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Homology-based approaches are often used for the annotation of microbial communities, providing 
functional profiles that are used to characterize and compare the content and the functionality of microbial 
communities. Metagenomic reads are the starting data for these studies, however considerable differences are 
observed between the functional profiles—built from sequencing reads produced by different sequencing 
techniques—for even the same microbial community. Using simulation experiments, we show that such 
functional differences are likely to be caused by the actual difference in read lengths, and are not the results 
of a sampling bias of the sequencing techniques. Furthermore, the functional differences derived from 
different sequencing techniques cannot be fully explained by the read-count bias, i.e. 1) the higher fraction of 
unannotated shorter reads (i.e., “read length matters”), and 2) the different lengths of proteins in different 
functional categories. Instead, we show here that specific functional categories are under-annotated, because 
similarity-search-based functional annotation tools tend to miss more reads from functional categories that 
contain less conserved genes/proteins. In addition, the accuracy of functional annotation of short reads for 
different functions varies, further skewing the functional profiles. To address these issues, we present a 
simple yet efficient method to improve the frequency estimates of different functional categories in the 
functional profiles of metagenomes, based on the functional annotation of simulated reads from complete 
microbial genomes.  
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1.  Introduction 

By enabling the direct analysis of microbial communities (containing many unculturable and often 
unknown microbes), metagenomics is revolutionizing the field of microbiology, and has excited 
researchers in the many disciplines that benefit from the study of environmental microbes, 
including those in ecology, environmental sciences, and biomedicine [1-6]. Functional analysis of 
a metagenomic dataset provides valuable insights into the functionality of the corresponding 
environmental microbial community. Also, it is very interesting to compare microbial 
communities in terms of their functionalities. One way of comparing microbial communities is to 
build a functional profile for each community and then compare the profiles across multiple 
communities, known as functional metagenomics [7, 8]. To predict the function of sequencing 
reads derived in metagenomics studies, homology-based methods are generally used. Several fast 
and efficient similarity search tools, such as BLAST [9] and HMMER [10], were introduced in the 
early 90's, and are still used for this kind of analyses, to classify metagenomic sequences into 
functional categories, such as COG protein families [11, 12] and KEGG pathways [13]. 
Subsequently, the “read-count” approach is often used to derive functional profiles of 
metagenomic datasets, simply equating the frequency of a functional category to the proportion of 
reads that have this particular functional annotation (e.g., a COG family, or a K number as used in 
KEGG pathways). However, the reads-count approach has been shown to have a “read-count 
bias”: annotations of short reads will be missed [14], and the reads-count approach favors 
functional categories (e.g. the protein families) composed of longer genes. As a result, the “reads-
count” approach sometimes overestimates the frequency of functional categories containing longer 
genes and underestimates the frequency of functional categories containing shorter genes [15]. It is 
one of the various kinds of artifacts present in metagenomics data, caused by the limitations of the 
experimental protocols and/or inadequate data analysis procedures, which can lead to incorrect 
conclusions about microbial communities [16, 17]. 

An example of these artifacts is found in the comparison of the distal gut microbiota of 
genetically obese mice and their lean littermates. Obesity is associated with changes in the relative 
abundance of Bacteroidetes and Firmicutes species, and Gordon and colleges [3] demonstrated 
through metagenomic and biochemical analyses that this affected the metabolic potential of the 
mouse gut microbiota. Interestingly, they sequenced samples from a lean and an obese mouse 
using two different sequencing techniques—Sanger sequencing and pyrosequencing (which 
produced reads of ~100 nt at the time, equivalent to current Illumina read lengths; current 454 
sequences can produce much longer reads)—and compared the functional profiles of the resulting 
datasets (Figure 1b in [3]). Their results indicated that different metagenomic datasets sequenced 
with the same technique share higher functional similarity than do metagenomic datasets 
sequenced from the same biological sample but using different sequencing techniques. The 
authors proposed the hypothesis that different sequencing techniques may favor different 
functional categories, which, if true, would pose a significant challenge for the shotgun next-
generation sequencing of metagenomes adopted by most current metagnomics projects. 

