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Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects 
dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics 
across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each 
gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. 
The problem arises when considering privacy of the genetic information during the data-exchange process. 
Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange 
of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their 
carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-
wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene 
across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for meta-
analysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample 
identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The 
key idea is that parties encrypt identity of genes and variants. When they transfer information about 
frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and 
therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol 
although not trusted to learn about the raw data. We show applicability of this method to publicly available 
exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-
analysis. The MetaSeq software is publicly available as open source. 

 
1.  Introduction 

Human genetics has recently undergone a transition from genomewide association studies 
(GWAS) based on genotyping common polymorphisms1-4 to studies based on next generation 
sequencing (NGS) data5-7, that ascertains common and rare variants across individuals8. For 
GWAS, low effect sizes of most of the causal common alleles on common diseases and 
quantitative traits dictated large sample sizes to achieve statistical power9. In many studies, such 
sizes were made possible by consortia of multiple collaborating groups, each contributing 
hundreds or thousands of samples, together amassing tens or hundreds of thousands of genotyped 
samples to detect minute effects on various phenotypes10. Computational methods for meta-
analysis of such collated GWAS datasets have been instrumental in facilitating their joint 
analysis11. 
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NGS studies met initial success using only a handful of samples for sequencing exomes12,13 or 
whole genomes14,15 to detect novel, fully-penetrant alleles that disrupt genes and cause disease. 
Yet, detecting disease genes with rare alleles of partial penetrance, that explain only a small 
fraction of the cases, is more challenging. First, the limited power to detect such alleles on their 
own motivates testing for association of multiple alleles along the gene 16. Indeed, multiple 
methods for groupwise testing of alleles have been developed to optimize power of detecting such 
multiply disrupted genes17-22. Second, the tautological problem with rare variants is their low 
frequency. Large numbers of samples are still required in order to observe such alleles and detect 
their significant association. Fortunately, the cost of NGS keeps dropping, and the throughput 
keeps increasing. Sequencing exomes now require reagent-cost and labor resources comparable to 
early GWAS, with genomes likely to soon follow. This paper is motivated by the assumption that 
these power constraints along with throughput opportunities will lead to large-scale disease 
sequencing studies23 that would be more rapidly, and therefore more competitively executed by 
groups operating in parallel, but jointly meta-analyzing their data. 

Privacy had been a thorny issue in genetics research24-26. The irreversible labeling of 
individuals if their genetic information is known requires broad consent by study participants in 
order for researchers to have the ethical right and legal permit to expose their genotype data or 
even to share it with peers and collaborators27,28. This, along with some investigators’ sense of 
ownership of their data and cohorts typically makes data-access in human genetics (unlike other 
fields29,30) restricted, at least initially, often to the investigator. In GWAS, large consortia had 
preserved such access restriction, as meta-analysis required only exchange of summary statistics 
across collaborating groups and institutional barriers, rather than sharing explicit genotype data31. 
Such summary statistics typically include essentially allele frequencies (and their confidence 
levels) per marker. Although formally individuals and their relatives can be identified as members 
of a cohort just based on these summary statistics32, this identification requires expert 
computation, and may be underpowered, depending on study parameters such as number of SNPs, 
sample size and allele frequencies33. 

Meta-analysis of sequencing data poses unique challenges in terms of subject privacy. 
Specifically, such data includes hundreds of thousands of rare alleles per genome34, among them 
de novo mutations35, one or two of which can uniquely identify an individual among the entire 
world population. Even exome sequences typically include thousands of alleles that are currently 
novel13. Even assuming future expansion of variant databases, a typical human exome will have 
thousands of very rare (frequency < 10-4) alleles, typically singletons within a cohort of size in the 
low thousands. Such alleles, alone or in concert, readily provide unambiguous identification of 
carrier of the sample. The classical summary statistic for meta-analysis, which is the list of allele 
frequencies in a sample, therefore provides clear indication of membership for each and every 
sample in the cohort if applied genomewide with the exception of monozygotic twins, simply by 
virtue of including the singleton alleles carried by this sample. A similar rationale would decide or 
rule out membership in an exome-sequenced cohort based on presence of rare mutations. Yet, 
allele frequencies in cases and controls across the entire set of analyzed samples are a key 
ingredient in multiple methods for association to rare alleles18,19,21. Exchange of allele frequencies 



	  
	  

	  

between consortium members in order to tally alleles across datasets is instrumental for meta-
analysis of sequencing data, posing an apparent conflict with ethical requirements to protect 
against identification of samples. 

