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Uncovering and interpreting phenotype/genotype relationships are among the most challenging 
open questions in disease studies. Set cover approaches are explicitly designed to provide a 
representative set for diverse disease cases and thus are valuable in studies of heterogeneous 
datasets. At the same time pathway-centric methods have emerged as key approaches that 
significantly empower studies of genotype-phenotype relationships. Combining the utility of set 
cover techniques with the power of network-centric approaches, we designed a novel approach 
that extends the concept of set cover to network modules cover. We developed two alternative 
methods to solve the module cover problem: (i) an integrated method that simultaneously 
determines network modules and optimizes the coverage of disease cases. (ii) a two-step method 
where we first determined a candidate set of network modules and subsequently selected modules 
that provided the best coverage of the disease cases. The integrated method showed superior 
performance in the context of our application. We demonstrated the utility of the module cover 
approach for the identification of groups of related genes whose activity is perturbed in a coherent 
way by specific genomic alterations, allowing the interpretation of the heterogeneity of cancer 
cases. 

1.  Introduction 
Complex diseases, such as cancer, are typically caused by a combination of genomic 

alterations, epigenetic and environmental factors, and different combinations of such factors may 
result in the same disease phenotype. In addition, signals that are associated with each individual 
genetic perturbation might be weak and difficult to separate from background noise. 
Collectively, these obstacles render the identification of subtle genotype-phenotype relationships 
extremely challenging. 

Recently, pathway-centric methods have emerged as key approaches that empower studies on 
genotype-phenotype relationships. Such pathway-centric studies typically leverage large 
interaction networks inferred by high-throughput experiments. Projecting gene expression data 
on an interaction network, these approaches infer molecular activities on the level of biological 
pathways (subnetworks) rather than individual genes (1-5). Gene expression has been utilized to 
assess the activity of subnetworks (6), while genotypic data has lately been used to identify 
mutated subnetworks by exploring positions of mutated genes in interaction networks (7-9). An 
additional level of understanding of genotype-phenotype relationships can be obtained when 
both genotype and gene expression data are available. A recent study (10, 11) combined copy 
number alteration and gene expression data and applied a current flow approach to identify flow 
of information from potential genomic causes to differentially expressed disease genes.  
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Generally, pathway-centric approaches are based on the premise that different genetic 
perturbations often dys-regulate the same pathway, leading to the same disease phenotype. 
Therefore, the identification of such dys-regulated pathways is important for the understanding 
of a disease, potentially guiding drug development efforts. However, complex diseases are 
usually vaguely defined, and typically what can be seen as a spectrum of diseases is annotated as 
one disease. In such a heterogeneous set, individual disease cases may be characterized by 
various combinations of dys-regulated pathways.  

Set cover approaches have been proven useful in the determination of disease markers in 
heterogeneous datasets (1, 2, 5, 11). In a set cover, a gene is considered to cover a disease sample 
if the gene is dys-regulated in the sample. The underlying assumption of the set cover approach 
is that each disease case has some dys-regulated (thus covering) genes but if the disease is 
heterogeneous, different cases will typically have different covering genes. In particular, a multi 
set cover approach aims to find a set of genes so that each disease case is represented (covered) 
by at least a certain number of differentially expressed genes while the total number of selected 
genes is minimized (11). However, current set cover approaches do not consider several 
important issues: (i) if two different disease cases are covered by two different sets of genes this 
does not necessarily means that they are caused by a dys-regulation of different pathways (ii) 
signals of associations from an individual gene to genetic alterations may be weak and noisy. 

Combining the strength of the set cover approach with the power and stability of network-
centric methods, we designed a new technique that extends the concept of set cover from single 
genes to network modules. In contrast to previous “connected network cover” approaches which 
strived to identify one connected subnetwork covering most disease cases (1, 2, 5), our approach 
allows us to identify multiple subnetworks (modules), so that each disease case is covered by a 
number of modules while the total “cost” of modules is minimized. In addition to network 
information, the definition of a module involves a similarity measure between pairs of genes that 
is based on eQTL association profiles. While modules can be comprised of singleton genes, the 
trade-off between module granularity and similarity of genes in the module is controlled by a 
cost function.  

