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Despite thousands of reported studies unveiling gene-level signatures for complex diseases, few of 
these techniques work at the single-sample level with explicit underpinning of biological mecha-
nisms. This presents both a critical dilemma in the field of personalized medicine as well as a 
plethora of opportunities for analysis of RNA-seq data. In this study, we hypothesize that the 
“Functional Analysis of Individual Microarray Expression” (FAIME) method we developed could 
be smoothly extended to RNA-seq data and unveil intrinsic underlying mechanism signatures 
across different scales of biological data for the same complex disease. Using publicly available 
RNA-seq data for gastric cancer, we confirmed the effectiveness of this method (i) to translate 
each sample transcriptome to pathway-scale scores, (ii) to predict deregulated pathways in gastric 
cancer against gold standards (FDR<5%, Precision=75%, Recall =92%), and (iii) to predict pheno-
types in an independent dataset and expression platform (RNA-seq vs microarrays, Fisher Exact 
Test p<10-6). Measuring at a single-sample level, FAIME could differentiate cancer samples from 
normal ones; furthermore, it achieved comparative performance in identifying differentially ex-
pressed pathways as compared to state-of-the-art cross-sample methods. These results motivate 
future work on mechanism-level biomarker discovery predictive of diagnoses, treatment, and ther-
apy. 
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1.  Introduction 

Interpreting differentially expressed genes at the biological scale using enrichment statis-
tics (Enrichment) or Gene-Set Analyses (GSA) has become routine for microarray and 
RNA-Seq studies. By design, these analyses require group assignment as well as derived 
mechanisms (e.g., Kyoto Encyclopedia of Genes and Genomes, i.e. KEGG pathways [1]) 
to reference differences of expression between these groups. While biologists are well 
served with such studies, evaluating individual patients in clinic necessitates single pa-
tient measures. Indeed, conventional single molecule biomarkers are popular because of 
their crisp thresholds that are interpretable as normal or abnormal. FDA-approved bi-
omarkers are often required to reveal clinically interpretable biological mechanistic in-
formation useful in diagnosis of disease and prognosis of therapeutic response. While 
gene expression classifiers (signatures) have been shown as accurate predictors, they par-
adoxically are not comprised of “driver genes” (known mechanisms of diseases) or thera-
peutic response [2]. When developed using different datasets, there is poor genetic con-
cordance between signatures. In contrast, we have shown mechanistic overlap at the pro-
tein interaction level between signatures predictive of clinical outcome in breast cancer 
[3] and in prostate cancer [4]. The lack of mechanistic underpinning prohibits in part the 
wide adoption and FDA approval of expression classifiers [5]. Indeed, MammaPrint® 
microarray [6] and of OncotypeDX [7] are both classifiers derived from mechanisms 
(wound healing signature from animal models, and curated breast cancer driver genes,).  

  Few genome-wide methods have been developed using gene-sets for imputing biolog-
ical mechanisms (most have been for microarrays measuring RNA expression). In these 
studies, scoring mechanisms by the median or mean expression of their corresponding 
gene-set were shown to be capable of generating classifiers but at a lower accuracy than 
single-transcript RNA expression-level signatures [8, 9]. More accurate mechanism clas-
sifiers can be derived from methods comparing phenotypic group assignments between 
samples to identify principal components (PCA) [10, 11] or by the expression of key 
genes to represent the whole pathway such as in CORG [12] and LLR [13]. We devel-
oped “Functional Analysis of Individual Microarray Expression” (FAIME), a weighted 
rank method that can impute mechanism-scores on each expression array sample and 
eliminate the group assignment requirement [14]. We have shown FAIME’s accuracy in 
generating classifiers predictive of outcome in independent expression array datasets of 
head and neck [14] and lung cancers [15]. We have also experimentally validated FAIME 
for predicting microRNA targets within cell lines and animal models [16]. We have addi-
tionally demonstrated that while the genetic overlap of RNA-level classifiers across three 
head and neck cancer datasets was ~3% at False Discovery Rate (FDR) <5%, more than 
46%-61% of the FAIME-anchored KEGG pathways classifiers overlapped in the same 
datasets (FDR<5%) [14]. We have also demonstrated that FAIME can be employed on 
continuous phenotypes such as survival in cox-regression [12]. These studies [10-14] 
transcend those using conventional gene enrichment or gene set enrichment analyses 
(GSEA) that cannot provide individual measurements of mechanisms on a single sample 
and require comparison between multiple samples groups (in distinct categorical pheno-