This paper tackles the challenge of facilitating the tally of frequency counts of rare, 
sequenced alleles between consortium members, thus enabling meta-analysis of sequencing data 
while not disclosing the allele identity and counts, therefore providing considerable protection of 
sample identity. This apparent paradoxical exchange of information is achieved through 
cryptographic means. The key idea is that parties hide the identity of the variants. When they 
transfer information about frequency counts in cases and controls, it does not convey the identity 
of a mutation, therefore not exposing the identity of the carriers. The parties do use an identical 
encryption key, thus identical variants will be encrypted identically. One could therefore sum up 
the counts for identical variants, without knowing the identity of the alleles whose counts are 
being tallied. 

2.  Methods 

2.1.  Notation 

We hereby describe MetaSeq, a privacy preserving protocol for meta-analysis of sequencing data 
coming from C collaborators such that: 
 
• Each collaborator c has data on a set S[c] of samples.  
• Such data includes a set Vm[c] of positions along each gene gm among the M ~ 20,000 genes 

g1, g2 ... gM. Vm[c] specifies all positions where variant (no-reference) calls had been made for 
at least one sequenced individual i ∈ S[c].  

• The data further includes for each individual i ∈ S[c], and each variant position v ∈ Vm[c] the 
actual genotype of i at v: heterozygote or non-reference homozygote, denoted by hm[c](v,i), 
represented in a standard vcf format36. We define Hm[c] to be full matrix of genotype values, 
across all rows v ∈ Vm[c], and columns i ∈ S[c]. Effectively, Hm[c] is a matrix of values 0,1, 
or 2 for each position and individual. 

• For each individual i ∈ S[c], the data also includes the affection status or the phenotype value 
of i, denoted by p(i) ∈ {1,0} for cases and controls, respectively. We denote P[c] as the list of 
phenotype values p(i) for each i ∈ S[c]. 

 
We assume Vm[c] is listed as genomic coordinates: chromosome and position along the 
chromosome. For each such position x, we define the coordinate, ϕm(x), which is its offset from 
the start of the chromosome. We naturally extend ϕm(.) to operate on sets of positions. In practice 
we assume ϕm(x) is a 32-bit integer. 

We define the set of all variable positions along the chromosome for gene, gm, and the total set 
of individuals respectively, as follows: 
 



	  
	  

	  

 Vm = Vm[c]
c  (1) 

 S = S[c]
c   (2)      

 
We further define the full listing P of phenotype values for all individuals across all cohorts and 
the full set G of genes, g1 .. gM | M ~ 20000. Hm is defined as the genotype matrix across all 
cohorts, with columns for all i ∈ S, and rows for all v ∈ Vm.  Hm[c] is the minor of Hm induced on 
Vm[c]×S[c]. The data for gene m is Dm = {Vm, Hm}, and the entire genetic dataset is given as:  
 

 D = Dm
m   (3) 

2.1.1.  Association score 

Let F(Dm =(Vm,Hm), P) be the scoring function used for testing association of gm. We assume F has 
certain properties that are shared by standard methods for testing association18. 
Specifically, F remains fixed when swapping rows (variants) of Hm along with Vm , if we assume 
all variants considered by the test are similarly likely to be causal (this assumption can be 
relaxed). Also, the set of scores for all genes by definition remains fixed when swapping genes gm. 
 