Given the above definition of similarity, the module cover approach can be used to find 
covering subnetworks such that genes in each module are jointly regulated by the same genetic 
alterations. The problem of detecting subnetworks that are influenced by common genetic 
alterations has been recently approached with a variant of the LASSO method (12) and Bayesian 
partition methods (13) with different objectives in mind. In particular, none of the approaches 
was designed to deal with data heterogeneity while our set cover modules capture the 
heterogeneity of samples where each module covers a different subset of samples. In addition, 
the LASSO based method, GFlasso, in its current implementation does not scale to large datasets 
while the Bayesian approach does not utilize network information. 

To solve the module cover problem, we developed an integrated method that simultaneously 
determines network modules and optimizes the cover of disease cases. For comparison, we also 
implemented a two-step method where we first determined candidate network modules and 
subsequently selected a subset of modules that cover disease cases. While the performance of the 
integrated method is superior to the two-step method, the two-step approach still performed 
better than a naïve method that was based on a single gene cover.  



We applied the module cover approach to discover modules associated with genomic 
alterations in cancer patients, utilizing genomic alteration and gene expression data. 
Representing each gene by its eQTL (expression Quantitative Trait Loci) association profile our 
algorithms harness profile similarities between genes and identify modules of genes with highly 
correlated eQTL profiles that collectively cover all disease cases.  

We start by introducing a mathematical formalization of the module cover problem and 
subsequently describe our two algorithms: Integrated Module Cover and Two-Step Module 
Cover. Next, we introduce rigorous measures to compare the quality of the modules obtained by 
the two algorithms. Finally, we analyze the modules obtained by the Integrated Module Cover 
that was applied to Glioblastoma Multiforme (GBM) and ovarian cancer data. We conclude with 
a discussion of a broader spectrum of additional applications of the proposed approach.  

2.  Methods 

2.1.  Introduction of the Module Cover Problem 

Here, we extended the concept of the minimum multi-set cover problem to a minimum multi-
module cover problem. The classical minimum multi-set cover is formally defined as follows: 
Given a set of elements E = {e1, e2, …, en}, a family of subsets S = {E1, E2, …,  Em| Ei ⊆ E} and a 
positive integer k, the goal is to select a subfamily of S so that each ei is included at least k times. 
In our problem formulation, disease cases are the elements, and a subset of disease cases Ei 
corresponds to a gene where it is differentially expressed in those disease cases. More 
specifically, a gene g covers a disease case c (cover(c, g)=1) if the gene is differentially 
expressed in the given case, and cover(c, g) = 0 otherwise. To obtain the most prominent disease 
genes, we aim to select the smallest set of genes to cover all disease cases at least k times (11). 
Fig. 1A shows an example of a multi-set cover where disease cases are elements to be covered 
by selected genes. An edge between a gene and a case exists if the gene covers the case. 

In the module cover approach, we select modules (instead of single genes) to cover disease 
cases (Fig. 1B). To ensure that genes in a selected module are coherent, the ‘cost’ of modules 
was defined so that we preferentially assigns low cost to modules with genes that are close to 
each other in the network and are coherent according to a given similarity measure, such as 
correlation of expression or eQTL association profiles. In eQTL analysis, gene expression is 
considered as a quantitative phenotype and controlled by genotypic information. Utilizing 
matching gene expression and copy number variation, we determined eQTL profiles of each 
gene by computing significance levels of associations of each gene to genomic alterations (See 
Section 5.3 for the details). 

