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Incomplete lineage sorting (ILS) is a common source of gene tree incongruence in multilocus analyses.
Numerous approaches have been developed to infer species trees in the presence of ILS. Here we provide
a mathematical analysis of several coalescent-based methods. The analysis is performed on a three-taxon
species tree and assumes that the gene trees are correctly reconstructed along with their branch lengths. It
suggests that maximum likelihood (and some equivalents) can be significantly more accurate in this setting
than other methods, especially as ILS gets more pronounced.
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1. Introduction

Incomplete lineage sorting (ILS) is an important confounding factor in phylogenetic analyses based
on multiple genes or loci.1,2 ILS is a population-level phenomenon that is caused by the failure
of two lineages to coalesce in a population, leading to the possibility that one of the lineages first
coalesces with a lineage from a less closely related population. As a result, it can produce extensive
gene tree incongruence that must be accounted for appropriately in multilocus analyses.3

A large number of methods have been developed to address this source of incongruence.4 Several
such methods rely on a statistical model of ILS known as the multispecies coalescent. In this model,
populations are connected by a phylogeny. Independent coalescent processes are performed in each
population and assembled to produce gene trees. Several methods have been shown to be statistically
consistent under the multispecies coalescent, that is, they are guaranteed to return the correct species
tree given enough loci.5–8

The performance and accuracy of coalescent-based multilocus methods have been the subject of
numerous simulation studies.5,9 In this paper, we complement such studies with a detailed analytical
comparison in a tractable test case, a three-taxon species tree. We analyze 7 methods: maximum
likelihood (ML),10 GLASS/Maximum Tree (MT),7,11 R∗,12 STAR,5 minimizing deep coalescences
(MDC),1 STEAC,5 and shallowest coalescences (SC).1 Under the assumption that gene trees are
reconstructed without estimation error, we derive the exponential decay rate of the failure probability
as the internal branch length of the species tree varies. The analysis, which relies on large-deviations
theory, reveals that ML and GLASS/MT are more accurate in this setting than the other methods—
especially in the regime where ILS is more common.



2. Materials and Methods

2.1. Multispecies coalescent: Three-taxon case

We first describe the statistical model under which our analysis is performed, the multispecies coa-
lescent. We only discuss the three-taxon case. For more details, see Ref. 2 and references therein.

A weighted rooted tree is called ultrametric if each leaf is exactly at the same distance from the
root. For a three-leaf ultrametric tree G with leaves a, b, and c, we denote by ab|c the topology where
a and b are closer to each other than to c, and similarly for ac|b, bc|a. The topology of G is denoted
by T [G].

Let S be an ultrametric species phylogeny with three taxa. We assume that all haploid popu-
lations in S have population size N . We denote the current populations by A, B and C (which we
identify with the leaves of S) and we assume that S has topology AB|C. The ancestral populations
are AB (corresponding to the immediate ancestor to populations A and B) and ABC (correspond-
ing to the ancestor of populations A, B and C). The corresponding divergence times (backwards in
time from the present) are denoted by τAB and τABC with the assumption τAB ≤ τABC. All times are
given in units of N generations. For a population X, we let τPX be the divergence time of the parent
population of X. Let X = {A,B,C,AB,ABC} be the set of all populations in S.

We consider L loci ` = 1, . . . , L and, for each locus, we sample one lineage from each population
at time 0. For locus `, we denote by I(`)X the number of lineages entering population X and by O(`)

X

the number of lineages exiting population X (backwards in time), where necessarily I
(`)
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(`)
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where we let T (`,I
(`)
X +1)

X = τX for convenience.13

The parameter governing the extent of incomplete lineage sorting is the length of the internal
branch of S

t = τABC − τAB.

The probability that the lineages from A and B fail to coalesce in branch AB, an event we denote by
FAIL` for locus ` (and its complement by SUCCESS`), is

1− p = e−t.

Note that, in that case, all three gene-tree topologies are equally likely. Of course, 1−p→ 1 as t→ 0.



2.2. Multilocus methods

A basic goal of multilocus analyses is to reconstruct a species phylogeny (including possibly esti-
mates of the divergence times) from a collection of gene trees. Here we assume that the data consist
of L gene trees G1, . . . , GL corresponding to L unlinked loci generated under the multispecies coa-
lescent. We assume further that the gene trees are ultrametric and that their topologies and branch
lengths are estimated without error.

We consider several common multilocus methods. In our setting, several of these methods are in
fact equivalent and we therefore group them below. Note further that we only consider statistically
consistent methods, that is, methods that are guaranteed to converge on the right species phylogeny
(at least its topology) as the number of loci L increases to +∞ in the test case we described above.
We briefly describe these methods. For more details, see e.g. Ref. 4 and references therein.

ML/GLASS/MT Under the multispecies coalescent, maximum likelihood (ML) selects the topol-
ogy and divergence times that maximizes the likelihood (1). ML is implemented in the software
package STEM.10

In the GLASS method,7 the species phylogeny is reconstructed from a distance matrix in which
the entries are the minimum gene coalescence times across loci. The equivalent Maximum Tree
(MT) method was introduced and studied in Refs. 8,11,14.

