
AMP: ASSEMBLY MATCHING PURSUIT

S. BISWAS
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill

Chapel Hill, North Carolina, USA

V. JOJIC∗

Department of Computer Science, University of North Carolina at Chapel Hill
Chapel Hill, North Carolina, USA

∗E-mail: vjojic@cs.unc.edu

This paper is submitted to the Pacific Symposium on Biocomputing 2013 session Person-
alized medicine: from genotypes and molecular phenotypes towards therapy. The
paper contains contains original, unpublished results, and is not currently under consideration
elsewhere. All co-authors concur with the contents of the paper.

AMP: ASSEMBLY MATCHING PURSUIT∗

S. BISWAS
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill

Chapel Hill, North Carolina, USA
E-mail: sbiswas@live.unc.edu

V. JOJIC∗

Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, USA

∗E-mail: vjojic@cs.unc.edu

Metagenomics, the study of the total genetic material isolated from a biological host, promises
to reveal host-microbe or microbe-microbe interactions that may help to personalize medicine or
improve agronomic practice. We introduce a method that discovers metagenomic units (MGUs) rel-
evant for phenotype prediction through sequence-based dictionary learning. The method aggregates
patient-specific dictionaries and estimates MGU abundances in order to summarize a whole pop-
ulation and yield universally predictive biomarkers. We analyze the impact of Gaussian, Poisson,
and Negative Binomial read count models in guiding dictionary construction by examining classifi-
cation efficiency on a number of synthetic datasets and a real dataset from Ref. 1. Each outperforms
standard methods of dictionary composition, such as random projection and orthogonal matching
pursuit. Additionally, the predictive MGUs they recover are biologically relevant.

1. Introduction

Advances in bioinformatics, refinements in DNA amplification, and the proliferation of compu-
tational power have greatly aided the analysis of DNA sequences recovered from environmental
microbiomes. Early metagenomic studies focused on the sequencing of the 16S-rRNA sequence
in an attempt to discover trends at a genus level.2 Most reported large species diversity even
between related hosts, and it is now becoming clear that metagenomic correlations may be
better studied in other units such as genes or functional groups.3 This requires the study of
the full metagenome, a more complex task than 16S sequence study. In general, comparative
metagenomics examines how the microbial composition of metagenomic samples correlates
with host properties. If we can identify bacterial taxa, genes, or operons that are consistently
predictive of disease, then these biological signatures could be used to build models that aid
in diagnosis and treatment. For example, such approaches would have medical implications
for diseases such as Inflammatory Bowel Disease (IBD) that may be treated via modulation
of the gut microbiota.4

Our approach to summarization of metagenomic datasets is based on adaptive dictionary
learning. In this framework, a signal (e.g. a set of DNA sequencing reads) is succinctly repre-
sented in terms of a small number of dictionary elements, sometimes called atoms or words.
The history of dictionary learning is rich and varied, tracing back to projection pursuit.5

Famous dictionaries, such as the Fourier basis and wavelets, have been successfully used to

∗Code and supplemental material available from: http://www.cs.unc.edu/~vjojic/amp

decompose and denoise a variety of signals.6 Algorithms for efficient discovery of sparse rep-
resentations in such dictionaries have swept through the statistical, machine learning, signal
processing, and computer vision communities.7–9 The advent of locality sensitive hashing10

and random projection11 have additionally made the task of handling large datasets feasible,
if not trivial. Indeed, the name of the game is random projection as any projection of the data
seems to be informative. However, as we show, pure random projections do not always work
efficiently.

Here we demonstrate how short-read metagenomic sequencing data can be decomposed into
a sequence-based dictionary assembled on the fly. The dictionary contigs composed from reads
prioritized by our simple probabilistic models turn out to be discriminative. Patient-specific
dictionaries can then be merged together and processed to discover a short universal dictionary
that is predictive of phenotype across a population. Finally, we contrast the performances
of our Assembly Matching Pursuit algorithms with the performance of a standard Random
Projection method11 and the popular short-read assembler, SOAPdenovo.12

1.1. Notation and primitive sequence operations

We will denote the `2 norm as ‖x‖2 =
√∑

i x
2
i . Given a matrix D and an index set of its

columns, I, we will use DI to denote a matrix consisting of only those columns. Similarly, for
a vector w and an index set of its coordinates I we will use wI to denote a vector composed
only of those coordinates. Finally, Di,: denotes the ith row of D.