We used simulation studies to explore the possible explanations for the observed functional 
differences between annotations of the same microbial communities built from different 



 
 

 

 

sequencing techniques. In our first study, we simulated short reads (of ~100 nt) from the Sanger 
reads for the mice microbiomes [3]. We then applied the same functional annotation pipeline used 
for annotating the Sanger reads to the annotation of the simulated short reads, to examine and 
compare the functional profile of the simulated dataset with that of the original Sanger dataset. In 
the second study, we simulated short reads from 7 complete genomes (so we know what functions 
we expect in the short reads) to compare the real annotations of short reads with the expectation. 
Our simulation studies revealed that there are two confounding factors that bias the functional 
profiles of a metagenome: 1) an unequal fraction of reads tend to be missed in functional 
annotation for different functional categories (i.e. protein families); and 2) different functional 
categories tend to have different proportions of wrong annotations. We report below the details of 
our simulation studies and the results. Based on these results, we present a simple yet efficient 
method to improve the frequency estimates of different functional categories in metagenomes, 
utilizing the functional annotations of simulated short reads from complete genomes.  

2.  Methods 

2.1.  Datasets 

2.1.1.  Obese- and lean-mouse metagenomic sequences 

The Sanger and pyrosequences (of ~100 nt) of obese mice and lean mice [3] were obtained from 
the MG-RAST server (http://metagenomics.anl.gov/).  

2.1.2.  Complete genomes 

We selected 7 genomes (see Table 1) to simulate short reads from, to estimate the annotation 
accuracy of different protein families. The genomes were downloaded from the NCBI ftp site and 
the NCBI annotations of the protein-coding genes were used in this study. 

2.1.3.  Simulated short reads 

1. Two datasets of short reads of ~100 nt (denoted as “Short-simu”, short for “short simulated 
reads”) were simulated from the lean-mouse and obese-mouse Sanger reads, respectively. See 
details of the simulated datasets in Table 2.  

Table 1. A list of complete genomes for short reads simulation. 
Genome	  id	   	  Species	  name	  
NC_002737	   Streptococcus	  pyogenes	  M1	  GAS	  
NC_002927	   Bordetella	  bronchiseptica	  RB50	  
NC_002937	   Desulfovibrio	  vulgaris	  subsp.	  vulgaris	  str.	  Hildenborough	  
NC_003902	   Xanthomonas	  campestris	  pv.	  campestris	  str.	  ATCC	  33913	  
NC_006905	   Salmonella	  enterica	  subsp.	  enterica	  serovar	  Choleraesuis	  str.	  SC-‐B67	  
NC_006932	   Brucella	  abortus	  biovar	  1	  str.	  9-‐941	  chromosome	  I	  
NC_007795	   Staphylococcus	  aureus	  subsp.	  aureus	  NCTC	  8325	  

 



 
 

 

 

2. Short reads of ~100 nt were simulated from the 7 selected complete genomes (at 10X 
coverage) using MetaSim [18] (Version 0.9.1). For simplicity, no sequencing errors were 
introduced in the simulation. 

2.2.  Functional Profiling of Metagenomes 

Here we used COG categories to create functional profiles for metagenomes: the extended COG 
definitions [11, 12] consist of 4873 COG families, which can be grouped into 25 broad functional 
categories. The functional profiles of metagenomes can then be built at the COG family level (i.e. 
a functional profile is represented by a vector of 4873 dimensions), or at the level of broad 
functional categories (i.e. a functional profile is represented by a vector of 25 dimensions). To 
compute the functional profile of a metagenomic dataset using the broad functional categories, the 
frequency of a category is estimated by the total reads that can be assigned to the families 
belonging to that category, normalized by the total number of sequencing reads in the dataset. 

