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Genetic association studies have rapidly become a major tool for identifying the genetic basis of common 

human diseases.  The advent of cost-effective genotyping coupled with large collections of samples linked to 

clinical outcomes and quantitative traits now make it possible to systematically characterize genotype-

phenotype relationships in diverse populations and extensive datasets.  To capitalize on these advancements, 

the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) project, as part of the 

collaborative Population Architecture using Genomics and Epidemiology (PAGE) study, accesses two 

collections:  the National Health and Nutrition Examination Surveys (NHANES) and BioVU, Vanderbilt 

University’s biorepository linked to de-identified electronic medical records.  We describe herein the 

workflows for accessing and using the epidemiologic (NHANES) and clinical (BioVU) collections, where 

each workflow has been customized to reflect the content and data access limitations of each respective 

source. We also describe the process by which these data are generated, standardized, and shared for meta-

analysis among the PAGE study sites.  As a specific example of the use of BioVU, we describe the data 

mining efforts to define cases and controls for genetic association studies of common cancers in PAGE.  

Collectively, the efforts described here are a generalized outline for many of the successful approaches that 

can be used in the era of high-throughput genotype-phenotype associations for moving biomedical discovery 

forward to new frontiers of data generation and analysis. 
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1. Introduction 

In a typical genome-wide association study (GWAS), a single or limited number of traits or diseases are 
tested for association with common single nucleotide polymorphisms (SNPs) assayed regardless of 
presumed function across the human genome.  Since 2005, GWAS has been successful in confirming 
already known and identifying novel genotype-phenotype associations relevant to the biomedical 
community.  GWAS is now a mainstay discovery approach in human genetics. 

With hundreds to thousands of genotype-phenotype associations now catalogued across the human 
genome(1,2), there is great interest in expanding the characterization of these associations beyond the 
initial population or phenotype studied.  Indeed, the systematic characterization and fine-mapping of known 
GWAS-identified variants from European-descent populations has begun in earnest(3-10).   In addition, 
large scale methods to identify pleiotropy, such as phenome-wide association studies (PheWAS) (11,12), 
are increasing in frequency.  To propel research in these two avenues, the National Human Genome 
Research Institute founded the Population Architecture using Genomics and Epidemiology (PAGE) study 
in 2008.  PAGE is a collection of large, diverse epidemiologic and clinical collections with DNA samples 
linked to hundreds of disease outcomes, quantitative traits, and exposures(13)(Figure 1).  A major activity 
of the PAGE study is the systematic characterization of GWAS-identified genotype-phenotype 
relationships across populations and phenotypes.  The Epidemiologic Architecture for Genes Linked to 
Environment (EAGLE) project, one of PAGE’s four study sites, accesses the National Health and Nutrition 
Examination Surveys (NHANES) and the Vanderbilt University biorepository linked to de-identified 
electronic medical records (BioVU)(14) to pursue PAGE study goals.  

EAGLE participates in collaborative PAGE studies for disease and traits related to cardiovascular, 
metabolic, and cancer phenotypes among many others.  To enable characterization of genotype-phenotype 
relationships in EAGLE and PAGE, EAGLE has developed high-throughput workflows customized to test 
GWAS-identified variants for all outcomes and traits in multiple populations available in both EAGLE 
collections.  The development of a systematic workflow was and continues to be necessary to harmonize 
EAGLE analyses with analyses from other PAGE study sites and to facilitate meta-analysis across multiple 
studies.  We describe herein each EAGLE collection, including characteristics of each data collection that 
impact both the workflow design for effective data analysis as well as data sharing, all crucial elements for 
collaborative high-throughput human genetic association studies for biomedical discovery.       