We define kmers(Seq,k) as the set of all k long contiguous substrings of Seq; we assume
that k is set ahead of time and simply use kmers(Seq).

We define overlap(Seq,Kmers,m) the subset of k-mers in the ordered set, Kmers, that
overlaps with at least m letters of either terminus of the sequence, Seq. A k-mer is also included
in this overlapping set if its reverse and complement overlaps with Seq. We assume that
overlap(EMPTY,Kmers,m) returns Kmers, and that overlap(Seq,K,m) returns EMPTY when
no k-mer in K overlaps with Seq.

We define count(Kmersi, Seq) as the number of times the ith k-mer ∈ Kmers occurs in
Seq.

We define extend(Seq,Kmer) to be the sequence constructed by appending Kmer – either
as given or reversed and complemented – to the overlapping end of Seq. This is done by
removing the overlapping segment of Seq, and concatenating the remaining part of Seq with
Kmer. We assume that extend(Seq,EMPTY) = Seq and extend(EMPTY,Kmer)= Kmer.

1.2. Dictionaries for metagenomic read sets

We introduce a representation of the read sets in terms of dictionaries meant to capture the
k-mer profile of the sample. Given k and bound on genome length of any given microbiome’s
member, S, we can construct an exponentially large matrix D : 4k × N(S) defined as Drs =

count(r, s), where r is a k-mer and s is a sequence of length S. Here N(S) = (4S+1−4)/(4−1),
the number of sequences with length at most S.

Given the dictionary matrix, D, and vector of abundances of sequences in the microbiome,
w, we can describe the observed k-mer profile, y, as a noisy version of the true k-mer profile

a)

AAAAACA ... CACACGA ... TCACGAA

AAA
...

ACA
...

CAC
...

CGA
...

GAA
...Al

l p
os

sib
le

 k-
m

er
s

All possible genomic units

D w ε y
Al

l p
os

sib
le

 g
en

om
ic

 u
ni

ts

Al
l p

os
sib

le
 k-

m
er

s

Al
l p

os
sib

le
 k-

m
er

s

Dictionary abundances noise observed
k-mer profile b)

Profile

Read data

≈

1
0
0
1
0
0

0
1
0
0
0
0

0
0
1
0
0
0

 w
1

w
2

w
3

2
2
3
1
0
1

w
1

w
2

w
3

Patient-specific
 abundances

Patient-specific
dictionary

= D
Patient1

w

Microbiome

Patient1

+

+ +

...
...

...
...

...
...

...
...

c)

[D
Patient1

D
Patient2

...D
PatientN

]

Population Dictionary

D
Diagnostic

 and classifier f(w
Diagnostic

)

Train

d)

Diagnostic
 abundances

Diagnostic
dictionary

D
Diagnostic

w
Diagnostic

New Patient

w
1

w
2

w
3

≈

New Patient
 diagnosis

3
2
3
1
0
1

...
...

Fig. 1. a) A sketch of a generative model of a read set profile of a metagenomic set using an exponentially
sized super-dictionary. b) Learning of a patient-specific dictionary from a single patient’s data discovers
dictionary elements that represent the most abundant MGUs. c) The patient-specific dictionaries from both
healthy and sick patients are aggregated into a population dictionary and a set of dictionary elements
predictive of phenotype are selected yielding a diagnostic dictionary. d) Prediction of a new patient’s
phenotype from abundances of diagnostic MGUs.

by noting that y = Dw + ε, see Fig. 1a.
In order to disambiguate from the later dictionaries, we call this exponentially sized dic-

tionary the super-dictionary. In fact, any MGU dictionary will be a subset of the super-
dictionary.

2. Methods

2.1. Dictionary hierarchy

We will be constructing dictionaries that are subsets of the super-dictionary. A patient-
specific dictionary is a set of MGUs used to represent a particular patient’s k-mer profile.
A population dictionary is an aggregate of patient-specific dictionaries meant to represent
k-mer profiles of multiple patients. We note that the MGUs found in one patient may be
representative of other patients’ k-mer profiles. Finally, a diagnostic dictionary is a subset
of the population dictionary that is relevant for predicting a phenotype.

