
COMBINING HETEROGENOUS DATA FOR PREDICTION OF DISEASE
RELATED AND PHARMACOGENES

CHRISTOPHER S. FUNK∗, LAWRENCE E. HUNTER, and K. BRETONNEL COHEN

Computational Bioscience Program, University of Colorado School of Medicine,
Aurora, CO 80045, USA

∗E-mail: Christopher.Funk@ucdenver.edu, Larry.Hunter@ucdenver.edu, Kevin.Cohen@gmail.com

Identifying genetic variants that affect drug response or play a role in disease is an important task
for clinicians and researchers. Before individual variants can be explored efficiently for effect on drug
response or disease relationships, specific candidate genes must be identified. While many methods
rank candidate genes through the use of sequence features and network topology, only a few exploit
the information contained in the biomedical literature. In this work, we train and test a classifier
on known pharmacogenes from PharmGKB and present a classifier that predicts pharmacogenes
on a genome-wide scale using only Gene Ontology annotations and simple features mined from the
biomedical literature. Performance of F=0.86, AUC=0.860 is achieved. The top 10 predicted genes
are analyzed. Additionally, a set of enriched pharmacogenic Gene Ontology concepts is produced.

1. Introduction

One of the most important problems in the genomic era is identifying variants in genes that
affect response to pharmaceutical drugs. Variability in drug response poses problems for both
clinicians and patients.1 Variants in disease pathogenesis can also play a major factor in drug
efficacy.2,3 However, before variants within genes can be examined efficiently for their effect on
drug response, genes interacting with drugs or causal disease genes must be identified. Both
of these tasks are open research questions.

Databases such as DrugBank4 and The Therapeutic Target DB5 contain information about
gene-drug interactions, but only The Pharmacogenomics Knowledgebase (PharmGKB)6 con-
tains information about how variation in human genetics leads to variation in drug response
and drug pathways. Gene-disease variants and relationships are contained in Online Mendelian
Inheritance in Man (OMIM),7 the genetic association database,8 and the GWAS catalog.9 Cu-
rated databases are important resources, but they all suffer from the same problem: they are
incomplete.10 One approach to this problem is the development of computational methods to
aid in database curation. We explore here a method that takes advantage of the large amount
of information in the biomedical literature that is waiting to be exploited.

Having a classifier that is able to predict as-yet-uncurated pharmacogenes would allow
researchers to focus on identifying the variability within the genes that could affect drug
response or disease, and thus, shorten the time until information about these variants is useful
in a clinical setting. (We use the term “pharmacogene” to refer to any gene such that a variant
has been seen to affect drug response or is implicated in a disease.) Computational methods
have been developed to predict the potential relevance of a gene to a query drug.11 Other
computational methods have been developed to identify genetic causes underlying disorders
through gene prioritization, but many of these are designed to work on small sets of disease-
specific genes.12–17 The method which is closest to the one that we present here is described in



Costa et al.;18 they create separate classifiers to predict morbidity-associated and druggable
genes on a genome-wide scale. A majority of these methods use sequence-based features,
network topology, and other features from curated databases; only a few use information from
literature.12,16,17

In the work presented here, the goal is to predict pharmacogenes at genome-wide scale using
a combination of features from curated databases and features mined from the biomedical
literature. We evaluate a number of hypotheses:

(1) There is a set of GO concepts that are enriched when comparing the functions of
important pharmacogenes and the rest of the human genome and by examining this
set of enriched GO concepts, a classifier can be created to provide hypotheses regarding
further genes in which variants could be of importance.

(2) Text-mined features will increase performance when combined with features from cu-
rated databases.

2. Methods

2.1. Pharmacogenes

By pharmacogene, we mean any gene such that a variant of that gene has been seen to affect
drug response or such that variants have been implicated in disease. PharmGKB contains over
26,000 genes, with only a few having annotations that signify their importance in disease or
drug response. For the experiments reported here, only those genes in which a variant exists
in the PharmGKB relationship database, specifically gene-disease or gene-drug relationships,
are considered to be gold-standard pharamcogenes. By this definition, 1,124 genes meet the
criteria for classification as pharamcogenes and are positively labeled training instances; these
make up <5% of all genes in PharmGKB. PharmGKB is constantly being updated, so a
snapshot of PharmGKB on May 2, 2013 was taken and is used as the gold standard.