 
 

 

types) to infer gene-set-level predictions. Recently, related work in mass spectrometry 
protein complexes (derived from interaction networks) were shown to be more accurate 
for designing classifiers than single proteins [17]. However, to our knowledge, no mech-
anism-level methodology has yet been designed specifically for interpreting individual 
RNA-sequencing samples. Such a methodology is a requirement to develop RNA-seq 
based, clinically predictive mechanism-level classifiers. To our knowledge, no method of 
mechanism imputation has been developed for RNA-seq at the single sample level. 
    We hypothesized that the FAIME weighted rank-based method we developed for ex-
pression arrays would be more accurate than the simpler ‘median expression’ and ‘mean 
expression’ methods. To confirm this for each method, we systematically compared the 
different false discovery rate thresholds for accuracy and for biological reproducibility 
across transcriptomic measurements using (i) proxy gold standards in the same datasets 
and (ii) validating in independent datasets (RNA-Seq vs array expression). 

2.  Methods 

2.1.  Data preparation and databases 

All datasets were obtained from the Gene Expression Omnibus (GEO) [18]. To demon-
strate the feasibility of the FAIME technique on RNA-seq data, the Asian gastric cancer 
dataset GSE36968 [19], consisting of 24 gastric cancers and 6 normal stomach samples, 
was used. GSE36968 was sequenced with Life Technologies SOLiD™ sequencing plat-
form. This dataset was already in Reads Per Kilobase of exon model per Million mapped 
reads (RPKM) format [20]. Since RPKM is a widely accepted standard for RNA-seq 
normalization by biologists, no additional pre-processing was performed. To validate and 
show concordance among RNA-seq and microarray data, the Asian gastric cancer micro-
array dataset GSE13861 [21], consisting of 71 gastric cancer and 19 normal samples, was 
used. This dataset was already quantile normalized [22] and log2 transformed.  

2.2.  Microarray platform annotation 

Microarray platform annotation was downloaded from the GEO website 
(http://www.ncbi.nlm.nih.gov/geo/) for the GSE13861 dataset using Illumina Hu-
manWG-6 v3.0 expression beadchip. 

2.3.  KEGG pathway annotations 

KEGG pathway annotations are embedded in Bioconductor database KEGG.db [23] ver-
sion 2.7.1. The 229 KEGG pathways with more than 3 annotated genes are studied. 

2.4.  FAIME pathway scoring of each sample 

From the methodologies in [1], to quantitatively assign a mechanism's “expression de-
regulation” via its gene members, whose expression is measured in RPKM, all expressed 
genes (set G) in each sample are sorted in a descending order according to their expres-
sion levels, and then, as shown in Eq. (1), an exponential decreasing weight (w) is as-



 
 

 

signed to the ordered genes. The resultant weighted expression values are used to priori-
tize relatively highly expressed genes as in the first step of Bioconductor package Or-
deredList [24, 25]. Specifically, let rg,s be the expression rank for each gene g∈G in a 
sample s, let |G| be the total number of distinct genes measured and the weight assigned 
to each gene per sample (wg,s) is calculated as follows: 
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A Normalized Centroid (NC) is defined as the uni-dimensional average of the weighted 
expression values of a gene-set. Specifically, the sum of the weighted expression of gene 
element in a gene-set is normalized according to its cardinality. For every KEGG path-
way, there is a gene-set KEGGi in which genes satisfy g∈KEGGi and a complement 
gene-set (G/KEGGi) comprised of all available measured genes that are not annotated to 
this KEGG pathway. Thus we calculate the normalized centroid of each gene-
set KEGGi in each sample s and that of its complement gene-set as follows: 
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Furthermore, Eq. (3) calculates the Functional FAIME Score (F in equations) of each 
gene-set of a KEGG pathway in every sample as the difference between the normalized 
centroid of its gene-set and that of its complement gene-set. We define functional scores 
as functional biological mechanisms of the gene-set associated with a KEGG pathway in 
a given example. 
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Eq. (4) calculates for a sample s, the FAIME Profile "FPs" defined as the set of all 
FAIME scores of sample s, FKEGGi,s, assigned to every term. 