Let sim(g1, g2) be the eQTL similarity of the two genes, which is computed based on the 
correlation of their eQTL profiles. We assume that 0 ≤ sim(g1, g2) ≤ 1. Let distance(g1, g2) be the 
shortest distance between the two genes in the interaction network. We first adjust the similarity 
by the distance as  

adjusted_sim(g1, g2)= sim(g1, g2)1+(distance(g1, g2)-1)/(avg_dist -1)         (1) 
 



 
Figure 1. Set Cover vs. Module Cover. (A) In a classical set cover, an edge from a gene to a disease case exists if the gene is 
differentially expressed in the disease case (i.e. covering the case). Genes {B, C, E, F, G} are selected, and all cases are covered 
at least 3 times. (B) A module cover selects coherent modules. Red edges between genes represent the similarity between genes 
(e.g. based on the correlation coefficient of their eQTL profiles or gene expression patterns). In the example, modules {A, B, C}, 
{F}, {G, H} are selected, and all cases are covered at least 3 times. 
 
where avg_dist is the average distance between all pairs of genes in the network. Since our 
weight function adjusts the similarity value with interaction information we obtain higher weight 
if two genes have more similar eQTL profiles and are in close proximity in the network. We 
define the weight function as follows:  

w(g1, g2)= adjusted_sim(g1, g2) - θ           (2) 
where θ is a threshold parameter. The weight is positive (i.e. benefiting module cost) if the 
adjusted similarity is >θ . Consequently, we define the cost of a module M as 

Cost(M) = 𝛼 + |M| - ∑ ∑ 𝑤(𝑥, 𝑦)/(|𝑀| − 1)𝑦 ∈ 𝑀,𝑦 ≠𝑥  𝑥 ∈ 𝑀       (3) 
where 𝛼 is the module initializing cost when a new module is created. We include this initial 
module cost to minimize the number of selected modules. With a larger 𝛼, a smaller number of 
modules with larger average size will be obtained, since costs increase when a new module is 
created. The objective of the second term (i.e. the number of genes) is to minimize the total 
number of selected genes. Finally, we subtract the cost computed as the sum of average weights 
of genes in the module, ensuring coherence of modules since the cost of a module decreases as 
the weights (and similarities) between genes increase. 

Our goal is to find a minimum cost set of modules that cover all disease cases at least k times 
where the depth of coverage is a user defined parameter. More specifically, we search for a 
module set 𝑆′={M1, M2, …, Mt} that minimizes ∑ 𝐶𝑜𝑠𝑡(𝑀𝑖)𝑀𝑖 ∈𝑆′  with the constraint that 
∑ ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔) ≥ 𝑘𝑔 ∈𝑀𝑖𝑀𝑖 ∈𝑆′  for each disease case c. The minimum module cover problem is 
NP-hard as it is a generalization of the minimum set cover, which is known to be NP-hard. In the 
following two subsections, we describe two different heuristic algorithms: Integrated Module 
Cover and Two-Step Module Cover. In the integrated module cover algorithm, we discover 
modules on the fly while we select genes to cover disease cases. In the two-step module cover 
algorithm, we first cluster genes based on their similarity to obtain a candidate sets of modules 
and subsequently select a subset of modules to cover disease cases. 



2.2.  Integrated Module Cover 

In this algorithm, we greedily select genes to cover disease cases and simultaneously create 
modules of ‘similar’ genes. In each iteration, we consider all unselected genes and compute the 
cost of adding each of those genes, assuming two ways to add a gene: 

1) add the gene as a separate module: the cost of adding the gene is simply 𝛼 + 1. 
2) add the gene to an existing module: To maintain the coherence of a module, we first check if 

for the candidate gene g the average weight w(g, v)  over all other genes in the module is 
positive. That is, we can add a gene g to a module M only if ∑ 𝑤(𝑔, 𝑣) 𝑣∈𝑀 > 0. The increased 
cost resulting from adding gene g to module M is Cost(M+{g}) – Cost(M).  

To find the best extension of the cover we proceed as follows: Let P(g) be the set of existing 
modules with a positive average edge weight with g as described in the case (2) The cost of 
adding a gene g is  

IC(g) = min(𝛼+1, minΜi ∈ P(g) (Cost(Mi U{g}) – Cost(Mi)))   
Since we want to cover disease cases to the largest degree, we also account for the ‘benefit’ of 
adding genes. Considering the set of disease cases C’ that were covered less than k times by the 
end of the previous iteration we define the benefit by adding gene g as 

Benefit (g) = ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔)𝑐 ∈ 𝐶′ .    
In each iteration, we greedily choose a gene with minimum IC (g)/Benefit (g). If the minimum 
cost of gene g is obtained adding gene g to an existing module M, the module is updated as M 
U{g}. Otherwise a new module {g} is created.  