A key result in Ref. 8 is that, in the constant-population case, the term inside the exponential in
the likelihood (1) is monotonically decreasing in the divergence times. As a result, because GLASS
and MT select the phylogeny with the largest possible divergence times, maximum likelihood is
equivalent to GLASS and MT in this context. See Ref. 8 for details.

R∗/STAR/MDC In the R∗ consensus method,6,12 for each three-taxon set (here, we only have one
such set), we include the topology that appears in highest frequency among the loci (breaking ties
uniformly at random) and we reconstruct the most resolved phylogeny that is compatible with these
three-taxon topologies.

In the STAR method,5 the species phylogeny is reconstructed from a distance matrix in which
the entries are the average ranks of gene coalescence times across loci. Here the root has the highest
rank and the rank decreases by one as one goes from the root to the leaves.

The minimizing deep coalescences (MDC) method1,15 selects the species phylogeny that requires
the smallest number of “extra lineages,” that is, lineages that fail to coalesce in a branch of the species
phylogeny (breaking ties uniformly at random).

On a three-taxon phylogeny, there are only three distinct rooted topologies. In each case, the
most recent divergence is assigned rank 1 in STAR and the other divergence is assigned rank 2.
Hence selecting the topology corresponding to the lowest average rank is equivalent to selecting
the most common topology among all loci—which is what R∗ does. A similar argument shows that
MDC also selects the R∗ consensus tree in our test case.

Other common topology-based methods fall in this class, for instance, Rooted Triple Consen-
sus.16

STEAC/SC In the STEAC method,5 the species phylogeny is reconstructed from a distance matrix
in which the entries are the average coalescence times across loci. The shallowest coalescences (SC)



method is similar to STEAC in that it uses average coalescence times. The difference between the
two methods is in how they deal with multiple alleles per population. Since we only consider the
single-allele case, the two methods are equivalent here.

2.3. Large-deviations approach

As mentioned above, we consider estimation methods that are statistically consistent in the sense that
they are guaranteed to converge on the correct species phylogeny as the number of loci L increases
to +∞. To compare different methods, we derive the rate of exponential decay of the probability
of failure. Let S be a species phylogeny with internal branch length t and assume that G1, . . . , GL
are unlinked gene trees generated under the multispecies coalescent. As we explain next, large-
deviations theory (see e.g. Ref. 17) allows us to compute the (exponential) decay rate

αM(t) = − lim
L→+∞

1

L
lnP[Method M fails given L loci from S],

that is, roughly

P[Method M fails given L loci from S] ≈ e−LαM(t),

for large L. As the notation indicates, the key parameter that influences the decay rate is the length
of the internal branch t of the species phylogeny. In particular, we expect that αM(t) is increasing in
t as a larger t makes the reconstruction problem easier.

To derive αM(t), we first need to express the probability of failure as a large deviation event of
the form

P[Method M fails given L loci from S] = P

[
L∑
`=1

Y` > yL

]
,

where y is a constant and {Y`}L`=1 are independent identically distributed random variables. The
particular choice of random variables depends on the method, as we describe below. Let

φ(s) = E[esY` ],

be the moment-generating function of Y` (which does not depend on ` by assumption). Then large-
deviations theory stipulates (see e.g. Theorem 2.6.3 in Ref. 17) that the decay rate is given by

αM(t) = ys∗ − lnφ(s∗), (2)

where s∗ > 0 is the solution (if it exists) to
φ′(s∗)

φ(s∗)
= y,

provided there is an s > 0 such that φ(s) < +∞, y > E[Y`] and Y` is not a point mass at E[Y`].

3. Results: Derivations of decay rates

3.1. A domination result

We first argue that, given perfectly reconstructed unlinked gene trees under the multispecies co-
alescent, ML/GLASS/MT always has a greater probability of success than R∗/STAR/MDC and
STEAC/SC—or, in fact, any other method. Indeed note that the probability of success can be di-
vided into two cases:



(1) The case where SUCCESS` occurs for at least one locus `, an event of probability (1− (1− p)L).
In that case, ML/GLASS/MT necessarily succeeds whereas the other two methods succeed with
probability < 1.

(2) The case where FAIL` occurs for all loci `, an event of probability (1 − p)L. In that case, all
methods succeed with probability 1/3 by symmetry. For instance, for ML/GLASS/MT, any pair
of populations is equally likely to lead to the smallest inter-species distance. A similar argument
applies to the other two methods.

Hence, overall ML/GLASS/MT succeeds with greater probability.

3.2. Decay rates

We derive the decay rates for the methods above. The results are plotted in Figure 1. The asymptotic
regimes are highlighted in Figures 2 and 3. For lack of space, all proofs can be found in Ref. 18.

ML/GLASS/MT In this case, the decay rate can be derived directly without using (2). Following
the derivation in Ref. 7 (see also Ref. 8 for a similar argument), ML/GLASS/MT fails with proba-
bility

1−
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3
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]
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3
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2

3
e−tL.