 },,,,{
,,,1 snsis KEGGKEGGKEGGs FFFFP ……=  (4) 

where n is the total number of KEGG pathways. 
    In this way, patient-specific FAIME profiles of KEGG pathways are generated for 
each sample. Each sample has a continuous effective value for each category term which 
is the group difference between the genes annotated by the KEGG pathway and their in-
dividual complementary set of genes [16]. 
     Calculations were performed using the latest FAIME R package which has been im-
rpoved to compute scores concurrently and allow for custom transformations (available: 
https://bitbucket.org/lussierlab/faime-opensource).  Experiments were made with alternate trans-
formations such as uniform-weighted rank and median selection, but we found that the 
original methodology performed the most consistently. 



 
 

 

2.5.  Simpler methods for scoring each sample pathways  

To evaluate FAIME against alternative single-sample pathway scoring methods, we de-
fined two unranked and two ranked methods. The unranked methods, RPKM mean and 
RPKM median, compute a sample’s pathway score as either the mean or median of the 
RPKM values of the pathway’s gene set respectively.  Analogous rank-based methods, 
Mean of Ranked RPKM and Median of Ranked RPKM, first convert a sample’s RPKM 
values into ranks and then score each pathway as the mean or median of the constitutive 
ranks respectively. 

2.6.  Unsupervised hierarchical clustering (Figure 1) 

As seen in Figure 1, FAIME scores for all 229 KEGG pathways were used in generating 
the unsupervised hierarchical clustering of RNA-Seq dataset GSE36968. Similarly, other 
ranked methods (RPKM mean, RPKM median, mean of ranked RPKM and median of 
ranked RPKM) were employed for clustering as comparison. The clustered heat map was 
generated using the heatmap function of R with Ward's method as the distance criterion. 

2.7.  Predicting deregulated pathways between two sets of samples using Wilcoxon 
parametric test (Figure 2&3, Table 1) 

In sections 2.4 and 2.5, we have described five methods (FAIME, RPKM mean, etc) that 
transform genome-wide RNA-seq or microarray-level measures of expression of a sam-
ple into pathway scores for this sample. Comparing samples of gastric cancer to normal 
gastric tissue, we calculate the deregulated pathways using the non-parametric Wilcoxon 
statistic and adjust for multiple comparisons using FDR. Thus, a set of deregulated path-
ways at different FDR thresholds can be imputed form the same dataset for each pathway 
scoring method. These can be compared to methods that calculate deregulated pathways 
directly from the gene-level expression such as GSEA and Enrichment studies (See sec-
tion 2.8, ROC: Receiver Operating Characteristic). 

2.8.  Evaluating pathway-scoring methods using ROC curves and proxy gold stand-
ards operating on the same RNA-seq dataset (Figure 2) 

Since it is unfeasible to biologically validate all predicted KEGG pathways, accuracy was 
determined using alternatively (i) GSEA [26] or (ii) conventional enrichment of differen-
tially expressed genes (R package for SAM [27] analysis at FDR<5%) as proxy gold 
standards. At a given FDR, the set positivesGSEA was calculated as the set of KEGG path-
ways found significantly differentially scored between cancer versus normal under GSEA 
(gene-set permutation); the set positivesFAIME was calculated as the set of KEGG path-
ways found significantly differentially scored between cancer versus normal by running 
SAM [27] on the FAIME scores of each sample (Wilcoxon-statistic); the set positivesEn-

richment was calculated by first using SAM to identify significantly differentially expressed 
genes (Wilcoxon-statistic, fixed gene level FDR < 5%) and then performing hypergeo-
metric enrichment on those genes for the KEGG pathways at the given FDR cutoff for 
pathways.  Using GSEA as a proxy gold standard (Figure 2, Panel A&B), positivesGSEA 



 
 

 

was fixed at FDR < 25% as recommended by the authors. Then, at various maximum 
FDRs ranging from 0% to 35%, the set of true positives for FAIME was calculated as 
positivesGSEA ∩  positivesFAIME, the set of false positives as the set difference positivesFAIME 
- positivesGSEA, the set of false negatives as the set difference positivesGSEA - positivesFAIME, 
and the set of true negatives as the set difference KEGGALL - (true positives ∪  false posi-
tives ∪  false negatives). With these values, we could then create a receiver-operating 
characteristic (ROC) curve for FAIME by plotting the true positive rate according to Eq. 
(A.1), versus the false positive rate according to Eq. (A.2). To compare with FAIME, a 
similar procedure was used to create the ROC curve for hypergeometric enrichment 
(Figure 2, Panels C&D). To allow comparison of GSEA and FAIME, hypergeometric 
enrichment at FDR < 5% was instead used as a proxy gold standard and the correspond-
ing ROC curves were created. 