2.3.  Two-Step Module Cover 

In the Two-Step heuristic, we first find a candidate set of modules by clustering genes based on 
their similarity and interaction data. Subsequently, we apply a covering algorithm to select the 
best set of modules. Specifically, we used Markov Cluster Algorithm (MCL), an unsupervised 
clustering algorithm based on simulation of stochastic flow in a network (14). Note, that a 
predefined set of modules/pathways may be used instead as well. Given a network of interacting 
genes, we weight each edge by the corresponding similarity value and obtain a candidate set of 
modules {M1, M2, …, Mm} using MCL. We then select modules with coherent/similar genes, 
covering as many samples as possible. The cost of selecting a module M is given by (3), and we 
define the benefit of selecting a module as the total coverage 

Benefit(Mi) = ∑ ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔)𝑐 ∈ 𝐶′𝑔∈ 𝑀𝑖  
Where, as before, C’ is the set of disease cases not covered k times by the end of the previous 
iteration. In each iteration, we greedily select a module with minimum Cost (M)/ Benefit (M). 

3.  Results 

We applied our module cover algorithms to two data sets: the first dataset includes the data for 
158 Glioblastoma Multiforme patients (GBM) and 32 non-tumor control samples. The data was 
collected by the NCI-sponsored Glioma Molecular Diagnostic Initiative (GMDI), which includes 
matching mRNA expression and copy number variation data for each patient 



(http://rembrandt.nci.nih.gov/). The second dataset includes 489 Ovarian Cancer data samples 
from TCGA (The Cancer Genome Atlas). The technical details of data processing are described 
in the Materials section. 

3.1.  Analysis of Glioblastoma Multiforme Data from GMDI 

First, we wanted to estimate which of the two methods provides a better heuristic in the 
context of our application. Since our goal was to select modules whose members are associated 
in a coherent way with genotypic changes, we evaluated the two methods based on significance, 
strength, and coherence of the association.   

3.1.1.  Comparison of the Module Cover approaches. 

 We applied the integrated greedy module cover algorithm with k = 300 and 𝛼 = 1, 
allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more 
detailed parameter selection in online Appendix Section 2. In particular, we found that the 
number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to 
choose this parameter value for our main analysis. We obtained 249 modules that contained a 
total of 513 genes including 41 non-singleton modules. The average distance between genes 
inside a module was 2.5.  

For the two-step module cover, we applied MCL to the network of molecular interactions 
that have been weighted by correlating eQTL profiles of interacting genes. Using inflation 
parameter = 4 we obtained 3,401 candidate modules (see Appendix Table A1 and Figure A1 for 
details of parameter selection). The average size of the candidate modules was 3.21 and 2,677 
modules were non-singleton. Subsequently, we greedily selected modules as described in Section 
2.3. The two-step cover algorithm selected 801 genes in 454 modules. 233 modules (of which 
171 modules are of size 2) were non-singleton. The average distance between genes inside a 
module was 1.1, indicating that the MCL cover provided more compact modules than the 
integrated module cover approach. 

Testing which of the two approaches provided modules whose members were associated in a 
more coherent way with genotypic changes, we evaluated modules with respect to significance, 
strength and coherence of the association.    

For each non-singleton module M, we first defined the significance of the association to 
each of tag loci as the average association significance of the genes in the module. Formally, 

si(M) = ∑ 𝑠𝑖(𝑔)𝑔 ∈ 𝑀 /|M|                                         (5) 
where si(g) represents –log10 p-value of the association provided by the linearly regressing between 
expression values of gene g and copy number variation of i-th tag locus (see Section 5.1 for more 
details). 

