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The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-
demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-
throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly 
expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud 
computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-
unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large 
biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change 
substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud 
platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets 
and computational methods easily available. 

1. Challenges and opportunities of massive data  

In recent years, large-scale datasets have become increasingly common in many biological fields.  There have been 
tremendous strides in the throughput capacity and affordability of genomic sequencing.  RNAi and similar 
techniques have allowed broad surveys of genetic regulation and host-pathogen interaction [1-3].  Multiple 
techniques for protein-protein association have gone large-scale, leading to “interactome” scale analyses of HIV 
infection [4] and other processes.  “Brain atlas” projects are making available datasets that combine gene expression 
profiles with detailed anatomic and localization data [5].  And structural genomics projects have steadily increased 
the number of high-resolution macromolecular structures available for the proteins involved in all these processes.  
In addition to statistical analysis of all these datasets, more compute-intensive approaches such as large-scale 
simulation have made it possible to simulate many mutants of a drug target or combine data sources to examine the 
structure and dynamics of large subcellular structures.  All these advances offer the possibility for tremendous 
insight into biology but pose challenges for effective analysis to maximize this insight. 

 The particulars involved in analyzing each of these domain-specific datasets have been treated elsewhere; we 
will discuss some of the common themes, particularly as they relate to cloud computing.  Dataset size has increased 
greatly.  Simply transmitting and storing many sequencing datasets is non-trivial.  Sharing access to these data is yet 
more complicated when they are stored on individual researchers’ or centers’ computer systems.  The challenges of 
sharing are compounded when patient data are concerned and access should be restricted and monitored.  Analyzing 
these large datasets can also be very computationally intensive.  Most analyses are at best case O(N); anything that 
leverages the comprehensive nature of large-scale datasets to examine pairwise or higher-order association often 
scales substantially worse.  So the “classical” paradigms of storing datasets on local clusters and running analysis 
there are challenged three times:  by transfer and archival capacity, by storage capacity, and by compute capacity. 

2. Cloud solutions for problems of scale 

We will briefly discuss how cloud-computing paradigms offer new solutions for these challenges; the workshop will 
illustrate a number of these as well as give an opportunity to discuss challenges and future directions.  This subject 
has also been reviewed in [6-8] and elsewhere.  



2.1. Flexible capacity:  the utility model of computing 

One substantial advantage of  cloud-computing solutions is the ability to adjust computational resources according 
to requirements.  Doubling the size of a traditional cluster is both expensive and time-consuming; in a cloud model, 
it simply involves requesting (and paying for) twice the capacity.  The capacity limit of services such as Amazon’s 
EC2 and Google Compute Engine has not been made public, but a recent demonstration showed the Institute for 
Systems Biology Genome Explorer running on 600,000 cores (Google IO 2012).  In terms of raw compute capacity, 
this alone would likely rank among the top 5 supercomputers in the world.  An additional advantage for cloud 
computing is the ability to dynamically adjust utilization.  Most analyses do not run at a constant rate over time—
one would like to request a large amount of resources to run a calculation and then release those resources while the 
results are evaluated and the next analysis is designed.  It is thus rare to see a cluster at 100% utilization all the time, 
and like spare airline seat capacity or spare hotel rooms, the spare cycles are wasted money.  In current cloud 
paradigms, a user pays only for the jobs (or virtual machines) that are running.  This provides a much better fit to a 
fluctuating usage pattern. 
 

2.2. Storage 

Cloud storage solutions such as Amazon’s S3 or Google Cloud Storage offer similar scalability and flexibility to the 
matching compute solutions.  More importantly, they allow large and potentially shared datasets to be stored on the 
same infrastructure where large-scale analyses are run.  This can obviously be achieved if one has a copy of a 
dataset on one’s local cluster, but such an approach quickly becomes redundant when the dataset is held in common 
to many disparate users—the NCBI Short Read Archive is a good example.  Caching a copy of this dataset on each 
cluster where analysis is run quickly becomes an expensive and redundant exercise.  Companies such as DNAnexus 
have utilized cloud resources to offer storage, access to shared datasets, and transparent sharing of data.  Cloud 
storage also provides enhanced reliability, as the data are backed up in several geographical locations. 
 

2.3. Parallel analyses 

When both computation and storage are performed in large distributed data centers, one can leverage technologies 
such as MapReduce[9, 10] and Dremel[11] for performing analyses and database queries in a much more efficient 
manner. 
 

2.4. Sharing data, tools, and algorithms 

One important and oft-overlooked benefit of the cloud model is how it can facilitate sharing.  Most obviously, cloud 
data storage allows easy sharing with access control lists and monitoring of access for sensitive data.  However, the 
ability to package and distribute tools and analyses on cloud platforms offers a new transparency in tool sharing and 
reproducibility.  Furthermore, it helps overcome the problem of web server tools that are often overloaded or impose 
an undue burden on the host resources.  If one imagines an analysis program running on a cloud front-end (such as 
Google App Engine) where any user can design a job to access a shared or private dataset and be presented with a 
virtual machine to run on his or her account for a common cloud service provider (Amazon EC2, Google Compute 
Engine, Microsoft Azure, or other), this allows much greater scalability for any public service and also reduces the 
cost to an individual researcher of making his or her methods publicly accessible. 

3. Challenges in the cloud 

Cloud computing offers new computational paradigms to deal with data and analyses at scale.  However, simply 
applying the same algorithms and programming paradigms on 1000x the data often yields poor results.  Working at 
scale generates different limiting factors on performance and cost, both algorithmic and logistical (data locality and 
transfer speed/cost, network latency, virtual machine start-up).  Paradigms and tools such as the aforementioned 



 
MapReduce (available in an open-source implementation from Hadoop) can yield great benefits but require 
refactoring code and rethinking computational approaches.  We will discuss these and other challenges during the 
workshop session; participants will also share their experiences in overcoming some of these issues.  Cloud 
computing is a classic example of more is different—working on different platforms and at larger scale offers new 
capabilities but also requires new ways of thinking and generates different performance-limiting problems.  
Nevertheless, we believe this paradigm offers the possibility for unprecedented insight into biological function. 
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