2.2. Matching pursuit and greedy algorithms

The matching pursuit algorithm13 finds a representation of a signal by greedily selecting
dictionary elements that best explain the signal’s residual (see Algorithm 3.1). In our case, the
signal corresponds to the k-mer profile and dictionary elements correspond to MGU sequences.

The most relevant observation about the matching pursuit algorithms is that each dic-
tionary element is examined in order to find the one that best correlates with the residual.
Given the exponential size of the super-dictionary, the matching pursuit search requirement
is not feasible in polynomial time. Therefore, we turn to the area of weak greedy algorithms,
in which asymptotic convergence is guaranteed even if the chosen dictionary element in each
iteration does not correlate optimally with the residual.14 This permits the use of randomized

schemes that sample and accept dictionary elements if they explain a prespecified fraction of
the residual signal.

The probabilistic matching pursuit (PMP) algorithm15 leverages this intuition by prob-
abilistically sampling dictionary elements. By avoiding an exhaustive search, PMP enables
the use of large dictionaries; however, PMP methods do not explicitly optimize a likelihood,
and sampling is restricted to conditioning on an element’s correlation with the residual. We
require a more flexible framework, and so present a generalized PMP (GPMP) algorithm (Al-
gorithm 3.2). GPMP iteratively chooses dictionary elements that increase the likelihood of
the data, p(y|D,w), by sampling from a proposal distribution, q(j|y,D,w).

3. Algorithm

Our patient-specific dictionary construction algorithm follows the GPMP framework. To spec-
ify the algorithm, we must select a likelihood p(y|D,w) to optimize and proposal distribution
q(j|y,D,w) for sampling the dictionary.

3.1. Likelihood

The Gaussian distribution with fixed unit variance is a common choice of likelihood in match-
ing pursuit applications,

log p(y|D,w) = −n
2

log(2π)− 1

2

n∑
i=1

(yi −Di,:w)2. (1)

This likelihood corresponds to linear regression, and its primary benefit is the computational
efficiency with which it can be optimized.

A second choice of likelihood, corresponding to Poisson regression, is

log p(y|D,w) =

n∑
i=1

yi(Di,:w)− exp {Di,:w} − log(yi!). (2)

In contrast to linear regression, which treats both positive and negative observations, Poisson
regression is meant to model non-negative data, such as read counts. Notably, the expected
value and variance of a Poisson random variable are equal.

A third choice of likelihood, corresponding to Negative Binomial regression, is

log p(y|D,w) =

n∑
i=1

yi(Di,:w) +
1

α
log(1− exp {Di,:w}) + log

Γ(yi + (1/α))

Γ(yi + 1)Γ(1/α)
. (3)

Like Poisson count models, Negative Binomial models have been used to model non-negative,
integral data; however, with the additional dispersion parameter α, they can model count data
with less constricted mean-variance relationships.16

3.2. Dictionary element proposal

We wish to propose a sequence j whose k-mer profile is likely to increase the objective
log p(y|DI∪j , wI∪j) compared to log p(y|DI , wI). Given this goal we can easily construct a for-
ward sampling algorithm that will produce a reasonable candidate sequence. Specifically, we

Algorithm 3.1. Matching Pursuit

Input:D, c
Output:w, such that ‖y −Dw‖2 ≤ c
initialize wj = 0,∀j
while(‖y −Dw‖2 ≤ c)
R = y −Dw
cj =

∣∣∣ 〈R,Dk〉
〈Dk,Dk〉

∣∣∣ ,∀j
k = argmaxj cj
I = I ∪ {k} wk = ck

Algorithm 3.2. Generalized Probabilistic
Matching Pursuit

Input:D, y, c
Output:I and w such that log p(y|D,w) > c

I = ∅, wj = 0,∀j
while(log p(y|D,w) ≤ c)

sample {j} from q(j|y,D,w)

I = I ∪ j
wI = argmaxv log p(y|DI , v)

return I, w

Algorithm 3.3. Dictionary element pro-
posal

Input:D, y,w,m,Orthogonal,
set of all observed k-mers K

Output:a candidate dictionary element s
s = EMPTY, I = {i|wi 6= 0}
repeat
Ks = overlap(s,K,m) ∪ {EMPTY}
if(Orthogonal)