2.9.  Evaluating pathway-scoring methods in an independent dataset using concord-
ance of prediction (Table1) and clustering (Figure 3) 

For each of the five pathway-scoring methods (see 2.4-2.6; FAIME, RKPM mean, etc), 
the R package for SAM [27] was successively used to prioritize pathways deregulated 
between gastric tumors and normal gastric tissue at FDR<2.5% and at FDR<5% in RNA-
seq dataset GSE36968. The corresponding FAIME scores of those pathways in independ-
ent microarray dataset GSE13861 were then used as the basis for hierarchical clustering 
in Figure 3 (R's heatmap function with Ward's method as the distance criterion). Similar-
ly, differentially expressed pathways imputed from dataset GSE13861 at FDR 2.5% and 
5% were used to hierarchically clustering samples in RNA-seq dataset GSE36968 and 
reported in Table 1. Furthermore, these analyses were successively conducted on the four 
other pathway-scoring methods: RPKM mean, RPKM median, mean of ranked RPKM, 
and median of ranked RPKM. The reciprocal study was conducted as well: prioritizing 
pathways for each method in the microarray studies and clustering the RNA-seq samples 
using the pathway scores of each RNA-seq sample corresponding to those prioritized 
pathways. Clustering accuracies of each method are reported in Figure 3. Further, an 
additional evaluation was conducted: the Fisher Exact Test (FET) and odds ratio of the 
concordance between the prioritized pathways derived independently over microarrays 
and RNA-seq are reported in Table 1. 

3.  Results and Discussion 

To our knowledge, we present the first study of mechanism imputation at the single sam-
ple level for RNA-seq. This experiment differs from our previous ones in that we system-
atically also include as control intermediate geneset methods of computations such as 
mean, median, etc. In order to evaluate the feasibility to impute valid pathway scores at 
the individual sample level, we evaluated five distinct pathway-scoring methods in each 
of the following four experiments: (i) clinical phenotype clustering of individual RNA-
seq samples by their pathways scores, (ii) concordance between pathways predicted at the 
RNA-seq single-sample level against those predicted at the cohort-wide level (such as in 
GSEA), (iii) the predictive power of prioritized pathways in one dataset as classification  
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Figure 1. Unsupervised hierarchical clustering of all KEGG pathway-level scores imputed from RNA-
seq RPKM of individual samples. Panel A: clustering RNA-seq dataset GSE36968 by “RPKM median” 
measure on individual sample (“RPKM means” - not shown - is equally inaccurate). Panel B: clustering 
RNA-seq dataset GSE36968 by FAIME scores imputed from individual samples (every other ranked-based 
method provided equally good clustering, not shown). This illustrates the pathway level clustering possible 
with pathway scoring at the single sample level (note: GSEA and Enrichment are not designed for this pur-
pose). Legend: up-regulated pathways in cancer are blue and down-regulated ones are red. columns=30 
samples; rows=229 KEGG pathways (formatted for reading at high magnification). 
features for another dataset, and (iv) the concordance between pathway predictions con-
ducted in two independent datasets (Figure 1, Figure 2, Figure 3 and Table 1, respec-
tively). In Figure 1 Panel B, FAIME scores for the entire KEGG ontology (229 path-
ways[1] were used to perform unsupervised hierarchical clustering. Using Ward's method 
[28] as the distance criterion, all normal samples were found within the same cluster, as 
were gastric cancer samples in RNA-seq dataset GSE36968. Other rank-based methods 
(mean of ranked RPKM, median of ranked RPKM) achieved similar clustering results but 
unranked methods (RPKM mean, RPKM median) failed to cluster accurately (Figure 1, 
Panel A). Note that cross-sample methods GSEA and Enrichment cannot work on single- 
sample level. Top panels in Figure 2 demonstrate ROC curves for the KEGG pathways 
using GSE [26]as the proxy gold standard. For up-regulated pathways (Figure 2 Panel 
A), FAIME ROC performance compares favorably to hypergeometric enrichment. For 
down-regulated pathways (Figure 2 Panel B), FAIME and hypergeometric enrichment 
performed similarly. Bottom panels in Figure 2 demonstrate ROC curves for the KEGG 
pathways using hypergeometric enrichment as the proxy gold standard. For both up-
regulated (left) and down-regulated (right) pathways, FAIME ROC as the proxy gold  
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Figure 2: ROC curves of FAIME methods in identifying differentially expressed pathways as com-
pared to GSEA, Enrichment, RPKM mean, RPKM median, mean of ranked RPKM and median of 
ranked RPKM. Panel A and B: ROC curves using differentially expressed pathways of GSEA as a proxy 
gold standard (FDR<25%). Panel C and D: ROC curves using differentially expressed pathways by En-
richment as a proxy gold standard (FDR<5%). Up- and down- regulated pathways vary at each accuracy 
threshold for each method and calculated is available at: http://lussierlab.org/publications/FAIME-rnaseq. 

