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Despite increasing investments in pharmaceutical R&D, there is a continuing paucity of new drug 
approvals. Drug discovery continues to be a lengthy and resource-consuming process in spite of 
all the advances in genomics, life sciences, and technology. Indeed, it is estimated that about 90% 
of the drugs fail during development in phase 1 clinical trials1 and that it takes billions of dollars 
in investment and an average of 15 years to bring a new drug to the market2.  
 
Meanwhile, there is an ever-growing effort to apply computational power to improve the 
effectiveness and efficiency of drug discovery. Traditional computational methods in drug 
discovery were focused on understanding which proteins could make good drug targets, sequence 
analysis, modeling drugs binding to proteins, and the analysis of biological data. With the 
attention on translational research in recent years, a new set of computational methods are being 
developed which examine drug-target associations and drug off-target effects through system and 
network approaches. These new approaches take advantage of the unprecedented large-scale high-
throughput measurements, such as drug chemical structures and screens3, 4, side effect profiles5, 6, 
transcriptional responses after drug treatment7, 8, genome wide association studies9, and combined 
knowledge10, 11. More importantly there are increasing reports of these findings being validated in 
experimental models5, 7, 12, thus clarifying the value proposition for computational drug discovery. 
As a result, now is an exciting time for computational scientists to gain evidence for reusing an 
existing drug for a different use or generate testable hypotheses for further screening13.  
 
Despite the progress, there is clearly room for technical improvement with regard to computational 
repurposing approaches. Furthermore, to materialize the true potential and impact of these 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
†	  Work	  supported	  by	  NIH	  Intramural	  Research	  Program,	  National	  Library	  of	  Medicine	  
¶	  Work	  supported	  by	  National	  Institute	  for	  General	  Medical	  Science	  (R01	  GM079719).	  	  



	  
	  

	  

methods, much work is needed to show that they can be successfully adopted into practical 
applications. Hence, the aim of our session is to provide a forum to bring together the research 
community for a serious examination of these important issues. The five papers accepted to the 
session represent the breadth of research interests in the field: a graph-based inference method for 
predicting drug targets, a machine-learning algorithm for predicting protein-chemical interaction, 
an integrated method for identifying drug candidates against a novel cancer target, a knowledge-
based method for target identification against infectious agents, and a systematic evaluation of 
similarity measures in the use of connectivity map data for drug repurposing.  
 
Wang et al. propose a novel computational method for target prediction, known as heterogeneous 
graph based inference (HGBI). HGBI integrates drug‐drug similarities, target‐target similarities, 
and drug‐target interactions into a heterogeneous graph. They model the drug‐target interactions as 
the stabilized information flow problem across the heterogeneous graph. Cross-validation results 
show that HGBI significantly outperforms the state of the art in predicting novel targets for drugs. 
Furthermore, using a case study, the authors show that in practice HGBI can be used to rank 
candidate drug targets and that top-ranked results may be worth further experimental screening.  
 
Shi et al. present a different approach for predicting target-drug interactions, where target-target 
similarities are often first obtained using the primary amino acid sequences. In order to do so, 
unlike the existing methods that generally rely on measuring the maximum local similarity 
between two protein sequences, the authors propose a novel sparse learning method that considers 
sets of key short peptides shared by proteins interacting with the same drug. Their method 
integrates feature selection, multi-instance learning, and Gaussian kernelization into an L1 norm 
support vector machine classifier. According to their experimental results, their approach can not 
only outperform the previous methods, but also reveals an optimal subset of potential binding 
regions. 
 
Phatak and Zhang propose a computational pipeline for identifying novel drug candidates through 
integrating separate results from structure-based virtual screening, chemical-genomic similarity 
search, and graph-based similarity search. To demonstrate its feasibility in practical use, the 
authors report the repurposing of existing drugs against a novel cancer target ACK1, which is 
significantly overexpressed in breast cancer and prostate cancer patients. They screened 1,447 
marketed drugs, and merged complementary hits from different methods to select ten drugs for 
experimental testing. They found four of these drugs to be potent ACK1 inhibitors. Interestingly, 
Dasatinib, one of the final four drugs they discovered computationally was also recently found 
effective on inhibiting ACK1-related prostate cancer progression in a separate experimental study.   
 
Felciano et al. identified novel drug targets against six different pathogens such as Ebola and 
Marburg virus. Using knowledge of the immune system and host-pathogen pathways, their 
method automatically generates a list of potential target proteins that may have a beneficial 
therapeutic effect against at least two of the six pathogens. Then, the candidate targets in the list 



	  
	  

	  

are reviewed and prioritized for being further validated in vitro and in vivo experiments. Next, 
experimental results are normalized such that target validation could be compared across targets 
and pathogens examined in their study. Finally, based on their analysis, 34% of their predicted 
targets are shown to be promising in mouse models. Their work demonstrates the potential for 
knowledge-based methods in host-directed drug target discovery.  
 
Cheng et al. present a systematic evaluation on different similarity measures used in methods that 
aim to identify related transcriptional profiles based on connectivity map data. Using the drug 
compounds with shared Anatomical Therapeutic Chemical (ATC) classification as the gold 
standard, they compare four different measures for the identification of similar drug pairs and find 
that their proposed Xtreme cosine similarity score achieves the highest accuracy. Moreover, their 
benchmark experiments show that smaller gene signatures outperform larger ones. They also find 
that good transcriptional response to drug treatment is necessary but not sufficient to achieve high 
AUCs. 
 
This is the first year Computational Drug Repositioning has been offered as a track at the Pacific 
Symposium on Biocomputing, and we are pleased with the results of our call for participation. 
Given the interest seen here, new meetings being proposed just focused on drug repositioning. The 
National Center for Advancing Translational Sciences (NCATS) is partnering with pharmaceutical 
companies to offer funding for repositioning. The future seems quite bright for investigators 
conducting research in this field.  
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