2.3.  Functional Annotation 

We used similarity-search-based methods for the functional annotation of long reads, or the 
simulated short reads. We tested both BLAST and HMMER searches (HMMER3) [19]. For 
BLAST searches, we used an E-value cutoff of 10-3 (a typical threshold used in functional 
annotations of metagenomes [3, 20]), and for HMMER-search-based annotation (by hmmscan 
from the HMMER3 package), we used an E-value cutoff of 10-2. For both methods, we retained 
the best hit from non-overlapping regions, so that if a gene (or a read) contains multiple domains 
each with a distinct function, all the functions will be reported.  

For HMMER searches, we built Hidden Markov Models (HMMs) for all COG families, using 
the sequences annotated in the eggNOG database (version 1.0, http://eggnog.embl.de/) [21]. 
MUSCLE [22] was used to generate a multiple alignment for each protein family, and the HMM 
builder from the HMMER3 package was then applied to build a HMM for each COG. 

2.4.  “Perfect” Annotation of Simulated Short Reads 

For simulated short reads, we “assign” their functional annotations based on the functional 
annotation of the longer reads, or the complete genes from which the short reads were sampled 

Table 2. Statistics of the real and simulated metagenomic datasets. 

Reads type 
	  

Lean mouse Obese mouse 

 Average length of 
reads (bp) 

Total number of 
reads 

Average length of 
reads (bp) 

Total number of 
reads 

Sanger	   780	   11,321	   766	   11,381	  
Short	   108	   1,045,701	   110	   675,880	  

Short-‐simu	   107	   1,000,000	   110	   670,000	  
“Sanger” is for Sanger sequences; “Short” for pyrosequences; and “Short-simu” for the short reads simulated from 
the Sanger dataset. 
 



 
 

 

 

(i.e. the parent sequence). Considering that similarity searches will miss annotations of extremely 
short reads, we only transfer functions of the parent sequence to the simulated reads if the 
simulated reads and the parent sequence overlap by at least 60 nt (i.e. encoding 20 aa). In this way, 
the simulated short reads “inherit” functions from their parent long reads or complete genes, 
achieving ‘perfect’ annotations, which could not in reality be achieved by similarity-search-based 
methods.  

3.  Results 

3.1.  Read Length Differences can Cause Artificial Functional Differences between 
Metagenomes without Real Functional Differences  

The first question we asked is if different read lengths can cause artificial functional differences 
between metagenomes. To address this question, we simulated short reads (of ~100 nt) from actual 
experimental Sanger reads (long reads): we do not expect to observe real biological difference 
between the simulated short-reads dataset and the original Sanger dataset (referred as the parent 
datasets). We then built functional profiles (based on the broad COG categories) based on 
HMMER searches against COG proteins, for the simulated datasets and for the parent Sanger 
datasets for further comparison. 

We show that if the functional annotations were perfect (by simply transferring the function 
annotations from the Sanger reads to simulated short reads), there would be no significant 
difference between the functional profiles of the simulated dataset and its parent dataset, although 
small differences are expected due to the randomness of read sampling (see Figure 1A). However, 
when we applied actual annotation to the simulated reads, we observed a significant difference 
between the functional profile of the simulated short-read dataset and that of the parent Sanger 
dataset (Figure 1B), similar to the difference observed between the profiles of the real 
pyrosequence dataset and the Sanger dataset (see Figure 3B below).  As a result, the profiles of the 
datasets appear to be more similar if the reads are of similar length, regardless of the sample 
resources of the datasets (e.g., obese versus lean mice), similar to what had been reported in [3].  

To examine the effect of different similarity search tools on building the functional profiles, 
we also tried BLAST searches (similar methods based on BLAST searches were used for the 
annotation in [3]), and observed similar results: the functional profiles of the datasets appear to be 
more similar if the reads are of similar length, regardless of the sample resources of the datasets 
(data not shown). Also, correcting for the protein lengths of different families did not reduce the 
differences (data not shown). Taking advantage of the fast speed of HMMER3 and the high 
sensitivity and significance evaluation provided, we used HMMER searches as the functional 
annotation method in our subsequent studies.  