 

2. Methods 

1.1.  Study populations 
EAGLE currently accesses two diverse study populations as part of the PAGE study:  the National Health 
and Nutrition Examination Surveys (NHANES) and BioVU, the Vanderbilt University biorepository linked 
to de-identified electronic medical records (EMRs).  NHANES is a population-based survey conducted by 
the National Center for Health Statistics at the Centers for Disease Control and Prevention(15).  NHANES 
ascertains Americans regardless of health status at the time of the survey.  For each study participant, data 
on demographics, health, and lifestyle are collected. A physical exam is conducted by a CDC physician or 
health professional, and laboratory measures are assayed from blood and urine.  DNA samples were 
collected on consenting participants for the Third NHANES (NHANES III) conducted between 1991 and 
1994 (n=7,159), NHANES 1999-2000 (n=3,570), NHANES 2001-2002 (n=4,269), and NHANES 2007-
2008 (n=4,615).  A total of 19,613 DNA samples are available for research representing self-reported non-
Hispanic whites (n=8,858), non-Hispanic blacks (n=4,325), Mexican Americans (n=4,768), and other 
race/ethnicities (n=1,662). 



 

 

 

 Figure 1.  The Population Architecture using Genomics and Epidemiology (PAGE) study.  The PAGE 

study, funded in 2008, consists of a coordinating center (Rutgers University and Information Sciences 

Institute at the University of Southern California) and four study sites:  the Causal Variants Across the Life 

Course (CALiCo) consortium accessing the Atherosclerosis Risk in Communities (ARIC), Coronary Artery 

Risk in Young Adults (CARDIA), Cardiovascular Heart Study (CHS), Strong Heart Cohort and Family 

Studies (SHS/SHFS), and Study of Latinos (SOL); Epidemiologic Architecture for Genes Linked to 

Environment (EAGLE) accessing the National Health and Nutrition Examination Surveys (NHANES) and 

Vanderbilt University’s biorepository linked to de-identified medical records (BioVU); the Multiethnic 

Cohort (MEC); and the Women’s Health Initiative (WHI). 

In contrast to NHANES, BioVU is a clinic-based collection of patients visiting the outpatient clinics 
affiliated with Vanderbilt University in Nashville, Tennessee(14). DNA is extracted from discarded blood 
collected for routine outpatient clinic use and linked to a de-identified version of the electronic medical 
record known as the Synthetic Derivative (SD).  The SD is updated routinely and contains outpatient as 
well as inpatient clinical structured and unstructured data including billing codes, procedure codes, labs, 
tumor registry entries, demographic data, vital signs, and text-based clinical notes.  Because of extensive 
de-identification procedures, BioVU is considered non-Human Subjects research(16).  As of June 2012, 
BioVU contained 143,993 DNA samples, 57% of which are from females and 10% from African 
Americans.  

  

2.2. Genotyping 



 

 

 

The majority of EAGLE’s genotypic data are a result of de novo targeted genotyping.  Briefly, SNPs were 
selected in 2008 to mid-2010 representing index genetic variants from GWAS of common diseases and 
traits such as HDL-C, LDL-C, triglycerides, total cholesterol, markers of inflammation, bone mineral 
density/osteoporosis, electrocardiographic traits, body mass index, complete blood count traits, type 2 
diabetes and eight major cancers.  SNPs were then genotyped using a variety of assays/platforms including 
TaqMan, TaqMan OpenArray, Illumina BeadXpress, and Sequenom.  To date, EAGLE has submitted 
greater than 5.1 million genotypes to the CDC Genetic NHANES database, and these data are available for 
secondary analyses via NCHS/CDC. 

 

2.3. Statistical analyses 

In EAGLE (single site) and PAGE (multi-site) studies, genotype-phenotype association analyses are 
conducted as defined by the following “tiers”(13): 

 Tier 1:  High-throughput unadjusted linear or logistic regressions assuming an additive genetic 
model. For categorical phenotypes, binning was used to create new variables of the form “A versus 
not A” for each category, and logistic regression was used to model the new binary variable. All 
continuous phenotypes were natural log transformed, following a y to log (y+1) transformation of 
the response variable with +1 added to all continuous measurements before transformation to 
prevent variables recorded as zero from being omitted from analysis.  All analyses are stratified by 
race/ethnicity. Statistical analyses are performed by each PAGE study site independently.  The 
phenotypic and exposure variables are not harmonized across PAGE study sites. 

