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Connectivity map data and associated methodologies have become a valuable tool in 
understanding drug mechanism of action (MOA) and discovering new indications for drugs. 
However, few systematic evaluations have been done to assess the accuracy of these 
methodologies. One of the difficulties has been the lack of benchmarking data sets. Iskar et al. 
(PLoS. Comput. Biol. 6, 2010) predicted the Anatomical Therapeutic Chemical (ATC) drug 
classification based on drug-induced gene expression profile similarity (DIPS), and quantified 
the accuracy of their method by computing the area under the curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve. We adopt the same data and extend the methodology, 
by using a simpler eXtreme cosine (XCos) method, and find it does better in this limited 
setting than the Kolmogorov-Smirnov (KS) statistic. In fact, for partial AUC (a more relevant 
statistic for actual application to repositioning) XCos does 17% better than the DIPS method 
(p=1.2e-7). We also observe that smaller gene signatures (with 100 probes) do better than 
larger ones (with 500 probes), and that DMSO controls from within the same batch obviate 
the need for mean centering. As expected there is heterogeneity in the prediction accuracy 
amongst the various ATC codes. We find that good transcriptional response to drug treatment 
appears necessary but not sufficient to achieve high AUCs. Certain ATC codes, such as those 
corresponding to corticosteroids, had much higher AUCs possibly due to strong 
transcriptional responses and consistency in MOA. 

1.  Introduction 

Identifying the correct disease indication for a drug is an important problem and several 
computational methods have been described [1]. The problem for any practitioner, however, is to 
assess the precision of these methods. The desired method should provide relatively high 
confidence that the first few indications that are predicted for a drug contain at least one that will 
be validated in clinical trials and make a positive impact on patients. One of the most important 
techniques in the space of drug repositioning is connectivity map (CMAP) [2].  

A key contribution of CMAP has been the establishment of a database of cellular expression 
profiles in response to drug treatment in cell lines such as MCF7. This has enabled both the 
discovery of drug MOA and new indications [2,3]. Several CMAP hypotheses suggesting 
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potential therapeutic compounds for new disease indications have been experimentally validated 
[4-8]. 

However, despite numerous impressive anecdotal validations, it has proven challenging to 
quantitatively estimate the accuracy of this technique. A gold standard data set still eludes us in 
terms of drugs that impact a disease positively. Thus research has turned to the cleaner 
benchmarking data sets to predict drug relationships. This is with the implicit hope that methods 
that better predict drug classes will also do better at predicting disease indications for drugs. A 
useful classification is the Anatomical Therapeutic Chemical (ATC) system, which codes divides 
drugs into different groups in a hierarchical fashion according to the organ or system on which 
they act and their therapeutic and chemical characteristics. The ATC level 4 is mostly based on 
common MOA, and thus has proven useful as a benchmark for comparing similar drugs. 

The initial CMAP approach utilized a nonparametric, rank-based Kolmogorov-Smirnov (KS) 
statistic to connect disease gene expression signatures to drug expression profiles. KS scores are 
generated based on the location of the genes in the signature (i.e. up and down lists) within the 
entire ordered list of gene expression changes in response to compound treatment. The disease 
signatures often come from public repositories of expression profiles, such as Gene Expression 
Omnibus (GEO) [9]. Compounds from the reference dataset can also be connected with each other 
using the same type of computation to evaluate the similarity between them.  

Iskar et al [10] provided one of the first quantitative evaluations of CMAP methods. They 
applied a centered mean normalization approach to preprocess the intensity data in order to 
eliminate batch-specific effects. The pair-wise drug-induced gene expression profile similarity 
(DIPS) scores between each pair of drugs in CMAP were then calculated using a method similar 
to inverse total enrichment score (TES) by Iorio et al [11]. (TES itself is modification of KS.) 
They used compounds with high chemical similarities, and compounds with shared ATC 
classification as true positives for their benchmarking. They computed the area under the receiver 
operator characteristic (ROC) curve (AUC0.1) to measure differences at a low false positive rate 
(FPR=0.1). This emphasizes early retrieval which is important because for repositioning we are 
willing to sacrifice some true positives to keep false positives low. The performance of DIPS was 
shown to be superior to the compound vs. biological control comparison method described by 
Iorio et al. 