In summary, our simulation experiments indicated that the observed functional difference 
reported in [3] could be simply caused by the length difference of the reads, even when there was 
no real biological difference involved. We show that differences in read lengths (not sequencing 
method) result in biased functional profiles of metagenomic samples, if the length difference is not 
considered properly.  
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Fig. 1.  Comparison of functional profiles of lean- (shown in red) and obese-mouse fecal microbiomes (shown in 
blue) built from Sanger reads (shown in squares) and simulated short reads (triangles), (A) providing ‘perfect’ 
annotation for the short reads, and (B) applying real annotations for the short reads based on HMMER search 
results.  
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3.2.  Read Length Matters Differentially to Different Protein Families 

We then asked how different read lengths cause artificial functional differences. To address this 
question, we simulated short reads from 7 selected complete genomes (see Table 1), so that we can 
compare annotations based on the short reads to the annotations of the complete genes. It has been 
shown that read length matters and for all protein families, there is a significant sensitivity loss in 
the similarity searches for short reads of < 200 nt (homology finding is limited by the read length) 
[14]; we further show that 1) unequal fractions of reads tend to be missed in annotations for 
different functional categories (i.e. protein families); and 2) different functional categories tend to 
have different proportions of wrong annotations. These two confounding factors together can bias 
functional profiling of metagenomes, causing artificial functional differences between 
metagenomes—if the lengths of reads are not carefully controlled for. 

For each family, we calculated the precision of the annotations, defined as the proportion of 
correctly annotated reads among all the reads assigned to the family, and the recall, defined as the 
number of reads correctly annotated over the actual number of reads with the function. Note that 
in the simulation experiment, we can assign any read based on the functional annotation of the 
complete gene, and thus the number of reads within a functional category can be precisely 
counted. Both the precision and recall of annotations differ among different protein families. 
Among the 4077 COG families present in the 7 genomes, 2146 families have a precision >90%, 

                 
 
Fig. 2 Demonstration of functional annotation of short reads assigned to COG0175 (A) and COG4565 (B). The 
black line represents the HMM of the corresponding COG family. Red lines represent the reads that have the 
correct annotation.  Blue lines represent the reads that are of that function, but are missed by the annotation 
pipeline. Green lines represent the reads that are incorrectly assigned to the family. The magenta curve above the 
HMM line shows the conservation score of the family. The higher the value is, the more conserved the position is.  
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and 674 families have a precision <= 20%; 880 families have a recall > 90% and 804 families 
have a recall <=20%. Figure 2 shows two examples of COG families with different levels of false 
annotations and missed annotations: COG0175 has significant missed annotations (293 reads are 
correctly assigned to this function, while 223 reads of this function are missed); by contrast, 
COG4565 has a large number of false annotations (158 reads are incorrectly assigned to this 
function) but very few missed annotations (12 reads). In the figure, we indicate the positional 
conservation for each COG (estimated based on the “hitting probability” [23]), which helps us 
understand the patterns of missed and false annotations of each COG family (see Discussion). 

Some COG families share sequence similarity, and we observed incorrect functional 
assignments of short reads among these families. For example, COG3829 (transcriptional 
regulator containing PAS, AAA-type ATPase, and DNA-binding domains) and COG2204 
(response regulator containing CheY-like receiver, AAA-type ATPase, and DNA-binding 
domains) both belong to the functional category T (signal transduction mechanisms); COG3829 
also belongs to category K (transcription). 85 reads that are sampled from genes of function 
COG3829 were incorrectly assigned to COG2204, while 520 reads that are of function COG2204 
were assigned to COG3829. Another pair is COG4664 (TRAP-type mannitol/chloroaromatic 
compound transport system, large permease component) and COG1593 (TRAP-type C4-
dicarboxylate transport system, large permease component); these two families belong to different 
functional categories: COG4664 belongs to Q (secondary metabolites biosynthesis, transport and 
catabolism) and COG1593 belongs to G (carbohydrate transport and metabolism). 480 reads that 
are sampled from genes of function COG1593 were incorrectly assigned to COG4664, while no 
reads that are of function COG4664 were assigned to COG1593. An extreme case is function 
COG4565 (response regulator of citrate/malate metabolism): short reads simulated from genes of 
seven different functions (including COG3290, COG0745, COG2197, COG2204, COG3279, 
COG1629, COG0784) are assigned to this function.  

