data extraction of a new experiment states that {k1, k3} is effective, then the third
row fourth column entry will be erroneously changed to 1. Furthermore, the sensitivity to
drugs will not necessarily be binary (effective or ineffective), thus our modified algorithm will
also take into account the percentage of effectiveness of a drug. The effectiveness of a drug is
usually measured by their IC50 values which denotes the amount of drug required to inhibit



the activity of a process by half. So if the levels of drugs used for our experiment is from 1
unit to U units (say 1 to 10,000 nano-molar units), we will use the following approach to get
the scaled sensitivity y of the drug with IC50 value x:

y =
U − x

U
(1)

Note that equation 1 is one possible approach to map the IC50 values to numbers between
0 and 1 and there can be many other ways for this maping. To arrive at the new stochastic
Kinase Inhibition Map, we will initially consider two matrices IM1 and IM0 denoting the
most effective and ineffective combinations respectively. Then, the two matrices are combined
in a proportional ratio to arrive at the final Probabilistic Kinase Inhibition Map (PKIM).

Algorithm 5.1 Algorithm for constructing Probabilistic Kinase Inhibitor Map PKIM

{Generate Kinase Inhibition Maps IM1 and IM0}
for j = 1 to n do
Initialize IM1

j = IM0
j = 0

for i = 1 to m do
{Use Rule 1 to fill up entries in IM1} for cell line j

for all R such that R ⊃ Si do
IM1

j (R) = IM1
j (R) + yi;

end for
{Use Rule 2 to fill up entries in IM0} for cell line j

for all R such that R ⊂ Si do
IM0

j (R) = IM0
j (R) + 1− yi;

end for
end for

end for
{Generate Probabilistic Kinase Inhibition Map PKIM }
for all CLj ∈ {CL1, · · · , CLn} do
Initialize PKIMj = 0

for all v ∈ V do
PKIMj (v) =

IM1
j (v)

IM1
j (v)+IM0

j (v)
;

end for
end for

return PKIM1, PKIM2, ..., PKIMn

6. Results

To illustrate the effectiveness of the proposed algorithms, we consider experimental data on
a canine osteosarcoma cell line CanOS1224 that was treated with 36 targeted cancer drugs
and the tumor sensitivities measured. The experiments were conducted in the labs of Charles



Keller and Brian Druker in Oregon Health and Science University, Portland, USA. The cell
line CanOS1224 was derived from an actual canine with osteosarcoma who is being treated
in OHSU as part of a clinical trial. Thus the data reflects a new cell line without much prior
biological knowledge specific to that cell line and success of tumor sensitivity prediction on
such a cell line holds promise for personalized therapy for a new patient coming to the clinic.
The canine osteosarcoma primary cell culture was plated in 96 well plates at a seeding density
of 2000 cells per well over graded concentrations of 36 small-molecule kinase inhibitors. Each
inhibitor was plated individually at four concentrations predicted to bracket the IC50 for that
drug. Cells were cultured in RPMI 1640 supplemented with 2mM glutamine, 2mM sodium
pyruvate, 2mM HEPES, 1% penicillin streptomycin, and 10% fetal bovine serum for 72 hours.
At the end of the 72 hour incubation, cell viability was assessed using the MTS assay. All
values were normalized to the mean of seven wells on each plate containing no drug. The IC50

for each drug was then determined by identification of the two concentrations bracketing 50%
cell viability and application of the following formula: [((A-50)/(A-B))*(Dose B - Dose A)]+
Dose A where cell viability value above 50% = A (drug dose for this value is Dose A) and cell
viability value below 50% = B (drug dose for this value is Dose B).