Ks = Ks − ∪i∈Ikmers(i)

foreach(l ∈ Ks)

s′ = extend(s,l)
I ′ = I ∪ {s′}
wI′ = argmaxw log p(w|y,DI′)

πl = p(y|DI′ , wI′)

sample l∗ from normalized π

s = extend(s, l∗)

until(l∗ = EMPTY)

initialize a new dictionary element (contig) by sampling a k-mer based on the increase in like-
lihood if that k-mer, alone, were to enter the model as an element. When extending a contig,
an overlapping k-mer is sampled according to the change in likelihood that would result if
it were added to the growing element. If no k-mer sufficiently improves the likelihood, then
the algorithm may sample the EMPTY k-mer (i.e. choose to terminate extension), and thus
complete an iteration. The likelihood biases the algorithm toward sampling k-mers that occur
with high frequency.

Another proposal distribution produces orthogonal dictionary elements, and is accordingly
used by orthogonal matching pursuit algorithms. Since the entries in our dictionary are always
nonnegative, two dictionary elements will be orthogonal, (

∑
kDk,iDk,j = 0), if and only if their

corresponding MGUs do not share any k-mers. Algorithm 3.3 implements both of these choices
specified by argument Orthogonal.

3.3. The AMP algorithms

We introduce four algorithms based on choices of likelihood and dictionary element proposal.
(1) Gaussian Assembly Matching Pursuit (GAMP) combines the likelihood from (1) and

the non-orthogonal dictionary proposal.

(2) Poisson Assembly Matching Pursuit (PAMP) combines the likelihood from (2) and the
non-orthogonal dictionary proposal.

(3) Negative Binomial Assembly Matching Pursuit (NAMP) combines the likelihood from
(3) and the non-orthogonal dictionary proposal.

(4) Orthogonal Assembly Matching Pursuit (OAMP) uses the orthogonal dictionary pro-
posal.

Because the orthogonal dictionary proposal strongly constrains dictionary construction, the
choice of likelihood is irrelevant.

3.4. Population dictionary construction and patient summarization

Given a learned patient-specific dictionary we are tasked with constructing a dictionary that
can be used universally across the whole patient population, the population dictionary. We
can construct this dictionary by pooling all patient specific dictionaries, but here we face two
challenges:

(1) How do we estimate abundances of the population dictionary elements in each patient?
(2) Which of the population dictionary elements are diagnostically relevant?

Abundance estimation A patient’s k-mer profile may be regressed onto the population
dictionary in order to estimate MGU abundances. We utilize Negative Binomial (NB) regres-
sion due to its flexibility in modeling potentially overdispersed data, such as read counts.16

NB models have been fruitfully applied in RNA-Seq data analysis,17 and we have found that
abundances estimated by NB regression – regardless of dictionary origin – are more accurate
than those estimated using other likelihoods (data not shown).

Using abundances as predictors MGU abundance estimates can be directly used as pre-
dictors of phenotype. In terms of interpretability, logistic regression is most appealing. In our
experiments we use an efficient implementation of sparse logistic regression.18 The sparsity
inducing, `1-penalty selects only a small portion of the features to participate in phenotype
prediction from an otherwise large population dictionary. Because the optimal scale, λ, of the
`1-penalty is unknown, it must be estimated from the data. The data are therefore split into
training, validation, and test sets – the validation set is used to determine the λ parameter.
The sparsest model that classifies the validation set statistically as well as the best model is
chosen. The classification accuracy of this logistic regression model is then evaluated on the
test set.

The chosen set of MGUs that are predictive of phenotype correspond to parts of the
population dictionary that can be diagnostically useful. Thus, they compose the diagnostic
dictionary.