Table 3. Annotations of the reads simulated from gene YP_012234.1. 
 

Gene/reads	   Positions	   COG3604	   COG2197	   COG3437	   COG3829	   COG4565	   COG2204	  

YP_012234.1	   1–1419	   6.80e-‐114	   2.90e-‐19	   4.80e-‐27	   3.50e-‐115	   1.70e-‐23	   6.40e-‐145	  

r231087.1	   49–162	   -‐	   -‐	   7.90e-‐05	   -‐	   -‐	   -‐	  
r173226.1	   57–167	   -‐	   -‐	   9.80e-‐06	   -‐	   0.036	   0.016	  
r4681.1	   140–240	   -‐	   7.40e-‐05	   4.60e-‐06	   -‐	   2.90e-‐07	   6.00e-‐05	  

r122743.1	   160–268	   -‐	   0.00012	   0.0021	   -‐	   2.30e-‐05	   0.00021	  
r111158.1	   178–286	   -‐	   0.00016	   0.0053	   -‐	   0.013	   0.0032	  
r191730.1	   470–585	   1.10e-‐15	   -‐	   -‐	   2.10e-‐16	   -‐	   3.80e-‐14	  

r196288.1	   547–662	   8.10e-‐18	   -‐	   -‐	   4.80e-‐16	   -‐	   1.40e-‐15	  
This table lists the E-values of selected reads sampled from gene YP_012234.1 (with sampled regions shown in 
the ‘Positions’ column) that have different best matches than the complete gene. The best COG family assignment 
(with lowest E-value) for each read was highlighted with the E-value shown in bold and italic, with ‘-’ indicating 
an insignificant match between the read and corresponding COG family. 
 



 
 

 

 

We show that false annotations of short reads among related families may be explained by the 
local sequence variation of the involved families and the fact that different families may share 
local similarities [24, 25]. Table 3 lists the annotations of short reads sampled from gene 
YP_012234.1. Gene YP_012234.1 can be assigned to function COG2204, although it also shares 
significant similarity with several other COG families, including COG3604 and COG3284. 66% 
of the short reads sampled from this gene can be assigned to a function (with E-value smaller than 
the cutoff), among which a mere 23% are assigned to the same function (COG2204) as the 
complete gene, using the best hit strategy. Among the short reads that were assigned to different 
COGs, read ‘r173226.1’ (which is sampled between 57 and 167 bp of this gene) can be assigned to 
COG3437 with an E-value of 9.80e-06; by contrast, the match between this read and the “correct” 
function COG2204 is much less significant, with an E-value of 0.016	  (see more examples in Table 
3).  

3.3.  Artificial Bias of Functional Profiles can be Adjusted by Considering Read Lengths 

Having shown that different read lengths can cause artificial functional differences because of the 
differential impact of short reads on different protein family, we then asked: can the frequency 
estimates be adjusted, to allow functional profiling of a metagenome independent of read length? 
We proposed to adjust the functional profile of a metagenome—built with reads of a certain 
length—using the recall and the precision of functional annotations of different families we 
learned from simulated reads of the same length: 

€ 

Hit( f ) =
Hit0( f )Precision( f )
Recall(f)Len(f)

                                                 (1) 

 
where Hit0(f) and Hit(f) are the original and adjusted number of query sequencing reads that are 
assigned to function f, respectively. Precision(f) and Recall(f) are the precision and recall of 
functional annotation for functional category f based on similarity searches of simulated reads of 
the same length as short reads. Len(f) is the average length of the protein sequences that are of the 
function f (calculated from the protein sequences that are assigned to functional category f 
collected in the eggNOG database). These family-specific values of precision and recall can be 
applied to any metagenomic project, once calculated for applicable read-lengths. 