The drug targets (kinases inhibited by a drug) are obtained from the supplementary tables
of7 and14 based on experimental quantitative dissociation constant (kd) values for each drug
across 317 kinase assays. We considered a drug to be inhibiting the kinase if the kd value
is less than 10 percent of the maximum. The sensitivities (in terms of IC50 values) of the
36 drugs are experimentally generated and converted to numbers between 0 and 1 with 2
significant digits using Eq. 1 where U is 10000nM. Using all the 317 kinases to build the kinase
inhibition map has the following problems: (a) the size of the Kinase Inhibition Map with
2317 = 2.67 × 1095 entries will be computationally intractable; (b) data on 36 drugs is not
rich enough to fill majority of the entries and keeping too many kinases will lead to over-
fitting and (c) a number of kinases in the non-activated pathways of the cell line are not
necessary to predict the tumor sensitivity to drugs. Thus, we used sequential feature selection
to narrow down our number of Kinases.The cost function considered was mean absolute error in
predicting the tumor sensitivities. We initially started with the kinase EGFR and sequentially
added other kinases to it with 8 being the maximum number of kinases to be selected. For a set
of kinases at any stage of feature selection, we used leave-one-out error estimation technique
to calculate the mean absolute error. The 8 kinases selected through sequential selection
approach are PIM1, PIK3CA, MRCKA, EPHA3, MAP4K5, MET, ACVR1B and EGFR. The
data is shown in Figure 7. The first column shows the 36 drugs and the next 8 columns are
the scaled dissociation constants for the 8 selected Kinases. The scaled dissociation constants
(0 ≤ kd ≤ 1) are obtained from7 and14 where a high value reflects that the Kinase is inhibited
by the drug. To binarize the inhibition of kinases by a drug, we considered a kinase to be
inhibited by the drug if the scaled kd value is ≥ 0.9. The scaled tumor sensitivities are shown
in column 10 in Figure 7 where a value of 1 reflects that the tumor is highly sensitive to the
drug. We considered the probabilistic Kinase Inhibition Map method and used leave one out
cross validation to measure the effectiveness of the PKIM technique. For leave one out error,
we used the data on 35 drugs to build the PKIM and used the generated PKIM to predict the



sensitivity for the 36th drug. This is done for all the 36 drugs and the average error is 0.067

which is really low for leave one out validation. Note that the maximum error can be 1 and a
fixed prediction of 0.5 will result in an error of 0.437. The leave one out errors for each drug
is included in the 11th column of Figure 7.

If we use re-substitution error estimate, then the average error decreases to 0.018. The
re-substitution errors for each drug is shown in Column 12 of Figure 7. The decrease in error
for re-substitution is expected as we are using the same data for training and testing. For
example, we should note that the leave one out error for the drug PI-103 is 0.903. This is
because the kinase signature of this drug is not available in any other drug i.e. no other drug
targets the PIK3CA pathway as this drug does. Targeting the PIK3CA pathway for this cell
line is able to reduce the tumor and this knowledge can only be gained from the data from
the drug PI-103 and none of the other 35 drugs considered here. However, when we use the
sensitivity of drug PI-103 in training the PKIM, we can predict the sensitivity for the drug
PI-103 perfectly from the PKIM as shown in the case of re-substitution error. To be able
to accurately predict the sensitivity of a new drug, it is imperative that our training data
contain sets of kinase inhibitors that target most of the important pathways such as MAPK,
JAK-STAT, mTOR, ERBB etc. The important pathway information can be obtained from
public databases such as KEGG( http : //www.genome.jp/kegg/) or pathway commons (
http : // www.pathwaycommons.org ). Also drugs targeting both individual and combination
of pathways can provide complementary information in estimating the entries of the kinase
inhibition map.

The probabilistic KIM that was generated using the experimental data from the 36 drugs
is shown in Figure 8. The PKIM was then used to build a circuit representation for cell line
CanOS1224. The shaded areas in Figure 8 were considered to be 1 for generating the circuit
shown in Figure 9. The circuit representation is easier to visualize and to study effective drug
combinations, however the probabilistic Kinase Inhibition Map in Figure 8 should be referred
to get the actual prediction. To arrive at a simpler circuit representation, some entries in Figure
8 is considered effective even when they have a low value. For instance, the entry for PIM1
being inhibited alone is 0.26 and still we considered it as effective for drawing our circuit. The
PKIM or the circuit representation can be extremely useful in designing combination therapy
for diseases. For instance, if our goal is to avoid resistance to drugs evolving in a patient, then
we should try to block more than one series of kinase sets that each individually can block
the tumor. For instance, in Figure 9, if we block PIK3CA, MRCKA and PIM1 then we will
have two independent sets of Kinases that block the tumor. If the cancer becomes resistant to
inhibition of PIM1, then the other set of Inhibitors MRCKA and PIK3CA will be the next line
of defense against the tumor. From the data in figure 7, Flavopiridol and PI-103 can be used
to target the three Kinases PIK3CA, MRCKA and PIM1. If our goal is to maximize chances
of success and minimize off target effects, then we will pick the drug or drug combinations
that inhibit minimum number of kinases but blocks all the paths of the circuit. To have a
measure of toxicity of a drug, we should consider the total number of kinases inhibited by the
drug among the 317 kinases tested and not just the 8 kinases considered here.