 Tier 2:  Low throughput unadjusted linear and/or logistic regressions performed for select 
genotypes and phenotypes of interest in a single PAGE study site.  The genetic modeling and levels 
of stratification are dependent on a specific hypothesis or study question.  The study subjects are 
carefully phenotyped and multiple covariates (also well-defined) are considered in the models. 

 Tier 3: Low throughput unadjusted linear and/or logistic regressions performed for select 
genotypes and phenotypes of interest across PAGE study sites where the genetic modeling and 
levels of stratification are dependent on the hypothesis or study question.  The study subjects are 
carefully phenotyped like Tier 2 analyses; however for Tier 3, phenotypes and exposures are 
harmonized across multiple PAGE study sites.  Statistical analyses are performed by each PAGE 
study site independently, and aggregate results are shared across study sites for meta-analysis by 
the lead author(s). 

All PAGE study results, regardless of Tier, must be available in aggregate form for the PAGE 
Coordinating Center browser(13) and possible dbGaP(17) deposition.  To facilitate the uniform submission 
of PAGE study aggregate data by study site, the PAGE Coordinating Center created three “Results 
Template” files consisting of the phenotype file, the SNP file, and the Association file (version 8).  The 
phenotype file currently consists of 32 column headers such as phenotype label, PAGE study site, 
phenotype units, information on transformation and analysis tier, type of variable (binary versus 
quantitative), types of covariates included in the models, race/ethnicity, gender, sample size, and 
descriptive statistics of the phenotype used in the analysis.  The SNP files currently consists of 19 column 
headers such SNP ID (rs number), PAGE study site, race/ethnicity, gender, alleles and counts (including 
coded allele designation), genotypes and counts, Hardy Weinberg p-values, genotype call rates, and strand 
information.  The Association file currently consists of 53 column headers such as SNP ID, phenotype, 
PAGE study site, race/ethnicity, gender, genetic effect size of association and standard errors and/or 
confidence intervals, modeling label (defined by lead of the analysis plan), p-values, sample sizes, alleles 
(included allele and frequency of coded allele), genotype counts by affection status, median values and 
quartiles of quantitative traits by genotype, and genetic model. 



 

 

 

In EAGLE, all NHANES genotype-phenotype associations are performed using SAS v9.2 and 
SUDAAN v10.0(SAS Institute, Cary, NC) using the Analytic Data Research by Email (ANDRE) portal of 
the CDC Research Data Center (RDC) in Hyattsville, MD (further described below).  EAGLE analyses 
accessing BioVU data are performed using a variety of software packages including PLINKv1.07(18), 
SASv9.3, and Rv2.14.1(19).  The EAGLE workflows described here are supported by multiple scripts 
written in several computer languages such Ruby with Ruby on Rails framework and Javascript with 
Backbone framework. 

 

3. Workflow 

3.1. The epidemiologic collection (NHANES) 

Like many epidemiologic collections, NHANES consists of thousands of DNA samples linked to thousands 
of variables and, in the case of EAGLE, hundreds of genetic variants.  To automate the high-throughput 
genotype-phenotype associations such as the PheWAS approach, the workflow for this and many 
epidemiologic collections must accommodate the fact that sample size, phenotypic/exposure variable list, 
and genetic variant content can vary substantially across the years of survey.  Also, the workflow must 
acknowledge and work with various data access models that can range from open access to highly 
restricted access to individual level data within and across collaborating studies.  Finally, the workflow 
must anticipate high volumes of structured data that will require accessible archival or storage for 
specialized searches.   