4. Implementation

We customized an implementation of a succinct suffix trie19 to store suffix and prefix k-mer
tries. The counts of each k-mer are also stored during trie construction. While the AMP
algorithms’ implementation is straightforward, here we draw attention to two issues relating

to likelihood optimization and read storage and querying.
The AMP assemblers are string-based and rely on greedy extension. However, extension

is stochastic and is guided by the likelihood of the observed k-mer profile (Algorithms 3.2
& 3.3). When updating the weight of a growing contig to a conditional maximum likelihood
value (i.e. computing wj = argmaxvj

log p(y|D, vj)), GAMP equates the first partial derivative
of the likelihood (with respect to the contig’s weight) to zero and solves for w. NAMP and
PAMP, on the other hand, utilize Newton-Raphson updates to find a w that maximizes the
likelihood (a closed-form solution for wI does not exist when equating the gradient of the
negative binomial or Poisson likelihoods to zero).

5. Results and Discussion

To assess the ability of our methods to produce discriminative diagnostic dictionaries, we
turned to synthetic and real data experiments. We put particular focus on the efficiency with
which our AMP methods could produce representations relevant for phenotype prediction.b

In all synthetic experiments we worked with k-mers of fixed read length. The real dataset
consisted of a mix of 75bp and 44bp read datasets. Hence we used k-mer length of 44bp,
using shorter reads directly as k-mers. From each longer 75bp read we constructed 3 44-mers
with 16bp spaced starting offsets. In our dictionary element proposal algorithm we required
that a k-mer achieve an overlap of 20bp with a growing contig to be considered a candidate
for appending.c Finally, to estimate the classification accuracy we performed a 10-fold cross-
validation with an inner cross-validation on the training and validation sets to select λ (the
held out data in the outer fold were not used during training).

5.1. Baselines

For comparision, we chose to analyze the quality of dictionaries produced by SOAPdenovo12

and a pure random projection method.11

For synthetic experiments, SOAPdenovo was run on each sample using a single thread
and a minimum k-mer overlap (option -K) of 21 for extension purposes. For the real data
from Ref. 1, we used the SOAPdenovo contigs already generated in their paper.d Because
SOAPdenovo’s assembly is not likelihood driven, the order in which contigs are produced is
not interpretable. Thus, the longest SOAPdenovo contigs with high coverage were added in a
random fashion when evaluating successively larger population dictionaries.

Random projections (RP) summarize a set of points by projecting them into a lower
dimensional subspace defined by a intelligently chosen, but random basis. If done properly, the
relative distances between points before and after projection will be, on average, approximately
preserved. In the case of metagenomic samples, we treat each sample’s k-mer profile as a K
dimensional point. Application of RP produces a new, smaller set of features that are sums

bEfficiency refers to the size of the population dictionary required to produce a diagnostic dictionary capable
of achieving a particular classification accuracy.
cThis amounts to using m=20 in Algorithm 3.3.
dThey used -K 21 and -K 23 for 44bp and 75bp reads, respectively.

of randomly weighted k-mer profiles, each with dimension C < K. If we have N samples then,
wRP = PY where Y is the K × N matrix of k-mer profiles from all samples, P is the C ×K
random projection matrix, and wRP is the resulting C × N projected form of Y . These new
C dimensional features are roughly akin to abundances produced by the AMP methods and
are treated as such during our classification step. Indeed, an implicitly constructed dictionary
matrix can be defined as matrix D that satisfies P = (DTD)−1DT . The matrix P is constructed
using the method described in Ref. 11 and refer to the algorithm as ARP.

5.2. Synthetic data generation

A/T SNP A 10Kb sequence was randomly generated and duplicated. The 5000th base in one
duplicated copy was changed to an ‘A’ and the 5000th base in the other copy was changed to a
‘T’. We then generated 100 synthetic metagenomic samples, 50 of which were phenotypically
‘sick’ and 50 of which were phenotypically ‘healthy’. For each of the 100 samples, 20000 75bp
reads with 2% noise were simulated from the 10Kb templates. A 50/50 and 33/67 ratio of the
two variants were maintained for ‘healthy’ and ‘sick’ sample, respectively.

Distinct species For this synthetic experiment 40 10Kb sequences were randomly generated.
From this true dictionary, we generated 100 synthetic metagenomic samples, 50 of which
were phenotypically ‘sick’ and 50 of which were phenotypically ‘healthy’. For each of the 100
samples, 40000 75bp reads with 3% noise were simulated from the 10Kb templates with varying
coverage. Average baseline mixing proportions of the templates followed an exponential decay;
however for ‘sick’ samples, the relative abundances of the 7th, 13th, and 24th most abundant
templates were altered by 1%, 0.67%, and 0.33%, respectively (see Supp. Info. Fig. 1 for exact
abundances).