Sensitivities

drugs EGFR PIM1 MRCKA ACVR1B PIK3CA EPHA3 MAP4K5 MET

ABT 869 0 0 0 0 0 0.65 0.91 0.87 0.31 0.00791 0.004051

AMG 706 1 0 0 0 0 0 0 0 0 0 0

AST 487 0.95 0 0 0 0 0.99 0.96 0.56 0.51 0.328909 0.208381

AZD 1152HQPA 0.95 0 0 0 0 0 0.98 0 0 0 0

BIRB 796 0.3 0 0.06 0 0 0.91 0 0 0 0 0

BMS 387032/SNS 0 0 0 0 0 0 0 0 0 0 0

CHIR 258/TKI 258 0 0 0 0 0 0 0.94 0 0 0 0

CHIR 265/RAF 265 0 0 0 0 0 0 0.92 0 0 0 0

CI 1033 1 0 0 0 0 0.79 0.74 0.44 0.26 0.063798 0.040419

CP 690550 0 0 0 0 0 0 0 0 0 0 0

Dasatinib 0.99 0 0.8 0.97 0 1 1 0 0.95 0.050409 0.027331

EKB 569 1 0 0 0 0 0.6 1 0.38 0 0 0

Erlotinib 1 0 0 0 0 0.76 0 0.62 0 0 0

Flavopiridol 0 0.94 0.05 0 0 0.67 0 0 0.94 0.052976 0.011501

Gefitinib 1 0 0 0 0 0 0 0 0 0 0

GW 2580 0 0 0 0 0 0 0 0 0 0 0

GW 786034 0 0 0 0 0 0 0.7 0 0 0 0

Imatinib 0 0 0 0 0 0 0 0 0 0 0

JNJ 7706621 0 0 0 0 0 0 0.79 0.94 0 0 0

Lapatinib 1 0 0 0 0 0 0 0 0 0 0

LY 333531 0 0.97 0 0 0 0 0 0 0.28 0.2766 0.021387

MLN 518 0.96 0 0 0 0 0 0.92 0 0 0 0

MLN 8054 0 0 0 0 0 0.79 0 0 0 0 0

PI 103 0 0 0.82 0 1 0 0 0 0.91 0.9064 0

PKC 412 0.87 0.94 0 0 0 0 0.89 0.93 0.97 0.025076 0.005444

PTK 787 0 0 0 0 0 0 0 0 0 0 0

SB 202190 0.74 0 0 0.91 0 0 0 0 0 0 0

SB 203580 0.83 0 0.38 0.7 0 0 0 0 0 0 0

SB 431542 0 0 0 0.98 0 0 0 0 0 0 0

Sorafenib 0 0 0 0 0 0.81 0.84 0 0.05 0.0489 0.039753

Staurosporine 0.96 1 0.99 0.93 0 1 1 0.98 1 0.0007 0.000581

SU 14813 0 0 0 0 0 0 0.97 0 0 0 0

Sunitinib 0 0 0 0 0 0.79 1 0 0 0.011252 0.009147

VX 680/MK 0457 0 0 0 0 0 0.85 0.99 0.93 0.26 0.074105 0.037949

VX 745 0 0 0 0 0 0 0 0 0 0 0

ZD 6474 1 0 0.74 0 0 0.8 0.95 0.43 0.37 0.568434 0.263415

Re

substitution

error

Leave one

out error

Kinases
CanOS

Fig. 7. Experimental data and predicton errors using probabilistic KIMs.

7. Conclusions

In this article, we presented an approach to generate abstract representation of cancer path-
ways that can assist in predicting the sensitivities of a new drug given the kinase inhibitors of
the drug. We also extended our algorithm to the probabilistic case to tackle latent kinases and
noisy data and to predict non-binarized tumor sensitivities. The algorithms were validated on
data obtained after application of targeted cancer drugs on a canine cancer cell line. The
approach presented here is a novel way to analyze tumor sensitivity data based on Boolean
logic and set theory. We expect that improved results can be obtained when the training set