In addition to modifications of CMAP data processing workflows, many groups have 
investigated alternatives to the KS statistic. More recently researchers have extended methods 
based on Spearman’s correlation (EPSA) [12], Fisher’s Exact test (EXALT) [13], Wilcoxon rank-
sum test (openSESAME) [14], weighted Pearson correlation[15], logistic regression (LRpath) 
[16], probabilistic categorization (ProbCD) [17], empirical background p-values[18], random set 
statistic (GRS) [19]. and partially ranked data[20]. In this paper, we explore an eXtreme Cosine 
method that truncates the middle of the two expression profiles being compared. This focuses 



attention on true outliers in both treatments. The cosine is an inner product of two vectors much 
like Pearson correlation, which has been shown to be superior to GSEA [18]. 

In this study, we use the ATC classification as the benchmark to compare the eXtreme cosine 
method (XCos) to other CMAP scoring methods, data processing methods, and signature sizes. 
Insights from these comparisons will clarify parameter choices, which can then be used in drug 
repositioning where gold standard benchmarking datasets are more complicated. We score each 
method using AUC in the early (FPR=0.1 and FPR=0.01) discovery phase. This allows us to 
determine which compound classes contain robust expression profiles in CMAP data, and which 
analytical approaches are more accurate at least in this evaluation.  

2.  Methods 

2.1.  Data sources and data processing 

Small-molecule perturbed genome-wide transcriptional response data were downloaded from the 
Connectivity Map (CMAP, build 02, http://www.broadinstitute.org/CMAP/). These data 
comprises of 6,100 gene expression instances (treatment vs. vehicle control pairs) from primarily 
three human cultured cell lines (MCF7, PC3, and HL60) treated with 1,309 bioactive small 
chemical molecules at varying concentrations.  Each instance denotes a treatment and control pair 
for one small molecule. Each instance has attributes such as perturbagen name, concentration, cell 
line and batch etc. 

Two methods of pre-processing probe level intensities are considered in this paper:  

a) MC: Mean Centering CMAP data was obtained directly from P. Bork [personal 
communication]. The data was generated using the method described by Iskar et al.[10]. 
Briefly, each compound treatment arrays were grouped based on the cell line and 
normalized separately using RMA [21]. Vehicle controls from CMAP were discarded and 
for each batch individual probes for each treatment were mean centered to calculate the 
average difference values within the batch. The final data consists of 4,849 treatment 
instances from three cell lines corresponding to 1,144 small molecules.  

b) Batch DMSO Control (BDC): Using controls from within the batch was proposed in the 
original CMAP paper [2], and we wanted to directly compare MC to it. Probe level data 
(CEL files) from CMAP was processed using Array Studio (Omicsoft Corporation, 
Research Triangle Park, NC, USA). Briefly, microarray datasets were grouped based on 
the cell line. For each microarray dataset, the probe set intensities were normalized using 
RMA. Next, all scaled probe sets with values less than primary threshold values (set to 64) 
for all treatments and control samples was set to that threshold value. The intensity values 
for each probe set are then log2 transformed. Finally, the log2 intensities of each probe set 
from all vehicle control samples within the same batch and cell line are averaged and 
subtracted from the treatment sample to generate the corresponding treatment-to-control 
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values and this is termed BDC. We filtered the 6,100 instances to the same 4,849 for MC 
to make results comparable. 

We averaged multiple instances for each compound within a cell line and then across cell 
lines. 

The ATC codes were obtained from Iorio et al. [11] and then supplemented by additional 
annotation. 

2.2.  Pair-wise similarity scores  

We used four methods: KS, TES, DIPS, and XCos to compute similarities between drug pairs. 

KS: The initial CMap approach utilized a nonparametric, rank-based Kolmogorov-Smirnov 
(KS) statistic [2].  

