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DNA methylation is an important epigenetic modification that regulates transcriptional expression 

and plays an important role in complex diseases, such as cancer. Genome-wide methylation patterns 

have unique features and hence require the development of new analytic approaches. One important 

feature is that methylation levels in disease tissues often differ from those in normal tissues with 

respect to both average and variability. In this paper, we propose a new score test to identify 

methylation markers of disease. This approach simultaneously utilizes information from the first and 

second moments of methylation distribution to improve statistical efficiency. Because the proposed 

score test is derived from a generalized regression model, it can be used for analyzing both 

categorical and continuous disease phenotypes, and for adjusting for covariates. We evaluate the 

performance of the proposed method and compare it to other tests including the most commonly-

used t-test through simulations. The simulation results show that the validity of the proposed 

method is robust to departures from the normal assumption of methylation levels and can be 

substantially more powerful than the t-test in the presence of heterogeneity of methylation 

variability between disease and normal tissues. We demonstrate our approach by analyzing the 

methylation dataset of an ovarian cancer study and identify novel methylation loci not identified by 

the t-test.   
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1.  Introduction 

DNA methylation is an important epigenetic modification that regulates transcriptional 

expression and plays an important role in complex diseases including cancer. 
1
 Recently, 

tremendous amounts of DNA methylation data have been generated from high-throughput DNA 

methylation platforms for many complex diseases. Compared to patterns of other molecular 

profiling, e.g. gene expression, DNA methylation has unique features.  One example is that not 

only the mean but also the standard deviation of methylation levels can vary across age groups.
2,3 

New statistical approaches designed to incorporate these features are desirable because they could 

be more robust and efficient than conventional methods. As such, Chen et al. proposed a test to 

evaluate the overall statistical significance of association by combining p-values from different 

age groups and showed it was more robust and usually more powerful than existing tests. 
4
 

Another phenomenon that has recently received attention is the increased methylation 

variability at relevant loci of cancer. 
5-7

 It has been found that differential variability between 

normal and cancer tissues can be very useful for identifying methylation markers of cancer 
6-8

 

However, commonly-used statistical methods, such as the t-test and linear regression, which do 

not directly detect differences in variability, are statistically inefficient in the presence of 

heterogeneity of methylation variability.   In the statistical literature, various tests, e.g. the 

Barlett’s test
9
 and the Levene’s test

10
, have been proposed for testing homogeneity of variance 

between two groups. In general, the Levene’s test is less sensitive than the Bartlett’s test to 

departures from normality. Figure 1 shows methylation distributions of several representative loci 

in cancer and normal tissues from an ovarian cancer study.
3
 One important feature of these loci is 

both the mean and variability of methylation levels are different between cancer and normal 

tissues. For these loci, it may be useful to combine information from both the first and second 

moments of methylation distribution to improve power to identify methylation markers. One 

approach to combine the results for testing mean and variability is Fisher’s method of combining 

p-values. However, it requires that the mean and variance are independent, which is often not true 

for methylation data. Another approach is to use tests, e.g. Kolmogorov-Smirnov test, to compare 

the empirical distribution of methylation data, which, however, is often not statistically efficient
11

.  

In this article, we propose a new statistical test that incorporates changes in both mean and 

variability to identify methylation markers of diseases, and demonstrate how jointly testing the 

mean and variability can identify methylation markers that are otherwise missed by testing the 

mean alone.  More specifically, we first define two score tests for testing methylation differences 

in mean and variability, respectively, under a generalized regression model. Then, we develop a 

new joint test by combining these two statistics, while accounting for their correlation. As such, 

the new test may not require intensive sampling approaches to evaluate p-values. We evaluate the 

performance of the proposed approach and compare it to the conventional tests including the 

commonly-used two-sample t-test through simulations. We show that the validity of the proposed 

test is robust to departures of the normal distribution of methylation levels and can be substantially 

more powerful than the t-test in the presence of heterogeneity of variability between two groups. 

Finally, we apply our approach to the methylation data of an ovarian cancer study and identify 

cancer relevant loci that other tests could fail to identify.  



 

 

 

 

Fig1: Histograms of DNA methylation values of pretreatment cancers and control groups at 9 

selected methylation loci. Red bars represent cancers and green bars represent controls. 