The upper panel of Fig. 2A shows such association significance profiles of the 10 largest 
modules. We found strong associations with tag-loci on chromosome 7 and 10. These 
chromosomes carry signature alterations of GBM, coinciding with the genomic locations of 
GBM related genes such as EGFR and PTEN. In the lower panel of Fig. 2A, we show 
association significance profiles of the 10 largest modules selected by the two-step algorithm. 

http://rembrandt.nci.nih.gov/


 

Figure 2: Comparison of module covers approaches in GBMs (A) Manhattan plots of module associations show average 
association significance for each tag-locus for the 10 largest modules we obtained with both methods. Modules obtained using 
the integrated method had more significant eQTL associations.  In the upper panel, we also labeled associations that correspond 
to functionally coherent modules shown in Online Appendix Fig. A2. (B, C) Comparing the quality of modules, we observed that 
the Integrated method generated modules with higher strength, lower entropy and higher specificity Module size is indicated by 
the sizes of corresponding circles. The label “single” refers to modules we obtained using a set cover approach.  

  
We observed that associations obtained by the two-step algorithm were weaker based on several 
different measures of quality introduced below.  

To compare the approaches more quantitatively, first note that the total cost of modules 
selected by the integrated and two-step algorithms was 744 and 1439.05, respectively (Appendix, 
Table A1). The total weights between genes in modules (the third term in cost function (3)) were 
18.63 and -184.05, showing that the modules selected by the integrated algorithm were much 
more coherent compared to the modules obtained by two-step algorithm.  

To further quantify the quality of modules in terms of their association to genomic 
alterations, we devised several measures: The strength of association significance of a module 
was defined as the maximum significance of the associations of the given module over all loci:  

Strength (M) = maxi si (M).     (6) 
We also computed the entropy of association profiles for each module. Since entropy 

measures the uncertainty of data, a good quality module (with only a few strong associations) is 
expected to have low entropy while entropy increases as data is more uniformly distributed. 
Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of 
equal sizes and assigned loci according to their significance. In each bin, we computed the 
percentage 𝒑𝒋 of loci and defined the entropy as  

Entropy (M) =−∑ 𝑝𝑗 𝑗 ∈ 𝑏𝑖𝑛𝑠 log2𝑝𝑗      (7) 
For an association to be specific in a given module, only a few regulatory associations 

should have highly significant p-values while the remaining loci are expected to have 
insignificant p-values. Thus, we defined the specificity of a module M as the area of a 
cumulative histogram of association significance values. Specifically, we partitioned the range 



from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage 
of j-th bin. Then the specificity is defined as: 

Specificity (M) = ∑ 𝑐𝑗𝑗 ∈ 𝑏𝑖𝑛𝑠 /|bins|        (8) 
Similar to entropy, specificity quantifies the distinction between significant associations and 

the remainder of the loci. However specificity approaches 1 only if a small number of significant 
loci exist whereas theoretically entropy can be low in the case when there is a few insignificant 
and many significant loci.  

We found that the integrated module cover outperformed the two-step module cover 
approach based on all three measures (as summarized in Online Appendix Table A1). The 
average strength of modules (size ≥ 3) selected by the integrated module cover algorithm was 
6.4, significantly outscoring an average of 3.6 of modules obtained by the two-step module cover 
algorithm (P < 10-8, Wilcoxon test). Similarly, the average specificity for the integrated module 
cover was 0.9 while the average was 0.83 for the two-step cover (P < 10-4, Wilcoxon test). The 
average entropy of modules selected by the integrated algorithm and two-step cover were 1.6 and 
2.2, respectively (P < 10-4, Wilcoxon test). 

Fig. 2B,C presents a detailed comparison of the performance of the module cover approaches 
with respect to the mentioned measures. In addition, we included results obtained by the basic set 
cover algorithm labeled “single” in Figs. 2 B,C using the same parameter k = 300 and at most 5 
outliers. In this case we defined the modules as the connected components of the subgraph 
spanned by the genes that were selected as the cover. We observed that modules of size ≥3 
obtained by the integrated module cover approach were on average larger than modules found 
with the two-step approach. Specifically, modules identified by the integrated approach had 
significantly smaller entropy compared to modules obtained by the two-step approach (Fig. 2B, 
P < 10-6, Kolmogorov-Smirnov test). In addition, these modules showed significantly higher 
strength (Fig. 2C, P < 10-5, Kolmogorov-Smirnov test). However, the quality of modules 
obtained with both approaches was still superior to results of a single gene set cover, 
demonstrating general benefits of the module cover approach.   