Specifically for NHANES, EAGLE accesses up to 19,613 DNA samples that have anywhere from one 
to 1,100 genetic variants and approximately 3,500 phenotypic/demographic variables available for analysis.  
Due to concerns related to confidentiality even for aggregate data(20), genetic data are considered restricted 
variables by CDC and therefore cannot be linked to phenotypic variables and accessed outside of the CDC 
RDC firewall.  To facilitate analyses such as genotype-phenotype association studies for research groups 
outside of CDC, the RDC created Analytic Data Research by Email (ANDRE).  ANDRE is the remote 
server for CDC that accepts and runs analyses generated in Statistical Analysis System (SAS) or Survey 
Data Analysis (SUDAAN).  ANDRE is an e-mail exchange that serves as an interface for processing code.  
Only analyses or SAS commands that result in aggregate data are allowed, and specific SAS commands 
and macros are explicitly forbidden.  SAS output resulting from analyses sent to ANDRE by outside 
investigators are further inspected to ensure that counts fewer than five are redacted or suppressed from the 
output before the output is returned to outside investigators for consumption.  And, ANDRE e-mail 
exchange is limited to outgoing files <20MB in size, which includes both the log and output files.  The time 
elapsed between submitting code to ANDRE and receiving the output files from ANDRE via e-mail is 
typically less than 30 minutes, but this can range from two minutes to several hours.   

Figure 2.  EAGLE project web-based Experiment Designer.  We developed a web-based Experiment 

Designer to assist EAGLE analysts in generating standard SAS code for high-throughput genotype-

phenotype tests of association.  The SAS designer allows each EAGLE analyst to create experiments by 

selecting pre-defined variables approved for study by CDC by NHANES dataset.  EAGLE analysts can also 

specify dependent variables, independent variables, and stratification variables (gender and race/ethnicity) for 

linear or logistic regression modeling.  The SAS Generator takes the experiment created with the Experiment 

Designer and generates the appropriate SAS code for submission to ANDRE. 

 



 

 

 

The restrictions posed by the RDC present several challenges for high-throughput genotype-phenotype 
associations in EAGLE and for data sharing with the PAGE study sites.  To work within the restrictions 
and to minimize analyst workload, we created a web-based “Experiment Designer” and “SAS Generator”.  
With the Experiment Designer (Figure 2), analysts create and edit the variables for an experiment that will 
be sent to ANDRE.  Analysts can then select dependent and independent variables along with any 
adjustments and stratifications.  The Experiment Designer allows analysts to focus on the data and desired 
results instead of the SAS code itself.  The Experiment Designer also ensures uniform SAS coding of the 
genetic model (and coded allele), an important feature for large datasets accessed by three analysts at any 
one time. The SAS Generator then takes the experiment created with the Experiment Designer and 
generates the appropriate SAS code for submission to ANDRE.  Each experiment can be queued and sent 
to ANDRE when output from the previous experiment is received by the analyst via e-mail.  Thus, the SAS 
Generator ensures that there are no gaps between sending SAS code and receiving output from ANDRE.  
The SAS Generator ultimately saves the analyst time from constantly checking e-mail for receipt of 
ANDRE output.  To date, EAGLE analyses for EAGLE and PAGE study analysis plans have generated 
>400 experiments resulting in >20,000,000 SAS output files each with approximately 50 lines of 
unstructured SAS data output.   

Most tests of association performed in NHANES result in tens of thousands of SAS output files from 
ANDRE.  With so many output files and lines of data per output file, a second major challenge is 
translating the output into a condensed, accessible, and readily available format.  For each set of output we 
have developed the “Parser” software to do the following:  1) parse the file headers to classify the files (e.g. 
Linear Regression, SNP Frequency, etc), and 2) process the text of each SAS output file and extract the 
appropriate data values. The Parser can be utilized only when necessary, allowing EAGLE analysts to store 
the SAS output files and then process them in real-time, as needed. This also allows EAGLE analysts to 
view any single output file and also view the parsed results.   

 Once the SAS output file results are parsed, the data are compiled into the PAGE Coordinating Center 
Results Template file format.  To automate this process, we created the “Template Generator” step.  In this 



 

 

 

step, an experiment's SAS output files are parsed and combined into a template for submission to the PAGE 
Coordinating Center and to PAGE collaborators for meta-analysis or for visualization using Synthesis-
View(21), PheWAS-View(22),  or other software. Automation of this step results in analysis results 
required for meta-analysis or dbGaP submission. 