 

2.  Methods 

We consider detecting the association of individual methylation loci with disease based on a 

case-control study. For individual ii (i = 1;2; :::;n), the trait value is denoted as Yi, and the 

methylation value is denoted as Xi.  To identify methylation loci that are relevant to disease, we 

consider the statistical hypothesis H0 : ¹0 = ¹1 and ¾2
0 = ¾2

1H0 : ¹0 = ¹1 and ¾2
0 = ¾2

1 versus H1 : ¹0 6= ¹1 and ¾2
0 6= ¾2

1H1 : ¹0 6= ¹1 and ¾2
0 6= ¾2

1, in 

which ¹0 and ¹1 are means of methylation levels for controls and cases, respectively, and ¾2
0 and ¾2

1 

are the corresponding variances.  

To compare the average methylation levels of disease and normal tissues, we consider a 

generalized linear model,  

logit[P(Yi = 1)] =®+¯Xi, 

in which  and  are regression coefficients.  Under this model, a score statistic to test the 

difference of the average methylation levels of two groups is given by  U1 =
P

i(Yi¡ ¹Y )Xi. By 

treating XiXi as the variable, the variance of the score statistics can be estimated by 

¾̂2
U1

=
P

i(Yi¡ ¹Y )2¾̂2
X, where ¾̂2

X¾̂
2
X is the estimated variance of methylation levels. As such, the score 

test can be formed by 

T1 =
U2

1

¾̂2
U1

. 

This test is closely related to the commonly-used t-test as they both test the difference of means 

between two groups and has a centered Â2
1 under the null hypothesis for a large sample size.  



 

 

 

To test the difference in methylation variability between disease and normal tissues, we first 

define a variability score for each sample by Zi = (Xi¡ ¹X)2,  in which ¹X is the sample mean of 

methylation levels. With the variability score, a similar logistic regression can be constructed with 

the variability score as the independent variable. Then, the score statistic is given by 

U2 =
P

i(Yi¡ ¹Y )Zi . It can be easily seen that this score statistic is proportional to the difference of 

estimated variances between disease and normal tissues, i.e.  U2 / ¾̂2
1 ¡ ¾̂2

0.  The variance of U2 can 

be estimated by ¾̂2
U2 =

P
i(Yi¡ ¹Y )2¾̂2

Z , in which ¾̂2
Z is the estimated variance of the variability 

score. As such, the score test based on the variability score is 

T2 =
U2

2

¾̂2
U2

. 

Similarly, T2 also has Â2
1 under the null hypothesis for a large sample size. 

A joint test statistic for both mean and variability of methylation levels may be simply formed 

as T1 +T2 that has a Â2
2 under the null hypothesis, or by Fisher’s method for combing p-values 

when T1 and T2 are independent. However, T1 and T2  are generally not independent. To take into 

account the correlation between T1 and T2, it is necessary to estimate the covariance of U1U1 and U2U2. 

To do this, we denote the joint score statistic as  Ujoint = (U1;U2) and its variance-covariance 

matrix can conveniently be estimated by §̂2
Ujoint =

P
i(Yi¡ ¹Y )2§̂2

S
 , in which §̂2

S is the estimated 

variance-covariance matrix of XX and ZZ. Then, the joint test is defined by 

Tjoint = Ujoint§
¡1
Ujoint

UT
joint. 

For a large sample size, Tjoint has a centered Â2
2 under the null hypothesis. When sample size is 

small, we could use a fast permutation procedure by randomly shuffling the order of the trait 

values of Yis. Of note, the inverse of §̂2
S does not require to be calculated at each replicate.  

3.  Results 

3.1  Simulation study 

We evaluated the performance of the proposed joint test through simulations.  To evaluate the 

type I error rate, we first considered a case-control study with various sample sizes (n=20, 30, 50 

and 100) for each group and sampled methylation values of cases and controls from various 

distributions (the standard normal, t distribution with 10 degrees of freedom or Â2 with 2 degrees 

of freedom). For each scenario, we used 10,000 replicates to evaluate type I error rate. It is also of 

interest to examine the false positive rate at a more stringent threshold as a large number of loci 

are now routinely examined in methylation studies. We simulated 10 million replicates to evaluate 

type I error rate for a sample size of 100 cases and 100 controls. With this large number of 

simulations, we estimate the false positive rate with reasonable accuracy for a threshold of 10
-5

. 