 F (D,P) ={F (Dm,P)}m=1
M   (4) 

 
The goal of the protocol is to encrypt the data using a secret key k, such that gene labels and 

variant labels are swapped (or permuted). Specifically, we define key-dependent permutations gk
andρk on gene labels and potential coordinates (32-bit integers), respectively. The permuted data 
for each gene is denoted by the following equations: 

 

 ρk(Dm) = (ρk(Vm),ρk(Hm))  (5) 

 ρk(Vm) = ρk(ϕm(v)) |v ∈Vm   (6) 

 

where, ρk(Vm) is the set of permuted coordinates and 𝜌! 𝐻!   is the matrix of genotype calls with 
permuted rows, i.e., with values hm[ρk(ϕm(v)),i] for all v ∈Vm,i ∈ S . We observe that the score is 
unchanged by this transformation: F (ρk(Dm),P) = F (Dm,P) . Yet, if one were to observe only a 
minor of ρk(Dm) , corresponding to a subset of individuals and the corresponding subsets of 
variants that they carry, one does not obtain any information on the individuals not in this subset, 
nor on the variants not carried by these individuals. Specifically, for each cohort c, the relevant 
subset of the data, Dm[c] = (Vm[c], Hm[c]), when encrypted into ρk(Dm)[c] , does not provide 
information regarding any other cohort !c ≠ c , nor on any variants not in Vm[c]. In this sense, the 



	  
	  

	  

encryption is privacy preserving. Finally, if gene labels are permuted, then receiver of the 
permuted data Dg (k ) ={Dgm(k ) |m∈1..M} cannot learn anything about the identity of any gene. 

We have developed a 5-step protocol for meta-analysis of genomewide sequencing data, 
computing association scores for pooled rare variants. The protocol is presented here in simplified 
form, with the following leniencies: 
 

1. We discuss only two-way meta-analysis, where two investigators (collaborators), Alice 
and Bob (or c1 and c2), each have their own sequenced association cohorts. 

2. We consider case-control association testing. 
3. We present the calculation of a simple variable allele-frequency threshold score21. 
4. Alice and Bob rely on the assistance of a semi-trusted third party, Trent, to help compute 

the score. 
 
The protocol preserves privacy of the subjects in the following respects: 
 

1. The only information Alice and Bob learn about each other’s cohort is the scores of top-
associated genes. 

2. Trent does not have direct or practical information that could expose the identity of the 
subject in Alice and Bob’s cohorts. Specifically, Trent does not learn which genes harbor 
which mutations in each cohort, and given an exome of an individual, cannot determine 
whether that individual is a member of any of the cohorts. Even upon publication of the 
research results by Alice and Bob, the information that Trent learns, is limited. 

2.1.2.  Protocol 

The protocol proceeds as follows: 
 

1. Key Exchange: 
Alice and Bob choose a shared secret key k, that can serve as an encryption key 

2. Annotation and Encryption: 
Alice and Bob each encrypt their data as follows: 

a. Variants are annotated for the genes they belong to and variant classification, e.g. 
known or nonsense, needed for scoring. Such classification is kept unencrypted. 

b. Alice and Bob generate a secret permutation g(k) over the set of genes g1…gM, 
creating permuted gene identifiers, g1(k)…gM(k). 

c. They further secretly permute the set of variants Vm, creating Vm(k). 
3. Data Transfer: 

Alice and Bob send Trent their encrypted gene names g1(k)…gM(k) and variant positions, 
Vm(k) along with the (unencrypted) (frequency) counts fVm(k )[ci ] . 

4. Merging and association testing: 
Trent computes, for each (permuted) gene gm(k) a total count for each (encrypted) variant, 



	  
	  

	  

Vm(k) by summing the two counts fVm(k )[c1] and fVm(k )[c2]  if both Alice and Bob report the 
variant in gm(k) or collapsing the association score for the variants otherwise. 

5. Decrypt results: 
Trent sends Alice and Bob the (top) association scores assigned to specific (encrypted) 
gene names, that they are able to decrypt. 

 
Note that many rare-variant association tests focus on particular type of variants, e.g. non-
synonymous, or loss-of-function variants. Such information is lost upon encryption, and Trent will 
thus be unable to restrict analysis to a particular class of variants. A convenient workaround is to 
communicate a set of per-variant weights by both Alice and Bob. Weights depend on 
classification of variant type that is agreed upon in advance, i.e. Alice and Bob decide on a weight 
function W:T→[0,1] on the domain of all variant types T = {missense, synonymous coding …..}. 
Each variant v is assigned type t(v) ∈ T and therefore a real-valued weight W(t(v)) ∈ [0,1], is 
communicated to Trent in clear text. We make note of the fact that since both gene names and 
variant positions are encrypted, for a sufficiently large class of variant types it becomes difficult 
for Trent to make any concrete inferences on variant identities using this information. 