Synthetic community The Genome Institute at the Washington School of Medicine has
produced many draft-quality genomes of various human gut microbes.e We selected 31 micro-
bial species’ genomes to represent actual genera and phyla found in the human gut. From this
true dictionary, we generated 100 samples, 50 ‘healthy’ and 50 ‘sick’, each with 10 million,
75bp reads with 3% noise. Baseline mixing proportions of each microbe in all samples were
set in accordance with relative abundances reported in Ref. 1 and Ref. 20 based on the genus
and phylum they represent; however, the relative abundances of 3 microbes in ‘sick’ samples
were altered by 1%, 2%, and 3% (see Supp. Info. Fig. 2 for exact abundances).

5.3. Synthetic data results

Fig. 2 shows the performance of the methods in classifying ‘healthy’ and ‘sick’ samples from
the synthetic experiments.

In the A/T SNP experiment, the discriminative abundances are driven by the reads span-
ning the SNP position. Without noise, all methods converge quickly and classification is trivial
for SOAPdenovo and OAMP as orthogonality requirements ensure that none of the shared

eFreely available from http://genome.wustl.edu/pub/organism/Microbes/Human_Gut_Microbiome/.

a) b)

c) d)

Fig. 2. a,b,c) Mean classification accuracies of the methods on synthetic datasets. The dashed red line cor-
responds the performance expected when always predicting ‘healthy’. Plots with confidence bands around
the mean can be seen in Supp. Info. Fig. 3. d) Performance comparison with respect to running time of
each method on the synthetic community experiment. SOAPdenovo performance is marked with a single red
diamond since the order in which it produces contigs is not interpretable.

reads between species are available for the second contig (data not shown). However, in a
more realistic, noisy setting contig construction is more difficult. Nevertheless, NAMP, PAMP
and GAMP begin to discover sequences containing the discriminative SNP within the first 8
contigs, before the other methods.

In the distinct species experiment, species’ k-mer profiles are nearly orthogonal. Without
noise, OAMP and SOAPdenovo reconstruct the true dictionary within the first 40 iterations
(data not shown). With noise, OAMP spends more iterations constructing subcontigs of the
true dictionary elements that are non-discriminitave. By exploring only well-supported edges
in its De Bruijn graph construction, SOAPdenovo better handles the noise, constructs longer
contigs, and thereby discovers significant features more quickly.

Interestingly, in all scenarios, including the synthetic community, there is a steady and
consistent difference in performance between GAMP, PAMP, and NAMP. This illustrates
clear ordering between the three choices of likelihood: NAMP � PAMP �GAMP. Additionally,
NAMP and PAMP discover discriminative features sooner than the other methods,f and with
the exception of the A/T SNP experiment, SOAPdenovo consistently outperforms GAMP.
These results suggest that given the appropriate read count model, likelihood driven assembly
can direct the early discovery of predictive features. Finally, the subpar performance of ARP
on all experiments demonstrates the benefit of computing abundances of sensible contigs in a
manner consistent with the nature of the data.

fThis comparison is not directly applicable to SOAPdenovo as its assembly is not order dependent.

5.4. Human Gut Metagenome Analysis

In addition to synthetic experiments, we tested our method on data from Ref. 1. This data
set contains 576 gigabases of sequence data obtained from the fecal samples of 124 Spanish
and Danish individuals, 25 of whom have inflammatory bowel syndrome (IBD). Population
dictionary pools for the AMP methods were constructed by aggregating the first 1000 dictio-
nary contigs greater than 500 bp of each patient. For SOAPdenovo’s pool we took the longest
124000 contigs of the roughly 6.6 million contigs greater than 500 bp produced by SOAPde-
novo in Ref. 1. ARP’s pool was constructed by producing 1000 random projections for each
of the 124 patients, since ARP does not have a concept of a patient specific dictionary. From
each of their respective pools, successively larger population dictionaries were constructed in
order to evaluate each method’s classification accuracy. Length distributions for the contigs
used in each population dictionary can be found in Supp. Info. Fig. 4.