We used Eq. (1) to adjust the frequency of different COG families for the simulated twin-
mouse short-read datasets, resulting in improvements of the frequency estimates (comparing to 
those estimated from the Sanger reads) for many functional categories, including E (amino acid 
transport and metabolism), F (nucleotide transport and metabolism), J (translation, ribosomal 
structure and biogenesis), N (cell motility), and S (function unknown) (see Figure 3A). Here we 
show the details of the comparison for functional category E. Its frequencies estimated from both 
obese and lean datasets (shown in red and blue unfilled triangles in Figure 3A, respectively) were 
significantly overestimated; as a result, they differed greatly from those estimated from the Sanger 
datasets (shown in squares in Figure 3A), even though the short reads were simulated from the 
Sanger datasets. The adjustment decreased the artificial functional difference caused by the read 
length difference, revealing a clearer abundance difference of this functional category between the 



 
 

 

 

obese and lean metagenomes. We believe that such adjustment is important for interpreting real 
metagenomes derived from different sequencing techniques, as shown in the twin-mouse datasets 
(see Figure 3B). For most functional categories (except for functional category V, defense 
mechanisms), the frequency adjustment helped to decrease the differences between the frequencies 
estimated from the short-read datasets and the Sanger datasets of the same microbial community, 
revealing consistent functional differences (e.g., for functional category L, replication, 
recombination and repair) between obese and lean metagenomes (functional category L is more 
abundant in the obese metagenomes).  

4.  Discussion 

Using simulation studies, we show that differences in read lengths can result in biased functional 
profiles of metagenomic samples, if the length difference is not treated properly. This is an 
important observation especially for metagenomic research, which utilize different kinds and 
generations of next-generation sequencing (NGS) techniques that produce reads of various 
lengths. It indicates that conclusions need to be drawn carefully when 1) characterizing the 
functional content (capacity) of a metagenome derived by NGS (as the functional profile built 
from short reads may not faithfully reflect the actual functional content of the microbiome), and 
when 2) comparing different metagenomes that are produced by different NGS techniques (e.g., 
454 versus Illumina). While Gordon et al. [3] suggest that different sequencing techniques will 
produce reads in a biased way (e.g., pyrosequencing may under-sample reads from functional 
category A) to explain the functional difference observed between metagenomes containing reads 
of various lengths, our conclusion is that biased-annotation of short reads can explain the observed 
difference, indicating sequencing is not biased, rather annotation is biased. We expect that such 
functional annotation bias due to read length differences exists in other projects as well, as long as 
the projects involve short reads (such as those from current Illumina sequencers).  

It is important to see how read length impacts other functional classifications: we plan to 
extend our study to include more functional categories, including the FIG families [26] and the 
KEGG pathways. We will try more sophisticated methods for functional profile adjustments, 
aiming to achieve better improvements. And more systematic tests are needed. One direction is to 
analyze the individual families (e.g., their overall evolutionary conservation and positional-
conservation patterns, as shown in Figure 2) and their relationships (e.g., the local similarity 
between different families) in more details, and utilize this information when constructing 
functional profiles.  Another direction is to consider the read length explicitly when adjusting the 
functional profiles, so that we do not need a specific learning procedure for each read length.  

We have presented a simple method to adjust functional profiles, based on the read length, and 
we demonstrate that it is possible to alleviate the “read-length-bias” problem. We feel that this 
approach is immediately applicable to many past and on-going metagenomic studies, including the 
Human Microbiome Project [27], impacting not only the functional annotation of metagenomes 
(as shown in this paper), but also other aspects, such as the enterotype-study of human gut 
microbiomes [1], which is based on read mapping to reference genomes for quantification of the 
abundances of different genera, and where obvious differences can be observed in the results 
drawn from metagenomes sequenced by Illumina or Sanger sequencing [1].  
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Fig. 3 Comparison of functional profiles of lean- (shown in red) and obese-mouse fecal microbiomes 
(shown in blue) built from Sanger reads (shown in squares) and short reads (triangles). Both original 
functional profiles (shown in unfilled triangles) and adjusted ones by applying Eq. 1 (shown in filled 
triangles) are shown in the figures:  (A) for simulated short reads, and (B) for actual pyrosequence 
datasets. 
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