All alogrithms were implemented in Python and compute the solutions for the inputs of 
~10,000 genes in a few minutes on NCBI linux machines. 

3.1.2.  Analysis of GBM data  

We further analyzed modules provided by the integrated method. First, we determined enriched 
GO terms in modules using BINGO (15). Out of 21 modules with at least 3 genes, we found 14 
modules having at least one GO term that they significantly enriched with (FDR < 0.05). In 
addition to modules enriched with typical cancer-related processes such as cell division, cell 
cycle, and immune response we also obtained more glioma-specific modules such as the WNT 
signaling pathway and glial cell differentiation. For example, only some subsets show dys-
regulation of immune response or of WNT signaling while the cell cycle module is dys-regulated 
in almost all samples. Although our modules have been selected by using eQTL association 
profiles they allow us to recover GBM subtypes that previously were determined with expression 
profiles of single genes. Importantly, we observed that different modules were covering different 
sets of samples in a nonhierarchical (non-nested) way (Online Appendix, Fig. A2). This 



overlapping pattern of covering modules might explain why the number of GBM subtypes has 
been difficult to establish (16, 17).  

 
3.1.3.  Analysis of Ovarian Cancer Data  

We also used the integrated module cover algorithm to analyze a set of 489 Ovarian Cancer 
samples from The Cancer Genome Atlas (TCGA). Applying the integrated module cover 
algorithm with k=70, 𝛼 = 1, and 25 outliers, we selected 485 genes grouped in 235 modules 
including 54 non-singleton modules. As in the analysis of GBM data, we choose k for which the 
number of nontrivial modules starts to level. Out of 12 modules of size at least 5, 9 modules were 
enriched with at least one GO terms significantly (FDR < 0.05).  

To visualize the coverage of disease cases by modules of size ≥5, we counted the number of 
genes covering each sample (Fig 3A). Similarly to GBMs, we found that different modules are 
covering different subsets of samples. Note that a gene may cover a sample when it is either 
significantly upregulated or downregulated. In Fig 3B, we investigated the expression patterns of 
individual genes in the modules. Performing hierarchical clustering of the genes based on 
expression level,  we obtained clusters consistent with the existing classification of cancer 
subtypes (18), in which  the gene expression profile of ~1,000 selected genes was used to define 
4 disease subtypes. Using only 185 genes in the 12 largest modules from our module cover, we 
successfully recovered these 4 subtypes (Fig 3B) despite the fact that these genes have not been 
selected explicitly to classify expression based subtypes. In the TCGA analysis (18), the authors 
attempted to identify genes whose differential expression helped to define each disease subtype. 
However, we found that our module-based analysis often provided a more informative picture. 
For example, in (18) one subgroup of the collagen gene family was found to support the 
Mesenchymal subtype  while another subgroup of this family as well as the LUM gene which 
binds collagen fibrils was associated to the Differential subtype. In contrast, our approach 
grouped all these genes into “extracellular matrix organization” module, also containing several 
matrix metalloproteinase (MMP) genes. We found that genes in this module had very similar 
expression and were overexpressed in the Mesenchymal subtype.  

4.  Discussion 

Uncovering modules that are associated with genomic alterations in a disease is a 
challenging task as well as an important step to understand complex diseases. To address this 
challenge we introduced a novel technique - module cover - that extends the concept of set cover 
to network modules. We provided a mathematical formalization of the problem and developed 
two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to 
cover disease cases while simultaneously detecting modules and a Two-Step approach that first 
detects modules and subsequently selects a cover.Using several quality measures, we established 
that the integrative approach outperformed the alternative two-step approach. However, both 
methods showed better performance than a naïve single gene based set cover approach. We also 
constructed modules utilizing gene expression rather than association profiles to define a 
similarity measure (data not shown). We observed that the modules obtained by the integrated 
approach based on gene expression showed lower association specificity/association strength 



than modules that were provided by eQTL profiles. However, expression based modules would 
be clearly preferred for uncovering expression patterns that occurs regardless of the association 
to genetic variations. 