TES (inverse total enrichment score) is a measure based on the KS statistic as described in 
Iorio et al.[11]. A key difference is that this does not require the up and down signature to have 
consistent direction of scores compared to KS. 

DIPS: Uses TES on mean centered (MC) data and we used the data as provided (personal 
communication, P. Bork). 

XCos: The Xtreme cosine similarity score is calculated by retaining only the Xtreme probes 
for each instance after sorting by decreasing fold-change, i.e., only keeping the top N and 
bottom N probe sets and setting all other probe sets to zero. The cosine similarity between two 
Xtreme instances can then be calculated as a dot product of the two vectors. This is a variation 
of a described method [22]. Cosine similarity is much like Pearson correlation except that the 
vectors are not centered around their individual means. Unlike Euclidian distance, both cosine 
similarity and Pearson correlation are scale independent and should be more robust for our 
purpose. 

Pair-wise similarity scores of compounds for each of the three cell lines are generated 
separately and then combined. Similarities between instances of the same compound are excluded 
and not included in any of the plots. 

2.3.  Method nomenclature 

Eight of the nine methods described in this paper follow the SIM_PROC_SIZE nomenclature. 
SIM describes the similarity method which is one of KS, TES, or XCos (see section 2.2); PROC 
describes the data processing method which is either MC or BDC (see section 2.1) and the SIZE is 
the size of the signature which is either 100 or 500. The KS and TES methods were only evaluated 
with MC (and not with BDC), thus we have 8 total methods. DIPS is the ninth method as 
described in Iskar et al. [10]. DIPS is most closely related to TES_MC_500 though DIPS uses a 



sort order based on detection calls, while our implementation of MC uses a sort order based on 
fold changes. Moreover, DIPS used only a single ATC for each drug while we used all ATC codes 
for a drug. 

 

Figure 1. A schematic of the analytical workflow used to generate the AUC. Parallelograms indicate 
data acquired. The nine measures of similarity scores listed in the three similarity score rectangles 
were evaluated on the ATC codes. 

2.4.  AUCs and p-values 

Pair-wise similarity scores are evaluated using individual ATC codes at different levels as well as 
using ATC levels from 1 to 4 for each of the nine methods as listed in Figure 1. 

For calculating AUC of a particular ATC level, the positive cases are distinct compound pairs 
that share any ATC code at this level. All other pairs are considered negative cases. These criteria 
are effective in handling drugs that have multiple ATC codes. The ROCs in Figure 2 and Table 1 
use this method as they count matches across ATC level 4 as positives. 

For calculating AUC for a specific ATC code, the only relevant pairs are those have at least 
one compound with this ATC code. The positive cases are defined as distinct compound pairs that 
both share this ATC code. The negative cases are the compound pairs with only one compound 
belonging to this ATC code. Thus, if neither compound of a pair share this ATC code, the pair is 
excluded from the AUC calculation for this ATC code. Figure 3 uses this as the standard as AUCs 
are shown for individual ATC codes. 

The p value calculation for comparing “paired” partial AUC is based on a bootstrap test [23]. 
Z is defined as (pAUC1-pAUC2)/sd(pAUC1-pAUC2), where pAUC1 and pAUC2 are the two paired 



partial AUCs to be compared and the sd(pAUC1-pAUC2) is the standard deviation of the 
difference between pAUC1 and pAUC2. The standard deviation of the difference between the two 
AUCs is estimated from the 1,000 bootstrap runs. 

2.5.  Expression signal strength 

The expression signal strength (ESS) is defined as the sum of the absolute values of the log2 of the 
fold changes of the top and bottom N features (or probesets) of a gene expression profile. We first 
calculated the ESS of every compound expression profile. The ESS values of the same compound 
were then averaged within a cell line, and then these were averaged across the three cell lines to 
generate one ESS value per compound. The ESS for a particular ATC code is calculated by 
averaging all ESS values of the compounds that belongs to this ATC code. Figure 3 plots ESS on 
the x-axis with N=50. 