2.1.3.  Implementation: MetaSeq 

We implemented this protocol as MetaSeq, an open source PERL package. A step-by-step 
illustration of the protocol as is in the MetaSeq code is given in Figure 1. We assume that the 
collaborators have their data stored on a server that is remotely accessible using the server name. 
We also require tools for annotation and encryption of the data on the server. MetaSeq works on 
variant call files  (*.vcf format) that include genotypes and phenotypes for each collaborating 
party, and is available as open source at https://github.com/angadps/Rare-Variant-Association. 

We provide implementation details regarding specific steps of MetaSeq: 
 
Step 1: Registration & key exchange 
MetaSeq guides the collaborating parties through the key exchange procedure using the PERL 
encryption modules Crypt::DES37, Crypt::CFB38 and Crypt::CBC39, and allows an arbitrary 
number of collaborators, instead of just the pair of Alice and Bob. In detail, the collaborators 
register with Trent using their server names. Communication between the servers is via the use of 
sockets. A specific port is designated on the servers for all data exchange and communication 
between the servers. Trent signals the key generation process after registration. All collaborators 
contribute a seed towards the generation of the key, of which Trent has no information about or 
contributes in any way towards the generation of either. We use the MD5 algorithm to generate a 
32-bit key.  
 
Step 2: Annotation & encryption 
Each party then encrypts the data, which are first annotated by the vcfCodingSnps tool40 on a per 
gene basis. The purpose of annotation is two-fold. Firstly, it helps us prepare the genotype and 
phenotype files separately for every gene as required by the association test. Secondly, it helps us 



	  
	  

	  

in restricting the analysis to certain class of variants, or in assigning different weights to different 
classes. For that purpose, additional input to MetaSeq is a file of weights that needs to be agreed 
upon in advance. Variant data is encrypted per the protocol, and communicated as numeric 32-bit 
dumps – sufficient to uniquely index positions along any chromosome. At the same time we 
would like to point out that we have tested MetaSeq to work with gene level annotations only, 
although the idea could be extended to any general definitions of region for annotations as long as 
it is consistent across studies. 
 
Step 4: Merging and association testing 
MetaSeq is implemented with the Variance Threshold (VT) test21 of association, but can in 
principle include other tests as well. The encrypted files received by Trent from Alice and Bob are 
first merged by their (encrypted) gene names. This prepares the data from all collaborators for the 
pooled association test. 

Figure 1 Flow diagram of 
MetaSeq: Two Investigators, 
Alice and Bob compute per-gene 
scores on their pooled data 
without revealing the data to one 
another nor to a third party, Trent, 
who computes association scores 
“blindfolded”. The figure 
describes a simple scenario using 
three genes, one of which, 
including a single variant in it, is 
common to Alice and Bob. The 
gene name and variant position for 
this is encrypted to the same text, 
thus being merged together by the 
3rd party before association 
testing. This gene scores higher 
compared to other genes, as 
shown in the results decrypted by 
individual collaborators on their 
servers. Note that the generation 
of the key to be used for 
encryption is coordinated between 
Alice and Bob, excluding Trent in 
the process. Also note that while 
the figure does not point out 

phenotype information explicitly, the association testing step of the protocol receives the frequency data segregated 
for case and control cohorts, respectively. 



	  
	  

	  

2.2.  Simulation Testing 

We used simulation to evaluate the power of meta-analysis assuming different numbers of causal 
variants in a single gene. Power here is defined as the fraction of successful association tests. 
Specifically, for each such number, we simulated 100 datasets of 50 cases and 50 controls 
collected by each of C=10 collaborators. We tested association by each single-collaborator vs. 
pooled across collaborators in a privacy-preserving manner. We tallied the fraction of successful 
association tests, but note that reporting a success requires more care in this study than usual. In 
detail, a conservative definition of success is when the true gene is the unique top-scoring gene 
(for either single-collaborator or pooled testing modes). A more lenient definition allows other 
top-scoring genes to tie with the true gene (again, for both modes). Finally, without privacy-
preserving data analysis, one can consider independent PIs running the association test, and then 
decide about the associated gene based on the individual results of all of them, by taking a 
majority vote. We report power based on each of these 5 modes of analysis. We repeated this for 
1,2,22, …210 causal variants for the causal gene, in addition to 1000 neutral variants for each gene. 
We simulated the case and control sequencing data using an implementation of the Wright-Fisher 
model41, that allows setting particular numbers of causal and neutral variants. The Wright-Fisher 
Model gives the probability density function f(p), of the probability of encountering a mutation, p 
as follows: 
 

 f ( p) = c *  pbs−1 *  (1− p)bn−1 *  es(1−p)   (7) 