The full epidemiologic workflow for EAGLE, from SAS code generation to Results Template file 
generation for data dissemination, is given in Figure 3.  The code is open source and will be available on 
the EAGLE website (https://eagle.mc.vanderbilt.edu/).    

Figure 3.  EAGLE project epidemiologic collection workflow.  The epidemiologic collection workflow begins 

with the Experiment Designer, designed as a web-interface and accessed by EAGLE analysts.  The analyst can 

easily use the Experiment Designer to create standardized SAS code based on parameters set by the analysts.  The 

resultant ANDRE-friendly code is automatically generated. Once the code has been submitted, ANDRE will send 

censored output files back to the EAGLE analysts.  These resultant files are first crudely parsed and stored in a 

database in preparation for “real-time” parsing by analysts.  Finally, analysts use the “Template Generator” to 

create standard PAGE Results Template files for sharing data across PAGE study sites for meta-analysis. 

 

3.2. The clinical collection (BioVU) 

The epidemiologic collection of NHANES described above is an extensive and rich source of 
phenotypic and genotypic data for genetic association studies of quantitative traits; however, because of the 
wide age range and lack of health information for specific diseases, the collection is underpowered for 
many diseases, including common diseases such as cardiovascular disease, type 2 diabetes, and various 
cancers.  To supplement EAGLE sample sizes for clinical outcomes in diverse populations, a clinical 
collection at Vanderbilt University known as BioVU was accessed. 

Additional cancer cases and controls were first identified in BioVU using billing (ICD-9) codes. 
Specific cancers such as melanoma could be defined with high positive predictive values whereas others 
such as endometrial cancer could not.  Therefore, to increase the positive predictive value of all EAGLE 
case/control definitions, data from the tumor registry were utilized.  These data include primary site 
designations and histology information collected for clinical reporting purposes for the North America 
Association of Central Cancer Registries.  A combination of the tumor registry data, along with ICD-9 
billing codes, procedure codes, vital signs, and free text clinical notes, were used to identify cases for eight 
cancers among all patients aged 18 or greater in the SD with DNA samples using the following algorithms: 

 

 Breast cancer:  Three or more mentions of ICD-9 primary code 174 (malignant neoplasm of the 
female breast) and all sub-codes (denoted “*” here and throughout) on separate clinic visits OR a 
tumor registry entry for breast cancer AND female  

 Colorectal cancer:  Tumor registry entry for colorectal cancer. 
 Endometrial cancer:  Tumor registry entry for endometrial cancer with primary sites C540-C549, 

C559 AND histology not one of 9590-9989 AND female. 



 

 

 

 Lung cancer:  Tumor registry entry for lung cancer, any location and any type. 
 Melanoma:  Three or more mentions of ICD-9 codes 172.* (malignant melanoma of skin) OR 

tumor registry entry for melanoma. 
 Non-Hodgkin’s lymphoma:  Tumor registry entry for non-Hodgkin’s lymphoma with histology in 

('9673', '9675', '9684', '9687', '9695', '9705', '9823', '9827'), OR ( histology >= '9590'  and histology 
<= '9596'), OR ( histology >= '9670'  and histology <= '9671'), OR ( histology >= '9678'  and 
histology <= '9680'), OR ( histology >= '9689'  and histology <= '9691'), OR ( histology >= '9698'  
and histology <= '9702'), OR ( histology >= '9708'  and histology <= '9709'), OR ( histology >= 
'9714'  and histology <= '9719'), OR ( histology >= '9727'  and histology <= '9729'). 

 Ovarian cancer:  Tumor registry entry for ovarian cancer AND female. 
 Prostate cancer:  Three or more mentions of ICD-9 codes 185.* (malignant neoplasm of prostate) 

OR tumor registry entry for prostate cancer. 
 

Approximately two control samples were identified per case matched on sex, race/ethnicity, and age 
(within 5 years).  Control samples were required to have at least two clinical narratives (clinical notes, 
discharge summaries, etc), with preference given to records with at least one fully documented history and 
physical.  Records were excluded as controls if they had one or more codes for neoplasms, ICD-9 codes 
between 140.* and 239.*, had a tumor registry entry or had the one or more cancer related keywords in the 
problem list.  For breast cancer, endometrial cancer, and ovarian cancer, male controls were also excluded, 
and for prostate cancer, female controls were excluded.   

