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Overview

Biology has become an information science, with an increasing capacity to generate data
of great relevance to human disease. An important example is The Cancer Genome Atlas
(TCGA) [1], which generates data on well-characterized oncology samples and provides a
public portal for linking gene mutation and regulation to cancer therapies and outcomes.
These types of well-characterized data sets provide an opportunity for researchers from
many fields to contribute new ideas for computational analysis.

One theme represented in the 2013 Proceedings is analysis of such public data sets by
algorithms known from computer science but less often applied in computational biology
and bioinformatics. Previous types of algorithms have included support vector machines
[2], graph diffusion [3, 4, 5], and Steiner trees [6, 7]. Algorithms represented this year
include set cover (Przytycka and coworkers), color-coded paths (Kahveci and coworkers),
and regularized regression (Gevart and Plevritis).

A second theme is using known biological networks and pathways to organize calcula-
tions. Perhaps the most prevalent example is Gene Set Enrichment Analysis (GSEA) [8].
Lussier and co-workers describe extensions of GSEA to data sets from individuals rather
than groups, and Ritchie and coworkers use interactions to organize analysis of interaction
terms in genome-wide association studies (GWAS).

New algorithms from computer science

Przytycka and coworkers extend a set-cover algorithm from genes [9] to modules. These
cover algorithms work on bipartite graphs, here with one set of vertices representing disease
cases, a second set of vertices representing features (genes or gene modules), and edges
indicating that the gene or module is dysregulated in a specific disease case. The k-cover
optimization problem is to identify the smallest number of features so that each case has
edges to at least k features. The authors generalize this NP-hard problem by also assigning
a cost for each module that is reduced when the genes within the module have concordant
expression regulation. A fast, greedy forward selection adds modules incrementally, either
from a pre-calculated set or by defining modules on the fly. The method is effective in
recovering known subtypes of glioblastoma multiforme. This type of approach, based on
support, recalls approaches such as the Apriori algorithm for itemset mining [10] and the
Teiresias algorithm for pattern discovery [11].

Kahveci and coworkers investigate an algorithm to identify signaling pathways of defined
length. For a pathway desired to have m steps, a possible algorithm explored is to color each
vertex one of m colors, and then to search for paths that include one vertex of each color.
It remains to be seen whether this method is competitive with other related approaches,
such as prize-collecting Steiner trees [7] and flow-based methods [12] that have fast, optimal
solvers. The restriction to length m paths is motivated by a requirement that signaling
pathways include a membrane-bound receptor, cytoplasmic signaling proteins, and nuclear
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transcription factors; constraints based on this biology and directed interactions may also
perform better than path length restrictions.

Gevart and Plevritis also describe methods motivated by TCGA data. This approach
generally follows successful methods introduced by others that use genetic and epigenetic
features (copy number variation, methylation) to suggest driver genes, and then build
out downstream pathways using regularized regression [13, 14] or other network-based
association tests [15]. While predictions of expression perform better than random for
an ovarian cancer data set, the top drivers predicted for a gliobastoma multiforme data
set perform no better than a random collection. These results point to the uncertainty
of applying established algorithms to new data sets and the importance of randomization
tests for unbiased assessment of performance.

Pathways as a guide to analysis

Lussier and coworkers investigate personalized RNA-seq data by generalizing a single-
sample method they developed for microarray data [16]. The main idea is to generate
pathway scores by comparing expression levels between pathway and non-pathway genes.
The authors find that converting raw expression values to ranks improves performance for
many tasks. While the method is assessed to be feasible, traditional analysis of sample
groups still appears to out-perform single-sample analysis.

Ritchie and coworkers investigate interaction terms in genome-wide association stud-
ies. Gene-environment interactions are already addressed by conventional methods, but
gene-gene interactions are more challenging for both computational and statistical reasons.
Computing all gene-gene interactions, or more accurately SNP-SNP interactions, incurs a
large computational cost. Furthermore, the large number of tests requires an interaction
term to be large for adequate power. The method proposed by Ritchie and coworkers, and
also explored by others previously, is to restrict tests to SNPs to pairs in genes that have
prior evidence for participating in a shared biological process or pathway. The thresh-
old for evidence is increased until the candidate pairs are reduced to an acceptably small
number, for example equivalent to the number of single-SNP tests. One challenge with in-
cluding interaction terms is that tests for marginal effects may actually have greater power
even when the interaction term is non-zero. For example, dominant and recessive genetic
models are equivalent to interaction terms at a single locus, and a one degree-of-freedom
test of a linear model for phenotype versus allele dose can have greater power than a two
degree-of-freedom test that includes the interaction term. In an application to a cataract
phenotype, the authors test 57,376 two-SNP models, requiring a p-value of 8.7× 10−7 for
genome-wide significance. The best p-value is 3.4×10−6, however, typical of other searches
for that have failed to identify interactions with statistical significance. While it may be
feasible to identify interaction terms with greater power from larger population sizes, the
lack of significance sets an upper limit on the magnitude of interaction terms and hence a
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possible limit on the biological relevance. Furthermore, it remains unclear whether genes
identified through interaction terms would have been missed by conventional marginal tests
on individual SNPs.

Future perspective

The contributions to this Proceedings consider two types of network models: on the one
hand pre-calculated modules or curated pathways, on the other modules or pathways dis-
covered from biological data. An important future direction may be module searches that
use high-throughput data but are biased by existing network models. Generative models,
such as stochastic block models, may provide an appropriate framework for network anal-
ysis biased by empirical knowledge. These models have received increasing attention for
both static module discovery and dynamic network evolution [17, 18, 19, 20].

A critical limitation of network biology is the limited amount of high-quality network
data. High-throughput protein-protein interaction data sets are available for human [21]
but are incomplete [22, 23, 24]. Interactions between transcription factors to regulated
genes provide crucial links between protein signaling and gene regulation, but are even less
well mapped for human. Experimental progress here could result in dramatic gains for
computational methods that already exist but which have been limited by lack of data.
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