 
Here, f(p) is the probability function of the mutation-probability p, bs is the scaled mutation rate of 
disease mutations, bn is the scaled back-mutation rate, s is the scaled selection rate and c is the 
constant that normalizes the integral of f(p) to 1. 

3.  Results 

3.1.  Power of pooled-collaborators vs. single-PI testing 

We report results from all the variants of the power tests stated above. Plots for the same are 
shown in Figure 2. Throughout the range of parameters, pooled tests are better powered compared 
to single-PI tests. This advantage is most pronounced when there are only few causal variants 
along the truly causal gene. At the extreme, 1-8 causal variants in a gene, we observe decently 
powered pooled test (up to 55% power for the conservative test) compared to a severely (<5%) 
underpowered single-PI test, an improvement of up to 50 percentage points or 10 – 30 times with 
the pooled tests. Naturally, lenient reporting of success enjoys higher power, but would potentially 
require following up multiple promising genes, rather than only one. 

We note that the number of causal, case-only variants is a natural parameter here – the rare-
allele analog of the size of effect to be detected. Power is further influenced by nuisance 
parameters, such as the span of a gene in basepairs (hence, the number of neutral variants along it, 
here normalized to be 1,000), and the genetic length of a gene in centimorgans (hence, the 
effective number of independent variants along it). This explains some of the genes being hard to  



	  
	  

	  

Figure 2 Log-scaled power plot for pooled and single-PI 
tests. Results are plotted for all three definitions of 
success (unique and non-unique causal gene for pooled 
and single-PI tests, majority vote for single-PI tests 
only). In the unique and non-unique gene plots for the 
single-PI tests, the final success rate is calculated by 
averaging the number of successes across all PIs per 
dataset. In the majority vote plot, a majority vote of the 
number of successes is taken per single-PI per dataset. 
The different nature of success here explains the region 
in the figure where the plot for single-PI unique gene 
tests is higher than the majority vote plot. 
 
 

find as associated, even with many rare case-only variants simulated. Potential false positives or 
false negatives in the context of meta-analysis alone are expected to be minimal (otherwise, the 
same concerns may apply as in the case of single cohort tests). Since variant frequencies are 
collapsed across all cohorts and for all variants in a gene, such loss of data, which is the primary 
input for the protocol is not expected. Also, encryption is performed in a loss-less manner i.e., no 
genes or variant ids are expected to be lost in the due course of execution of the protocol. 

3.2.  MetaSeq requirements of computing resources 

We state the time and space requirements for MetaSeq in Table 1. The tests were run on a Sun Grid 
Engine controlled cluster with sufficient number of compute cores and maximum 8GB of RAM 
given to a single test at any time. We state the time and space that was required for a single run of  
 
Table 1 Space and time requirements of MetaSeq. The benchmark runs included 10 collaborators, with each one 
contributing 100 samples to the pooled analysis including 1000 neutral variants per gene. Runs include all ~20,000 
genes along the genome. Steps performed by the collaborating parties (“Alice & Bob”, though in this benchmark also 
8 other collaborators) are evaluated for resources required per party. Also time taken for the association test 
mentioned is with a parallelism of 20. A total of 20 CPU hours were effectively needed for the association testing, 
although total memory required is less than 1MB. Note that decryption takes negligible time as opposed to encryption 
since the parties only need to decrypt the list of top-scoring gene names. 
 