For specific cancers, controls with additional clinical data were desirable for anticipated analyses.  For 
example, for breast cancer controls among women over 40 years of age, we required that records contain at 
least one mammography Bi-Rad score as 1 (negative) or 2 (benign).  For colorectal cancer controls, we 
required for patients over 50 years of age the keyword “colonoscopy” in the problem list OR one of the 
following CPT codes:  45378 (colonoscopy, flexible, proximal to splenic flexure, diagnostic), 45379 (with 
removal), 45380 (with biopsy, single), 45381 (with directed), 45382 (with control), 45383 (with ablation 
of), 45384 (with removal of), 45385 (with removal of), 45386 (with dilation by), 45387 (with 
transendoscopic), 45391 (with endoscopic), and 45392 (with transendoscopic).  Finally, for prostate cancer, 
we required male controls aged 40 years and greater to have at least one prostate specific antigen (PSA) 
level <4 and that the most recent PSA level is within the normal range. 

With these algorithms implemented in the SD in late 2010/early 2011, we identified a total of 7,348 
cancer cases for targeted genotyping.  Race/ethnicity in the Vanderbilt University EMR and BioVU SD is 
administratively assigned, which we have shown is highly concordance with genetic ancestry determined 
by ancestry informative markers (AIMs)(23).  As expected based on the overall demographics of BioVU, 
the majority of case samples were European American (87%).  Approximately 4% of the samples were of 
unknown race/ethnicity and were assigned genetic ancestry via ancestry informative markers for 
downstream analyses (data not shown).  For the first five cancers defined in the SD (breast, colorectal, 
melanoma, ovarian, and prostate cancers) we identified approximately two controls per case for genotyping 
as defined in the text above.  A total of 8,996 controls were targeted for genotyping.  Two controls per case 
of endometrial cancer, lung cancer, and non-Hodgkin’s lymphoma were defined from among the genotyped 
control samples.     

In addition to defining case and control status for genotyping, we have begun to define clinical 
covariates anticipated for analysis.  As described above, screening data has been preferentially represented 
in controls for select cancers (breast, colorectal, and prostate) and is expected to be defined in cases.  
Environmental exposures are more difficult to define given that most of these data, if available, exist in the 
unstructured data (free text or clinical narrative) of the EMR.  Work is on-going to define common 
exposures or other variables that reside in the clinical narrative such as alcohol use, physical activity, and 



 

 

 

family history using text mining and other approaches.  For smoking status, we have applied an 
implementation of the CTAKES algorithm(24), and have also illustrated that ICD-based smoking 
definitions are highly specific for identifying smokers(25). 

Unlike the epidemiologic collection (NHANES), the clinical collection (BioVU) is relatively free of 
data access restrictions.  Therefore, the clinical collection workflow only utilizes the later stages of the 
workflow described in Figure 3.  Output files from various statistical packages (such as PLINK) are parsed 
and Results Template files are generated for sharing among PAGE study sites and meta-analysis. 

 

4. Conclusions 

We describe here the epidemiologic (NHANES) and clinical (BioVU) collection workflows that enable 
high-throughput genotype-phenotype association studies and data sharing within EAGLE and the PAGE 
study.  Both workflows were customized based on a variety of factors including data structure and data 
access.  A major strength of this approach is that it provides the infrastructure to conduct systematic genetic 
analyses resulting in standardized files for data sharing and meta-analysis.  A major weakness of this 
approach is that is requires substantial bioinformatics and computing resources and personnel to create, 
maintain, and implement the workflow.  The preferential accessing of datasets with open access or fewer 
data use restrictions would assist in easing the effort required for the workflows.  However, full access to 
local or collaborative datasets through dbGaP will still require substantial bioinformatics and computational 
support to fully mine the genotype-phenotype investments for high returns relevant to human disease and 
biology. 
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