Then we get the following:

Claim 3.1 (ML/GLASS/MT). The decay rate of ML/GLASS/MT on S is

αML(t) = t.

R∗/STAR/MDC For a locus `, we let Z(`)
AB be 1 if FAIL` occurs and T [G`] = AB|C, and 0 otherwise

(where recall that T [G`] is the topology of G`). We let

ZAB =
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Z
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AB.

Similarly, we define Z(`)
AC, Z(`)

BC, ZAC and ZBC. Then R∗/STAR/MDC fails if

ZAB + (L−ZAC −ZBC −ZAB) < max{ZAC,ZBC}.

It can be shown that

αR∗(t) = − lim
L→+∞

1

L
lnP[2ZAC + ZBC > L].

Then we get the following:

Claim 3.2 (R∗/STAR/MDC). The decay rate of R∗/STAR/MDC on S is
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As t→ 0,

αR∗(t) =
3

4
t2 +O(t3),



and, as t→ +∞,

αR∗(t) ≈ t

2
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2
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4

3
.

STEAC/SC For a locus `, we let D(`)
AB be the time to the most recent common ancestor of A and B

in G` (in unit of N generations). We let

DAB =

L∑
`=1

D
(`)
AB.

Similarly, we define D(`)
AC, D(`)

BC, DAC and DBC. Then STEAC/SC fails if

DAB > min{DAC,DBC}.

It can be shown that

αSTEAC(t) = lim
L→+∞

− 1

L
lnP[DAB −DAC > 0].

Then we get the following:

Claim 3.3 (STEAC/SC). The decay rate of STEAC/SC on S is

αSTEAC(t) = − ln

(
3e−s∗t − s2∗e−t

3(1− s2∗)

)
,

where 0 < s∗ < 1 is the unique solution to the fixed-point equation

s∗ =
1

2
[6s∗ − 3t(1− s2∗)]e(1−s∗)t.

Further, as t→ 0,

αSTEAC(t) =
3

8
t2 +O(t3),

and, as t→ +∞,

αSTEAC(t) ≈ t− ln t− 0.1656.

4. Discussion

As can be seen from Figures 1 and 3 as well as from the asymptotics, ML/GLASS/MT does indeed
give a larger decay rate for all t. In fact, the decay rate of ML/GLASS/MT is significantly higher,
especially as t → 0 that is, under high levels of incomplete lineage sorting. For instance, to be
concrete, if L = 500 loci and t = 0.1 (in units of N generations), the probability of failure is
approximately: 1.9 × 10−22 for ML/GLASS/MT; 0.038 for R∗/STAR/MDC; 0.16 for STEAC/SC.
Intuitively, this difference in behavior arises from the fact that ML/GLASS/MT requires only one
successful locus, whereas R∗/STAR/MDC and STEAC/SC rely on an average over all loci.

Comparing R∗/STAR/MDC and STEAC/SCin Figures 1, 2 and 3, note that αR∗(t) is higher than
αSTEAC(t) for small t but that the situation is reversed for large t. In fact, in the limit t → +∞,
αSTEAC(t) grows at roughly the same rate as αML(t) (which is optimal by the domination result). At
large t, STEAC/SC has somewhat of an advantage in that the expectation gap in the failure event
increases linearly with t, whereas it saturates under R∗/STAR/MDC.
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Fig. 1. Decay rates.

The analysis described here ignores several features that influence the accuracy of species tree
reconstruction. Notably we have assumed that gene trees, including their branch lengths, are recon-
structed without error. On real sequence datasets, the uncertainty arising from gene-tree estimation
plays an important role. For instance, although GLASS/MT achieves the optimal decay rate in our
setting, these methods are in fact sensitive to sequence noise because they rely on the computation of
a minimum over loci—the very feature that leads to their superior performance here. See Ref. 5 for
simulation results. Extending our analysis to incorporate gene tree estimation error is an important
open problem which should help in the design of multilocus methods. It is important to note that,
under appropriate modeling of sequence data, ML is not in general equivalent to GLASS/MT and
comparing the sensitivity of these methods to estimation error is an interesting problem.

Other extensions deserve further study. Often many alleles are sampled from each population.
Note that the benefit of multiple alleles is known to saturate as the number of alleles increases.19

This is because the probability of observing any number of alleles at the top of a branch is uniformly
bounded in the number alleles existing at the bottom.

Further, the molecular clock assumption, although it may be a reasonable first approximation in
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Fig. 2. Decay rates as t→ 0. The dotted lines indicate the respective predicted asymptotics. The decay rate for ML is
not shown as it would be almost vertical.

the context of recently diverged populations, should not be necessary for our analysis. One should
also consider larger numbers of taxa, varying population sizes, etc.

Simulation studies may provide further insight into these issues. However an analytical ap-
proach, such as the one we have used here, is valuable in that it allows the study of an entire class
of models in one analysis. It can also provide useful, explicit predictions to guide the design of
reconstruction procedures.

5. Supplementary Material

For lack of space, all proofs can be found in Ref. 18.
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