Finally, we examined the type I error rate of the proposed test after adjusting for batch effects. We 

assumed different proportions of cases and controls were assayed in two batches (30% in batch 1 

for cases and 70% in batch 1 for controls), yielding difference methylation variability between 

cases and controls due to batch effects. 

 



 

 

 

Table 1: The empirical type I error rate at the statistical significance level of 0.05 

Distribution Sample size t-test Levene KS  Tjoint Tpermutation 

N(0,1) 20 0.050 0.040 0.037 0.039 0.053 

 30 0.047 0.043 0.033 0.039 0.049 

 50 0.050 0.042 0.037 0.045 0.050 

 100 0.050 0.050 0.036 0.048 0.050 

t10 20 0.048 0.049 0.041 0.034 0.051 

 30 0.050 0.043 0.037 0.036 0.050 

 50 0.049 0.048 0.042 0.042 0.050 

 100 0.052 0.047 0.037 0.046 0.051 

χ2
2
 20 0.050 0.039 0.033 0.034 0.049 

 30 0.051 0.044 0.034 0.038 0.050 

 50 0.050 0.046 0.041 0.036 0.049 

 100 0.054 0.040 0.048 0.043 0.049 

 

We further compared power of the proposed joint test with the t-test, Levene’s test and 

Kolmogorov-Smirnov test (KS) at the statistical significance level of 0.05. First, we simulated the 

methylation values of controls from a standard normal distribution, and cases from a normal 

distribution with various means and standard deviations (sd).  The sample size was set at 100 for 

each group. Second, we simulated situations when different levels of heterogeneity exist in cancer 

tissues by sampling cases from a mixed normal distribution, 

¼0N(0;1) +(1¡¼0)N(¹2;¾2). 

In this simulation, we set ¼0 at 0.5 and varied ¹s and ¾2s to simulate different changes in the mean 

and variances between cancer and normal tissues. The sample size was set at 200 for each group. 

For each scenario we used 1,000 replicates to evaluate power. P-values of the proposed method 

were assessed using both the asymptotic distribution and the empirical null distribution obtained 

by the permutation procedure. The number of permutation was set at 1,000. 

Table 1 shows the empirical type I error rate at the statistical significance of 0.05 for the 

proposed joint test (TjointTjoint), the joint test based on permutation (TpermuationTpermuation), the Levene’s test 

Kolmogorov-Smirnov test (KS), and the t-test. We can see all tests maintained a good control of 

type I error rate under simulated scenarios. However, TjointTjoint tended to be slightly conservative 

when sample size is small (n<50) and the distribution is highly skewed (χ2
2
 distribution). For a 

more stringent threshold of 10
-5

, we found a similar pattern of the type I error rate for TjointTjoint, which 

tended to be slightly conservative with the type I error rate at around 0.4×10
-5

.  

Table 2 shows the type I error rate of different tests when there is a difference in methylation 

variability between cases and controls due to batch effects. We can see the proposed test 

maintained a good control of type I error rate by incorporating a batch variable for adjustment for 

batch effects, while the Levene’s test tend to have an inflated type I error rate.  

 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm


 

 

 

Table 2: The empirical type I error rate at the statistical significance level of 0.05 in the presence of heterogeneity in 

variability between cases and controls due to batch effects (n=100) 

SD1* SD2 t-test KS Levene Tjoint Tpermutation 
1 1.1 0.053 0.036 0.061 0.059 0.058 

1 1.2 0.046 0.038 0.066 0.042 0.044 

1 1.3 0.038 0.033 0.068 0.046 0.047 

1 1.4 0.046 0.039 0.091 0.042 0.042 

1 1.5 0.045 0.031 0.090 0.042 0.042 

*SD1 and SD2 are standard deviations of methylation values in batch 1 and 2, respectively. 70% cases are assumed to 

be assayed in batch 1 and 30% controls are assayed in batch 2.  