PIK3CA PIK3CA PIK3CA PIK3CA PIK3CA PIK3CA PIK3CA PIK3CA

EPHA3 EPHA3 EPHA3 EPHA3 EPHA3 EPHA3 EPHA3 EPHA3

MAP4K5 MAP4K5 MAP4K5 MAP4K5 MAP4K5 MAP4K5 MAP4K5 MAP4K5

MET MET MET MET MET MET MET MET

0 0 0 0 0.01 0.3 0 0 0 0 1 1 0 0 0 0

ACVR1B 0 0 0 0 0.49 1 0 0 0 0 1 1 0 0 0 0

MRCKA ACVR1B 0 0 0 0 0.49 1 0 0 1 1 1 1 1 1 1 1

MRCKA 0 0 0 0 0.07 1 0 0 1 1 1 1 1 1 1 0.91

PIM1 MRCKA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PIM1 MRCKA ACVR1B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PIM1 ACVR1B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PIM1 0.26 0.91 0.91 0.91 1 1 1 0.96 1 1 1 1 1 1 1 1

EGFR PIM1 0.91 0.91 0.98 0.91 1 1 1 1 1 1 1 1 1 1 1 1

EGFR PIM1 ACVR1B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EGFR PIM1 MRCKA ACVR1B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EGFR PIM1 MRCKA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EGFR MRCKA 0 0 0 0 0.64 1 0 0 1 1 1 1 1 1 1 1

EGFR MRCKA ACVR1B 0 0 0 0 0.98 1 0 0 1 1 1 1 1 1 1 1

EGFR ACVR1B 0 0 0 0 0.94 1 0 0 0 0 1 1 0 0 0 0

EGFR 0 0 0 0 0.3 1 0 0 0 0 1 1 0 0 0 0

KINASES

Fig. 8. Probabilistic Kinase Inhibition Map for CanOS1224. The first row and First column denotes the
Kinases being inhibited.
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Fig. 9. Circuit representation for CanOS1224 based on PKIM in Figure 8.

will include more drugs with various combination of inhibiting kinases.

8. Acknowledgments

This research was supported by NSF grant CCF 0953366. We would like to thank Charles
Keller, Jinu Abraham, Nicolle Hofmann, Jeffrey W. Tyner, Marc M. Loriaux and Brian J.
Druker from Oregon Health & Science University and Bernard Seguin from Oregon State
University for generating and providing the biological data.



References

1. C. Sawyers, Nature 432, 294 (2004).
2. M. R. Green, New England Journal of Medicine 350:21, 2191 (2004).
3. B. J. Druker, Oncologist 9, 357 (2004).
4. A. Hopkins, J. Mason and J. Overington, Current Opinion in Structural Biology 16, 127 (2006).
5. Z. A. Knight and K. M. Shokat, Chemistry & Biology 12, 621 (2005).
6. G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam, Science 298, 1912 (2002).
7. M. W. Karaman, S. Herrgard, D. K. Treiber, P. Gallant, C. E. Atteridge, B. T. Campbell, K. W.

Chan, P. Ciceri, M. I. Davis, P. T. Edeen, R. Faraoni, M. Floyd, J. P. Hunt, D. J. Lockhart,
Z. V. Milanov, M. J. Morrison, G. Pallares, H. K. Patel, S. Pritchard, L. M. Wodicka and P. P.
Zarrinkar, Nature biotechnology 26, 127 (January 2008).

8. Chen, Jianping, Zhang and Xi, Bioinformatics 23, 563 (2007).
9. D. Goldstein and et al., Nat. Rev. Drug Discov. 7, 391 (2008).

10. J. E. Staunton, D. K. Slonim, H. A. Coller, P. Tamayo, M. J. Angelo, J. Park, U. Scherf, J. K.
Lee, W. O. Reinhold, J. N. Weinstein, J. P. Mesirov, E. S. Lander and T. R. Golub, Proceedings
of The National Academy of Sciences 98, 10787 (2001).

11. J. K. Lee, D. M. Havaleshko, H. Cho, J. N. Weinstein, E. P. Kaldjian, J. Karpovich, A. Grimshaw
and D. Theodorescu, Proceedings of the National Academy of Sciences 104, 13086 (August 2007).

12. Z. Szallasi, J. Stelling and V. Periwal, System Modeling in Cell Biology from Concepts to Nuts
and Bolts (MIT Press, Cambridge, MA, 2006).

13. M. Karnaugh, Trans. AIEE. pt. I 72, 593 (1953).
14. P. P. Zarrinkar, R. N. Gunawardane, M. D. Cramer, M. F. Gardner, D. Brigham, B. Belli,

M. W. Karaman, K. W. Pratz, G. Pallares, Q. Chao, K. G. Sprankle, H. K. Patel, M. Levis,
R. C. Armstrong, J. James and S. S. Bhagwat, Blood 114, 2984 (2009).