Fig. 3a) shows the method performances in classifying individuals based on their health
status (IBD or healthy). We see that all methods discover relevant contigs, but at a different
rate. The leading algorithm is NAMP, followed closely by PAMP, and thereafter SOAPdenovo.
We see that GAMP and OAMP are relatively close in terms of performance but for different
reasons. The OAMP is affected by the orthogonality requirement while Gaussian likelihood is
overly greedy, driven by the quadratic cost on the residual.

From the final GAMP, SOAPdenovo, PAMP, and NAMP dictionaries, 11, 18, 18, and
19 metagenomic units, respectively, were found to have non-zero weight, suggesting their
importance as potential biomarkers for IBD (Fig. 3b)). We obtained KO (KEGG orthologous
groups) numbers for each of these features using KAAS, an annotation server that queries the
KEGG database.21 For discovered enzymes we additionally mined the KEGG BRITE database
to obtain a functional annotation. Finally, as a measure of consistency between our method
and an independent biological study, we noted any commonalities between our annotations
and those of Ref. 22 (see Supp. Info., Fig. 5). Of our 48 features, 10 were found to be either
enriched or depleted in the Ref. 22 analysis. In particular, 4 were related to the PTS, a system
important for sugar transport into the cell and recently found to include biomarkers for IBD.23

We additionally found nitrate reductase among our significant features. Nitrate reductase plays
an important role in the conversion of nitrate to nitrite and nitric oxide, neither of which can
be synthesized by human DNA. Unsurprisingly then, elevated levels of nitric oxide have been
found to correlate with IBD.24 Finally, we noted the presence of vanillate monooxygenase, an
agent that may play a role in xenobiotic degredation of phenolic compounds, such as p-cresol,
another correlate of IBD.25

5.5. Time and memory

Fig. 2a,b,c) and 3 describe the efficiency of the various methods in terms of accuracy gained
per added dictionary element. To gauge computational efficiency, it is important to consider
efficiency with respect to running time.

Fig. 2d) illustrates the performance of the various methods with respect to time in the
synthetic community experiment and corresponds with the accuracies depicted in Fig. 2c). For
the AMP methods, time required to achieve a particular classification accuracy was calculated

a) b)

Fig. 3. a) Mean classification accuracy of each method on the real dataset. Dashed red line is the performance
expected by always predicting ‘healthy’. Plots with confidence bands around the mean can be seen in Supp.
Info. Fig. 3. b)Most predictive dictionary element abundances for the healthy and sick patients stemming from
the different methods (GAMP, SOAP, PAMP, NAMP) as well as weights of these abundances in a sparse
logistic regression trained model.

as the sum total of the times required to generate each contig used in the corresponding
population dictionary. For the ARP the performance curve is parameterized by the number of
rows in the projection matrix. Each successive point on the AMP and ARP curves corresponds
to a two-fold increase in the number of contigs over the previous point. For SOAPdenovo
we measured the total running time required to assemble all synthetic samples (2.99 × 104

seconds) and noted how many contigs were produced (5.00× 106). Thus, we extrapolated the
time required to generate a final population dictionary of size 50000 to be 50000÷(5.00×106)×
(2.99× 104) = 299 seconds. SOAPdenovo’s performance is depicted as a single point since the
contigs it produces are not necessarily order dependent.

SOAPdenovo reaches its final 67% accuracy before NAMP and PAMP, and handily out-
performs GAMP and OAMP. The AMP methods are not as time efficient due to the expensive
floating point arithmetic (e.g. computing exponents and logarithms) associated with the likeli-
hood computations. However, NAMP and PAMP offset these inefficiencies by nearly reaching
the same accuracy as SOAPdenovo in the same time and with a dictionary 1/25th the size. Ul-
timately, with equally large dictionaries as SOAPdenovo, NAMP and PAMP provide superior
performance by classifying 4-5% more accurately.

The AMP methods additionally require less memory than SOAPdenovo. On average,
SOAPdenovo requires 2358 bytes per 75 bp read, whereas the AMP methods require 2037
bytes per 75 bp read (Supp. Info. Fig. 6). These reads were taken from the synthetic com-
munity experiment.