standard. For up-regulated pathways (Figure 2 Panel A), FAIME ROC performance is 
comparable to GSEA.     We also compared the FAIME ROC performance with simpler, 
single-sample measures such as RPKM mean, RPMK median, mean of ranked RPKM 
and median of ranked RPKM (dashed lines) for both down-regulated pathways and up- 
regulated pathways, using either GSEA or enrichment method as benchmark. FAIME 
yields either superior or similar ROC performance as compared to these single-sample 
methods. The exception is the RPKM median method which surpasses ranked methods as 
well as RPKM mean. 
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Figure 3: Unsupervised hierarchical clustering of gastric cancer datasets using sample-level scores of 
differentially expressed KEGG pathways learned from another independent dataset. Panel A: Clus-
tering of microarray dataset GSE13861 by 53 significant different expressed FAIME pathways 
(FDR<0.025) learned from GSE36968 (large figure at http://lussierlab.org/publications/FAIME-‐rnaseq	  ). Panel B, C, D: As 
described in Methods (Section 2.6), deregulated pathways were prioritized in one dataset and their classi-
fication accuracies evaluated in an independent one (and vice-versa) producing accuracy scores reported 
here.  Rank-based methods (mean of ranked RPKM, median of ranked RPKM, and FAIME) achieved 
overall better predictive performance across datasets as compared to unranked mean and median methods. 

Figure 3a demonstrates hierarchical clustering of microarray dataset GSE13861 with 53 
significantly differentially expressed FAIME features (FDR < 0.025) found in RNA- seq 
dataset GSE36968. 84 out of 90 (93.3%) samples are classified correctly. In a second set 
of experiments, reciprocal clustering of RNA-seq dataset GSE36968 using 122 and 140 
differently expressed FAIME pathway features of microarray dataset GSE13861 (FDR 
<0.025 and FDR < 0.05 respectively). The overall accuracy, precision, and recall are 
shown in Figures 3b, 3d and 3c respectively. As shown from the three panels, RPKM 
median and RPKM mean methods achieved the worst results as compared to rank- 
basedmethods (mean of ranked RPKM, median or ranked RPKM, and FAIME). 



 
 

 

Table 1. Pathway prediction concordance between the independent RNA-seq and microarrays da-
tasets for each pathway-scoring method (Sub-table A).	  Sub-‐table	  B	  shows	  the	  stringent	  concordant	  subset	  of	  
deregulated	   pathways	   prioritized	   by	   three	   techniques	   in	   both	   dataset	   (intersection):	  GSEA,	   Enrichment	   and	   FAIME	  
that	  respectively	  predicted	  29,	  10	  and	  12	  upregulated	  KEGG	  pathways	  and	  21,	  31	  and	  46	  downregulated	  ones.	  Path-‐
ways	   known	   involved	   in	   gastric	   cancer	   are	   highlighted	   in	   blue	   (e.g.	   gemcitabine[5-‐FU],	   a	   pyrimidine	   analog,	   	   is	   a	  
standard	  combination	  in	  treatment	  of	  gastric	  cancer).	  Detailed	  at:	  http://lussierlab.org/publications/FAIME-‐rnaseq 