 

Fig 2: The empirical power of the proposed test and the two-sample t-test at significance level of 0.05 to detect 

methylation loci associated with disease. (a) Controls are simulated from a standard normal distribution and cases are 

simulated with varied means and standard deviations (sds). The x-axes indicate varied means of cases and different 

panels represent varied sds. The sample size is 100 for each group. (b) Controls are simulated from a standard normal 

distribution and cases are simulated from a mixture normal distribution, i.e. 0.5N0(0,1)+0.5N1(d,sd). The x-axes 

indicate the means of N1(d,sd)  and panels represent sds of N1(d,sd). The sample size is 200 for each group.   
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Figure 2 compares the empirical power of different tests at the significance level of 0.05 to 

detect methylation loci associated with disease under various situations. Based on our simulations, 

we have the following observations.  First, Tjoint was slightly less powerful than Tpermutation. In 

situations when cases were sampled from an admixture distribution, the gain of power for 

Tpermutation appeared more obvious, which might reflect the conservative nature of the asymptotic 

test when the normal assumption does not hold. Second, the proposed tests were substantially 

more powerful than the t-test in the presence of heterogeneity of methylation variability between 

cases and controls. Third, Tjoint and TPermutation were only slightly less powerful than the t-test 

when there was no heterogeneity of variability between cases and controls. 
 

3.2  Application to an ovarian cancer study 

To demonstrate the utility of the proposed test, we applied the proposed method to the data of 

United Kingdom Ovarian Cancer Population Study (UKOPS)
3
. This dataset is available at the 

NCBI Gene Expression Omnibus (http:///www.ncbi.nlm.nih.gov/geo) with accessing number 

GSE19711. The data includes 266 cases with 131 treatment and 135 post-treatment patients, and 

274 age-matched healthy controls. To avoid the heterogeneity between age groups, we chose to 

analyze the 50-60 year group with 35 pretreatment patients and 82 controls. The data with 27,578 

GpG loci were generated by Infinium assay with the HumanMethylation27 DNA Analysis 

beadchip.  After background correction and normalization for the raw fluorescent intensities, a 

summarized value, i.e. β value, is calculated based on about 30 replicates in the same array by 

max(M,0)/[max(M,0)+max(U,0)+100], where M is the average signal from a methylated allele 

and U is from an unmethylated allele. Hence, the range of the β value is between 0 (unmethylated) 

and 1 (fully methylated). Because of the small sample size, we calculated both Tjoint and 

Tpermutation, and compared them to other tests. For computational reasons, the number of 

permutations for each locus was determined adaptively. Initially, 10
3
 simulations were performed. 

If the resulting empirical p value was less than 0.01, 10
4
 simulations were performed. If the p 

value from 10
4
 simulations was less than 0.001, 10

5
 simulations were performed.  

 
Table 3: Number of loci with p-values smaller than the given cutoff from different tests 

P-value t-test Levene KS Tjoint Tpermutation t-test and Tjoint 

(Tpermutation) 

<0.01 750 157 1044 1047 1318 549(750) 

<0.001 267 18 353 463 582 214(267) 

<0.0001 62 4 85 169 250 51(62) 

  

http://www.ncbi.nlm.nih.gov/geo
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm


 

 

 

Fig 3: The correlation of –log10 p-values between the t-test, Tjoint and Tpermutation for comparing pre-treatment 

cases and controls in the age group of 50-60 years. (a) the t-test and Tjoint (b) the t-test and Tpermutation and (c) 

Tjoint  and Tpermutation. 

 

Table 3 shows the number of significant loci at different significance levels fordifferent tests. As 

expected, Tpermutation identified slightly more loci than Tjoint because Tjoint tends to be conservative 

for small sample sizes. However, Tjoint and Tpermutation identified many more loci than the t-test. We 

further compared –log10 p-values of different methods for all loci (Figure 3). It can be seen that for 

many loci,  Tjoint and Tpermutation provided much lower p-values than the t-test, suggesting a large 

proportion of loci may have significant changes in the methylation variability between cases and 

controls. However, Tjoint and Tpermutation had similar p-values, although Tpermutation tended to 

generate slightly smaller p-values. The analysis has also been performed on other age groups (60-70 

years and >70 years) and yielded similar findings (data not shown). 

4.  Discussion 

Although in recent cancer studies suggested the difference of methylation levels in both mean 

and variability was observed between cancer and normal tissue
5-7,12,13

, so far most methods to 

identify differentially methylated loci examine the methylation mean and variability separately.  

To overcome this drawback, we propose a new statistical score test that achieves higher power 

than the t-test when there is heterogeneity in methylation variability between cases and controls.  