3.  Results 

Assessment of methods on 4th level ATC codes 

An earlier study showed that DIPS method leads to fewer false positives when compared using a 
partial AUC value at FPR=0.1 (AUC0.1) counting every pair of drugs which had at least one 
matching ATC 4th level code as a true positive [10]. Also the AUC0.1 was higher with mean 
centering (MC) than without mean centering. In this study, we systematically evaluated multiple 
scoring methods using the same data processing method and AUC measurement. We also suggest 
and evaluate the performance of the XCos similarity for the expression vectors of pairs of drugs 
using the top and bottom differentially expressed probes. 

XCos_BDC_100 performed best in terms of AUC at FDR=0.1 (see Figure 2 and Table 1). The 
AUC was 0.0193 and significantly better than the DIPS AUC of 0.016 (two tailed p = 1.8e-7). The 
difference between XCos and DIPS is even larger and more significant at FPR=0.01 (p<1e-13). 
This may suggest that for early discovery consistent with drug repositioning the XCos with 
smaller signatures might indeed be better. There are three obvious differences between these two 
(XCos_BDC_100 and DIPS) methods: A) the batch DMSO control (BDC) vs. mean centering 
(MC), B) the size of the signature: 100 vs. 500, and C) the method itself: XCos vs. TES. To 
understand this further, we isolated these three differences.  

A. XCos_BDC_100 had higher AUC0.1 compared with XCos_MC_100 (p=5e-4), thus at 
least for the XCos method, the batch-based DMSO controls are better than mean centering. 

B. The AUC for XCos_BDC_100 is higher than for XCos_BDC_500, but not significant 
statistically (p=0.26). However, the AUC difference for KS_MC_100 compared to 
KS_MC_500 is significant (p=6e-6), thus at least for KS_MC the smaller signatures are 
better in this comparison. 



C. In terms of method itself, XCos outperformed KS (p=0.008) with mean centering and 100 
probe signatures.  

 

(a)                                                                                   (b) 

Figure 2: Comparison of the different scoring, data processing methods and signature sizes. Drugs 
with at least one matching ATC 4th level code are counted as true positives. The two TES scores track 
KS quite closely so are not shown for clarity. a) AUC0.1: Partial ROC curve at the FPR = 0.1. b) 
AUC0.01: Partial ROC curve at the FPR = 0.01. 

Table 1: Partial AUCs from multiple scoring methods. Drugs with at least one matching ATC 
4th level code are counted as true positives.  

Method AUC0.1: Partial AUC @FPR=0.1 AUC0.01: Partial AUC @FPR=0.01 
KS_MC_100 0.01655 6.06e-4 
KS_MC_500 0.01503 3.79e-4 
TES_MC_100 0.01663 6.12e-4 
TES_MC_500 0.01484 3.82e-4 
XCos_MC_100 0.01789 7.73e-4 
XCos_MC_500 0.01738 6.84e-4 
XCos_BDC_100 0.01926 8.56e-4 
XCos_BDC_500 0.01898 7.20e-4 
DIPS 0.01642 5.14e-4 

 



Figure 3. Relationship between AUC0.1 (for XCos_BDC_100) and the average expression change from 
drug treatment within an ATC level code. ATC codes which primarily describe corticosteroids are 
indicated by crosses, all other ATC codes are shown as rectangles. Descriptions are provided for ATC 
codes of interest shown in green rectangles. Points are sized by the number of compounds in the ATC 
code. All ATC level 4 codes with at least 5 compounds are shown. If all 100 probesets had a uniform 
absolute fold change of 1.414, it would correspond to an expression level of 50 on the x-axis. 

All the p-values were computed as described in the methods. In fact, from Figure 2a and Table 
1 the trends mentioned above are quite apparent as well and the AUC0.1 for XCos_BDC_100 is 
statistically significantly different from the AUC0.1 for all the MC methods in Figure 2a. The 
above trend in terms of AUC0.1 comparisons on different methods could not be observed on the 
overall AUCs (data not shown). For overall AUCs, we observed that mean centering outperforms 
batch-based DMSO controls at least for the XCos method. We also noticed that TES is quite 
similar to KS and thus not shown in Figure 2 for readability.  