6. Conclusion

We introduced the Assembly Matching Pursuit family of methods for metagenomic dataset
summarization and analysis. Our AMP methods follow a novel generalized matching pursuit
paradigm, which guides dictionary construction using likelihood based principles. Within this
framework, we explored the appropriateness of popular likelihood choices for modeling read
counts and accordingly derived the GAMP, PAMP, and NAMP assemblers. In investigating
an alternative proposal distribution, we derived the OAMP assembler, which enforces orthog-
onality among its contigs.

We also introduced a simple abundance estimation protocol that directly regresses k-mer

profiles of any read sample on a set of dictionary sequences. Indeed, a dictionary does not
have to be composed of contigs from our AMP methods. It may generated by SOAPdenovo,
any another assembler, or in the future, set to be a large sequence database.

By coupling AMP assembly with a negative binomial based abundance estimator, we have
put forth a simple method of aggregating sample dictionaries into a population dictionary
from which learned abundances can be leveraged as predictors of phenotype. In both syn-
thetic and real datasets we show that this new family of methods does significantly better in
phenotype discrimination than random projections. Further, due to their simplicity, the meth-
ods easily handle large scale datasets, such as in Ref. 1, which spans 0.6 terabases. Finally,
while we focused on medical applications as an illustration, the method is applicable to other
metagenomic, and in principle, RNA-seq studies.

References
1. J. Qin, R. Li, J. Raes, M. Arumugam et al., Nature 464, 59 (March 2010).
2. P. Hugenholtz, B. M. Goebel and N. R. Pace, J. Bacteriol. 180, 4765 (Sep 1998).
3. C. Burke, P. Steinberg, D. Rusch, S. Kjelleberg and T. Thomas, Proc. Natl. Acad. Sci. U.S.A.

108, 14288 (Aug 2011).
4. D. Knights, L. Parfrey, J. Zaneveld, C. Lozupone and R. Knight, Cell Host & Microbe 10, 292

(October 2011).
5. J. H. Friedman and J. W. Tukey, IEEE Trans. Comput. 23, 881 (1974).
6. S. Mallat, A wavelet tour of signal processingWavelet Analysis and Its Applications Series,

Wavelet Analysis and Its Applications Series (Academic Press, 1999).
7. D. L. Donoho, IEEE Transactions on Information Theory 41, 613 (1995).
8. E. J. Candès and T. Tao, IEEE Transactions on Information Theory 52, 5406 (2006).
9. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang and S. Yan, Proceedings of the IEEE 98,

1031 (June 2010).
10. A. Gionis, P. Indyk and R. Motwani, Similarity search in high dimensions via hashing1997.
11. D. Achlioptas, Journal of Computer and System Sciences 66, 671 (June 2003).
12. R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li,

H. Yang, J. Wang and J. Wang, Genome Res. 20, 265 (Feb 2010).
13. S. G. Mallat and Z. Zhang, IEEE Trans. Signal Process. 41, 3397 (1993).
14. V. Temlyakov, Greedy Approximation (Cambridge University Press, 2011).
15. S. E. Ferrando, E. J. Doolittle, A. J. Bernal and L. J. Bernal, Signal Processing 80, 2099 (October

2000).
16. J. Hilbe, Negative Binomial Regression, 2nd edn. (Cambridge University Press, 2011).
17. S. Anders and W. Huber, Genome Biol. 11, p. R106 (2010).
18. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin, Journal of Machine Learning

Research 9, 1871 (2008).
19. D. Okanohara, ux-trie http://code.google.com/p/ux-trie, (2012).
20. M. Arumugam, J. Raes, E. Pelletier et al., Nature 473, 174 (May 2011).
21. Y. Moriya, M. Itoh, S. Okuda, A. C. Yoshizawa and M. Kanehisa, Access 35, 182 (2007).
22. S. Greenblum, P. J. Turnbaugh and E. Borenstein, Proc. Natl. Acad. Sci. U.S.A. 109, 594 (Jan

2012).
23. A. L. Francl, T. Thongaram and M. J. Miller, BMC Microbiology (2010).
24. G. Kolios, V. Valatas and S. G. Ward, Immunology (2004).
25. M. H. van Nuenen, K. Venema, J. van der Woude and E. J. Kuipers, Digestive Diseases 49, 485

(2004).