Sub-table A pathways*  pathways*   

Ty
pe
 Sub-table B 

 Method odds 
ratio 

FET 
pvalue 

odds 
ratio 

FET 
pvalue 

 KEGG 
ID 

KEGG Pathways 

Dataset-
wide 

metrics 

GSEA  40  5x10-13  60 <2x10-16   04110 Cell cycle 

Enrichment  14  6x10-3 106  2x10-11   04115 P53 signaling pathway 

Single 
Sample 
Metrics 

Mean 
RPKM  12  2x10-4  17  1x10-13   00240 Pyrimidine metabolism 

Median 
RPKM  14  5x10-3  14  4x10-14   03040 Spliceosome  

Mean of 
ranked 
RPKM 

 15  4x10-15 no overlap  
  03013 RNA transport 

Median of 
Ranked 
RPKM 

  6  2x10-8 no overlap  
  03008 Ribosome biogenesis in 

eukaryotes 

FAIME  19 <2x10-16  ∞  1x10-6 

  00982 Drug metabolism –
cytochrome P450 

   00980 Metabolism of xenobiotics 
by cytochrome P450 

 Legend: * respectively	  down-‐	  and	  up-‐	  regulated	  pathways	  in	  gastric	  cancer;	  	  
Odds	  ratio	  from	  the	  intersection	  between	  RNA-‐seq	  &	  array	  predictions;	  	  	  	  ∞ :	  infinite	  (division	  by	  zero).	  

Evaluations conducted on the same dataset with proxy gold standards demonstrated that 
each method could produce modest to good accuracies - with the RPKM-mean method 
dominating.  Paradoxically, the RPKM-mean was the worst method in term of recall and 
modest in terms of precision.  This demonstrates that RPKM-mean is a volatile metric. In 
addition, the rank-based methods failed to identify up-regulated pathways in either 
GSE13861 or GSE36968 (Table 1). The FAIME method (which is a weighted rank-based 
method) achieved the most overall stable performance in reflecting the uniform underly-
ing mechanisms across distinct types of datasets of the same gastric cancer diseases. 

3.1.  Future Studies and Limitations 

While many studies have been completed in large RNA-seq datasets – they largely 
remain unavailable (either embargoed or simply not deposited in GEO).  We are complet-
ing additional studies to corroborate the findings of this report in (i) other cancers, (ii) 
other diseases, and (iii) for predicting response to therapy. Identifying key genes in each 
pathway would merit to be evaluated in RNA-seq as well (e.g. CORG, [12]). Finally, 
other type of gene-sets beyond KEGG pathways and curated pathways should be consid-
ered. Co-expression modules derived from large scale studies of multiple disease condi-
tions have provided insight in new biology and could be utilized as non-curated gene-
sets. Protein complexes, that worked well in mass spectrometry [17], could also be uti-
lized as gene-sets for pathway discovery in RNA-seq. 

Further, we are exploring other pathway scoring approaches at the single-sample level 
that would conserve the inherent vectorial structure of pathway expression, without the 



 
 

 

requirement of cross-sample analyses. We are also evaluating FAIME in a prospective 
clinical trial in predicting therapeutic response to recurrent head and neck cancer. 

Additionally, FAIME exploits an exponential transformation algorithm that weights 
better highly expressed genes and thus rectifies (i) the saturation of microarray probes at 
high dynamic range and (ii) the high relative and absolute error rate (noise) on low ex-
pression measurements. Only the latter bias remains salient for RNA-seq.  However, 
RPKM may not be the optimal metric for correcting biases of oversampling longer gene 
in next-gen seq. Moreover, most RNA-seq datasets are measured after reverse transcrip-
tion on DNA-seq platforms, adding another potentially biased step to model. Thus, im-
proving on mechanism-scoring methods for requires integrating modeling of new biases 
of specific RNA-seq platforms (e.g. adjustments for RNA fragment length that vary be-
tween platforms, gene length biases, reverse transcription, etc).  

4.  Conclusion 

To demonstrate the feasibility of single-sample classification, we performed an entirely 
unsupervised hierarchical clustering of RNA-seq dataset GSE36968. This clustering does 
not rely on differentially expressed features found by a tool requiring multiple samples 
such as SAM [27] or GSEA. Instead, the FAIME scores for all KEGG pathways are used. 
Figure 1 demonstrates the success of this approach with 100% of normal samples being 
contained within the same cluster.  
  Accurate pathway-scoring techniques could conceivably be used as a single sample 
analysis mechanism whereby clinicians could establish a patient's pathway profile [14] as 
a diagnostic and prognostic utility. Identifying pathways with exceptionally high or low 
scores could also serve as a means to elucidate individualized drug targets. This could 
then allow for a personalized drug regimen based on transcriptomic analysis. However as 
shown with Mammaprint® and OncotypeDX®, the technologies adoption is complex 
and requires more than technical prowess. 
Software availability 
We provide a package allowing for high-throughput analyses of the five studied pathway-
scoring methods on individual samples (https://bitbucket.org/lussierlab/faime-opensource). 

Appendix 
The true positive rates and false positive rates used in the ROC plots for FAIME, GSEA, and hypergeomet-
ric enrichment were calculated as follows: 
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