The traditional t-test gives less significant p-values in this case as it ignores information provided 

by the second moment of the methylation distribution. When there is no heterogeneity in 

methylation variability, the proposed method, although it is not optimal in terms of power, 



 

 

 

generally has robust power. Additionally, because the proposed test is very simple and hence can 

be calculated in a fast fashion, it is computationally feasible to be applied to very large 

methylation datasets, e.g. Illumina 450K. Our simulations and application to an ovarian cancer 

demonstrated the utility of our new method for discovering new methylation markers of complex 

diseases. 

Essentially, the proposed method is an attempt to combine tests for mean and variance of 

methylation levels between two groups. With the normal assumption of methylation levels, one 

may perform the t-test for comparing means and F-test for comparing variances; and the joint test 

statistic can be obtained by Fisher’s method for combining p-values.
14

 However, the normal 

assumption is in general not true for methylation data. Moreover, a normal transformation is often 

not feasible for a large number of genome-wide methylation loci, since each can have a unique 

distribution. One of the consequences due to departures of normal distribution is that test statistics 

for the mean and variance are no longer independent, resulting in an inflated type I error rate when 

Fisher’s method of combining p-values is used. To obtain valid p-values, computationally 

extensive sampling procedures, e.g. permutation, may be necessary. However, for highly 

significant p values, sampling is not a trivial task as such a procedure can be very inefficient. To 

address the issue of correlation, we propose a score test in which the correlation between test 

statistics for the mean and variance can be naturally adjusted. Another consequence of non-

normality, in particular when the distribution is skewed, is that the t-test may lead to loss in power. 

The underlying assumption of our test statistic is that there is a linear relationship between 

independent variables and risk of disease.  Because the linear relationship does not hold when the 

distribution is skewed, the power of our method may also be sensitive to skewness of the 

methylation distribution, although the validity of our method is quite robust. Of note, the 

permutation procedure itself would not improve power in this case. Further research is necessary 

to develop or identify statistical tests that can maintain good power when the distribution is highly 

skewed.  

In the application to a real dataset from an ovarian cancer study, our method achieves higher 

statistical significance than the t-test at some loci. Indeed, a relatively large proportion of markers 

are only identified by the proposed test. The main reason for this might be that heterogeneity of 

methylation variability between cancer and normal tissue is a common phenomenon. In our study 

 of both simulated and real datasets, the t-test performs better than our method when there is no 

difference in variance between cases and controls as an extra degree of freedom is used for testing 

variance in our method. However, Figure 2 (a) and (b) show that the relative power gain of the t-

test is not very dramatic.  

The proposed method can be generalized in different ways. In this paper we consider a case-

control study. However, our score test is developed from a generalized linear regression model. As 

such, our method could be generalized for both continuous, e.g. age, and other categorical disease 

phenotypes. Another advantage of our method is that it can easily generalize to incorporate 

covariates. As such, our method can differentiate the true biological difference from the technical 

difference of variance between cases and controls, e.g. the batch effect, by incorporating an 



 

 

 

addition batch variable as a covariate. As shown in our simulation result, our method maintained a 

good control of the type I error rate after adjustment for batch effects. When there is no obvious 

variable, the technical difference can also be corrected by using a “genomic control”, in which the 

null distribution of the test statistic can be estimated from random methylation loci in the 

genome
15

. In addition, the application of our method can naturally extend beyond the analysis of a 

single methylation locus to the region-based (or gene-based) analysis under the framework of 

generalized linear regression.  The advantage of the region-based analysis is it can make use of 

information of correlated loci in a spatial region. One challenge in applying the method for testing 

variances is the interpretation. Because the proposed test is an omnibus test that can 

simultaneously account for methylation mean and variability, it may be useful to further examine 

the independent effect of the change in methylation mean and variability when an association is 

identified. Various reasons could cause the change of methylation variability in disease tissues. 

One possibility is the heterogeneity of disease itself. However, it has also suggested that 

methylation variability may play an important biological role in the development of complex 

diseases
5
. Understanding the cause of heterogeneity of variance could have fundamental biological 

implications.  

In summary, our results demonstrate that simultaneously testing differences in means and 

variances of methylation levels between cases and controls could identify disease related loci that 

are otherwise missed. Our method has the potential to be an efficient tool for screening potential 

methylation markers of diseases as our method does not require computationally intensive 

sampling to obtain valid p-values, and provides higher power than the t-test in the presence of 

differences in variability. 
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