In general, the module cover approach is especially helpful in analyzing and classifying 
heterogeneous disease cases by exploring the way different combinations of dys-regulated of 
modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene 
set selected by module cover approach may be used for classification. Equally important, the 
selected module covers may help to interpret classifications that were obtained with other 
methods.  
 

 

 
Figure 3: Modules in ovarian cancer obtained by the integrated module cover method. (A) For each disease case (y-
axis) we displayed in the heat map the number of genes in each module that covered the sample (B) Expression based 
clustering of the genes in the modules provided clusters consistent with the existing classification of cancer subtypes. 
Arrows indicate genes of the extracellular matrix module discussed in the text. The fraction of genes assigned to a given 
cluster in (18) is shown next to the cluster name.  
 



5.  Materials 

5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI 

Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 
arrays that were normalized at the probe level with dChip (16, 19). Among probes 
representing each gene, we chose the probeset with the highest mean intensity in the tumor 
and control samples. We determined genes that are differentially expressed in each disease 
case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we 
define cover(c, g) to be 1 if nominal p-value < 0.01 and 0 otherwise.  
eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip 
Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy 
Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, 
calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian 
approach, raw SNP profiles were smoothed (> 500 kb window by default) and segmented 
with a Hidden Markov Model approach (20-22). We first performed local clustering, 
allowing us to obtain 911 tag loci (11). For each gene/tag-locus pair, we computed nominal 
p-values by linearly regressing gene expression and genomic alteration for all samples. We 
then  define the eQTL significance profile for each gene, g,  as Assoc (g) = {s1(g), s2(g), … 
s911(g)}, where si(g) represents the –log10 p-value of the association given by the linear 
regression between expression values of gene g and copy number variation of locus i. Using 
such profiles, we defined the similarity of two genes g1 and g2, sim(g1, g2), as Pearson’s 
correlation coefficient of Assoc (g1) and Assoc (g2). 
Weights of Gene Pairs: We utilized human protein-protein interaction data from large-scale high-
throughput screens (23-25) and several curated interaction databases (26-29), totaling 93,178 
interactions among 11,691 genes. As a reliable source of experimentally confirmed protein-DNA 
interactions, we used 6,669 interactions between 2,822 transcription factors and structural genes 
from the TRED database (30). As for phosphorylation events between kinases and other proteins 
we found 5,462 interactions between 1,707 human proteins utilizing networKIN (31, 32) and 
phosphoELM database (33). Combining all interactions, the network contains 11,969 human 
proteins and 103,966 interactions.  We computed the weights of each gene pairs using equation 
(1) with avg_distance = 3.6 and θ = 0.63, a threshold that corresponds to the top 1%ile of 
weights of any pairs. 

5.2 Data Treatment for Ovarian Cancer Data from TCGA 

We utilized the unified expression data compiled in (18) based on expression values from three 
different expression platforms. Since there is no control (non-cancer data) in this dataset, we 
defined that a gene covers a sample if its expression in this sample was in the extreme 3% of the 
expression distribution. We then narrowed down the set of genes to 1,889 genes by considering 
genes that covered at least 5% of the samples. As for copy number variations, we used level 4 
data obtained with GISTIC (34) and selected 1,923 genes with copy number alterations (calls = 
±2) in at least 5% of all samples. For each differentially expressed gene we used linear 



regression to compute associations of the expression of this gene with copy number variation of 
each of the 1,923 genes. We used p-values of these associations to compute association profiles 
as explained in 5.1. Edge weights in interaction graph were calculated as described in 5.1 with θ 
= 0.58, a threshold corresponding to the top 5% ile. 
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