Step Performed by Elapsed time 
[min] 

CPU time 
[min] 

Memory 
[MB] 

1.1 Register 

Alice & Bob 

Nil Nil Nil 
1.2 Generate key Nil Nil Nil 
2.1 Annotate 18 180 15 
2.2 Encrypt 27 270 12 
3 Transfer data 1 10 12 
4.1 Merge 

Trent 
80 80 105 

4.2 Test association 60 1200 1 
5.1 Transfer results Nil Nil Nil 
5.2 Decrypt Alice & Bob Nil Nil Nil 



	  
	  

	  

MetaSeq with 1000 neutral variants per gene, broken down by small steps of the protocol. Some 
of the steps, i.e., registration, key generation, transfer of results, and decryption are insignificant 
both in terms of time and space. Yet, these steps are reported here for completion. In total,  
MetaSeq can be completed in 3.5 hours of elapsed time using less than 30 hours of CPU 
resources, using at its peak 150MB of space in total. Network footprint is even smaller, as 
transmitted files are archived and zipped. The most intensive parts in terms of computing 
resources are the annotation and encryption stages that need to I/O information in 200,000 files 
(one per gene per collaborator). The most CPU is used during association testing, for permuting 
the data 100,000 times to assess significance. We parallelize this stage over 20 cores. 

4.  Discussion 

We developed MetaSeq, a protocol that relies on a trusted third-party to compute the association 
scores over the intersection of the variant set. We implemented the protocol in PERL and have 
made it available as an open source package. Our protocol is designed to be robust in securing 
private genetic information, while at the same time making only minimal assumptions about 
compliance of the parties to the protocol. 

In securing private genetic information, we try to preserve privacy against participating 
collaborators knowing individual-level identifying information, such as private mutations. This is 
achieved by computing an association score, not by one of the parties, but rather by a designated 
third-party, who also needs to stay in the dark and not learn the identity of the study participants 
and their private mutations. The third-party, after collating data and performing the desired 
computations, is assumed to follow protocol, and not to share variant information with any of the 
collaborators. The third-party is considered to be “trusted” in this regard. At the same time we 
need to secure information from the third-party as well. We achieve this by this party only 
working with encrypted data, never having access to the secret key that was used to encrypt all the 
genetic information. Hence, while the third-party has access to all the data, it is still meaningless 
to that party, since the data is in encrypted form and the encryption key is not available to it.  

We make the assumption that no collaborator conspires with the third-party to share the key, 
as that would violate the desired privacy requirements.  Another potential breach that can arise is 
when more than one collaborator plan to collate their datasets so as to draw inferences regarding 
the data from the remaining collaborators. However, such estimations can only be effectively 
made only if all but one of the collaborators get together and conspire against the remaining one. 
Even then, the coalition would, at best, learn limited information about the cohort of the 
conspired-upon collaborator, e.g., presence of variants that they already have in their cohort. The 
coalition will not learn the identity of private variants.  

Another way that collaborators can violate protocol to learn the alleles is to send 
monomorphic data to the third-party for their own dataset. In this way they are sure that any 
identified carrier alleles are coming only from the datasets of other collaborators. This is possible 
only if all but one of the collaborators is sending monomorphic data, and we assume the parties 
follow protocol. At the same time it is assumed that there may be (approximately) a minimum of 5 



	  
	  

	  

collaborators in any run of the protocol. Under this assumption it is difficult for a single 
collaborator to learn the datasets of any other single collaborator by employing such mechanisms. 

Finally, a collaborator may try to estimate datasets by computing a prior distribution of the 
results obtained from the final computation of scores, which is OK, and then use their own dataset 
to obtain a better posterior distribution. However, they only have a chance to learn about variants 
that are shared, rather than private to a cohort, and only within the top-scoring genes. A theoretical 
analysis of the privacy guarantees of the protocol may resemble the one by Sankararaman42 to 
some extent although we are now working in the MAF < 0.5 range. A complete analysis however 
remains out of scope for this paper and will be considered for future work. 

Privacy preserving protocols of this sort have been investigated in the cryptography literature 
as secure multiparty computation43. Over the last decade, protocols have been proposed for joint 
computation of the intersection of two or more subsets44 that can be employed to compute the 
intersection of the variant set. More generally, theoretical results guarantee the ability to simulate 
any privacy-preserving protocol that uses a third trusted party without the need of such a party45. 
Similar to meta-analysis techniques in GWAS, the application of similar techniques for NGS 
studies is expected to reveal the role of many rare variants in Mendelian diseases. 
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