Differences amongst ATC codes 

The specific ATC codes at level 4 compared to the generic ATC level 1 codes provide more 
accurate classifiers; in fact, the classification at ATC level 1 is quite close to random (data not 
shown). Figure 3 displays the heterogeneity in the AUC measures for ATC level 4 codes using 
XCos_BDC_100. The ATC codes with the strongest signal are dominated by corticosteroids, β2-
adrenoreceptor agonists, and phenothiazines. We note a large number of related corticosteroid-
related ATC codes with high AUC0.1. On investigation, these are compounds with same MOA 



but grouped into different ATC codes based on strength, anatomy, and formulation (inhaled, oral 
or topical).  

This figure also shows the dependence of the AUC0.1 on the average change in expression due 
to compound treatment for a given ATC class. It seems intuitively obvious that if the expression 
change is low, the analytical methods cannot detect similarity. In addition, we observed that the 
poorly detected ATC codes with high expression changes (those labeled as starting with “Other”) 
are often collections of miscellaneous compounds that are unlikely to have common MOAs.  

4.  Discussion 

Numerous methods have been proposed to identify related transcriptional profiles for CMAP 
readouts. They differ mostly by the underlying similarity measure, some of which are quite simple 
and have been known for decades, while other, more complex methods rely on powerful 
computing. Surprisingly, the XCos similarity score, which simply measures the cosine of two 
signatures, outperforms the standard, Kolmogorov-Smirnov (KS)-based CMAP method (Figure 
2). Furthermore, the similarity between related signatures appears to be driven by the genes that 
change the most between treatment and control. Both XCos and KS scoring methods based on the 
top 100 features more accurately predicted ATC codes than the ones based on the top 500 features. 
Of course, both these signature sizes are arbitrary and the optimal signature size should be further 
explored. Flexible signature sizes, however, have also been explored recently [24]. Finally, the 
preprocessing method used to compute the signatures plays a significant role as well. We find that 
mean centering does not improve the similarity scores in comparison to batch based DMSO 
controls – at least for the XCos method. This contrasts with the earlier results[10], and the reason 
is not evident; however, possible explanations include our not using probeset detection calls and 
DIPS comparison not using batch-matched DMSO controls. Moreover, we did not restrict a drug 
to have exactly one ATC code as required by DIPS [10]. 

It should be noted that these conclusions should be considered preliminary as they are limited 
by the use of ATC codes as a “gold standard”. Multiple ATC codes per compound can lead to 
errors and redundant ATC codes may inflate AUCs. Furthermore, many ATC codes do not 
properly characterize MOAs (e.g. “other peripheral vasodilators”, Figure 3). 

Another limitation may be that the averaging over multiple cell lines averages biological 
variation for compounds that may have differential responses in the three cell lines. On the other 
hand, using all available data may lead to more “stable” compound-specific signatures.  

Future work should explore additional accuracy measures, as even AUC0.1 and AUC0.01 
have too many false positives to be useful in terms of number of hypotheses that can be 
experimentally validated. It should also compare more methods and isolate the impact of each 
parameter completely across multiple methods. As indicated in Figure 3, some ATC codes lead to 
high AUC numbers regardless of the method used i.e. some drug classes are really easy to find 



with expression profiles. To ensure that such high performing ATC codes do not skew the overall 
comparison, future work should include a comparison of methodologies focusing only on the more 
“difficult” ATC codes. 

A key challenge for drug repositioning is to develop a gold standard benchmarking data set 
that will not necessitate the extrapolation of results from drug MOA. With some expert curatorial 
effort FDA approved indications could be mapped to a disease ontology. However, it is not 
evident as to what constitutes matching disease signatures as we would also need to determine 
which of those drugs are disease modifying as opposed to those providing symptomatic relief and 
not expected to match as true positives. We believe that quantitative assessment of repositioning 
methodologies is a must, if computational biology is to make a more compelling case for its utility 
in this field. 
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