2.2. Background genes

The rest of the 25,110 genes in PharmGKB, which do not contain disease or drug relationships,
are considered to be background genes and will be used as negatively labeled training instances.
We acknowledge the fact that PharmGKB is incomplete and that a missing annotation is not
indicative of a gene not being involved in disease or drug relationships, but the fact that they
have not been discovered or curated yet. (This is an obvious motivation for the work reported
here.) Two data sets were created from the background genes. One consists of all 25,110 genes.
This is referred to as the unbalanced set. The second consists of 1,124 background genes that
have similar numbers of publications as the known pharamcogenes. This is referred to as the
balanced set. That is, the two sets differ in whether or not they result in a balanced set of
positive and negative exemplars.

2.3. Functional annotations from curated databases

Links within PharmGKB were used to obtain Entrez Gene (EG) identifiers for both phar-
macogenes and background genes. To extract all Gene Ontology (GO)19 annotated functions



associated with these genes, the NIH’s gene2go file was used. Only curated evidence codes
(EXP, IDA, IPI, IMP, IGI, IEP, TAS, and ISS) were used, in order to ensure high-quality
annotations. This dataset will be referred to as the curated dataset. It contains many EGID
to GO ID mappings obtained solely from curated GO annotations.

2.4. Functional annotations from biomedical literature

Entez Gene IDs and the NIH’s gene2pubmed file were used to relate genes to documents
of which they are the primary subject. By using the gene2pubmed file, we assume that all
information retrieved from the article is associated with the gene that is the primary subject.
Note that this is not always true and could introduce noise.

The 26,234 genes are mapped to 379,978 unique PubMed/MEDLINE articles. From these
∼380,000 articles, two different textual datasets were created, one consisting only of abstracts
and the other containing full text. The abstract dataset consists of all abstracts from all
articles. For ∼26,000 articles, we were only able to download XML or plain text, because
PMC articles are available in any format, with some, such as PDF, not being suitable for
natural language processing. The ∼26,000 full-text articles constitute our full-text dataset.
All full-text documents come from the PubMed Open Access Subset.

To extract gene functions (GO concepts) from these corpora, ConceptMapper, a dictionary-
based concept recognizer,20 was used with parameters tuned for each branch of the Gene
Ontology (Molecular Function, Biological Process, and Cellular Component), as seen in Funk
et al. (under review). Descriptive statistics of the documents and the functional annotations
retrieved from them and from the curated database are shown in Table 1.

Table 1. Summary of gene-document and gene-annotation associations The number of genes
within each dataset along with the mean number of biomedical literature documents associated with
each set of genes and mean number of GO annotations per gene. (+) denotes that this set of genes is
the positive labeled set while (–) denotes the negative training sets. The row labelled “Total Numbers”
gives the count, not means, of documents and GO annotations.

Mean # Docs Mean # GO Annotations

# Genes Abstracts Full-text GOA curated NLP abstracts NLP full-text

All genes 26,234 35.5 3.1 8.8 80.1 122.0
Known pharmacogenes (+) 1,124 215.2 15.5 16.3 227.5 220.7
All background genes (–) 25,110 26.7 2.5 8.2 72.8 128.7
Small background genes (–) 1,124 211.1 17.1 20.4 310.0 298.9

Total Numbers 26,234 379,978 25,987 112,356 1,891,566 1,951,982

2.5. Enrichment of Gene Ontology concepts

FatiGO21 was used to test whether there are functional concepts that are enriched when
pharamcogenes are compared to background genes. FatiGO is a tool that uses Fisher’s exact
test to extract over- or under-represented GO concepts from two lists of genes and provides
a list of enriched GO concepts and their respective p-values as output. The p-values are
corrected for multiple testing as described in Ge et al.22 The gene lists and all three sets
of annotations—curated, and text-mined–were provided to FatiGO as custom annotations.
Fisher’s exact test was conducted between GO concepts annotated to pharmacogenes and



those annotated to background genes for all three sets of Gene Ontology concepts (curated,
mined from abstracts, and mined from full text).

2.6. Binary Classification

All classifiers were implemented in the Weka toolkit, version 3.6.9. Three different base-
lines were used: OneR, a one node decision tree; Naive Bayes; and randomly as-
signing class labels. Against these, we compared three systems: Random Forests and
two different Support Vector Machine implementations. Random Forests provide fast
decision-tree training. Support Vector Machines (SVM) are currently the most popu-
lar classifier. The built-in classifiers for OneR (weka.classifiers.rules.OneR), Naive Byes
(weka.classifiers.bayes.NaiveBayes), Random Forest (weka.classifiers.trees.RandomForest),
and Support Vector Machine (weka.classifiers.functions.SMO) were used with default parame-
ters. LibSVM (weka.classifiers.functions.LibSVM) was used with all but one default parameter.
By default LibSVM maximizes accuracy; with the unbalanced dataset, this is not optimal,
so weights of 90.0 and 10.0 were assigned to the pharmacogene and background classes, rep-
sectively. When using LibSVM with the balanced dataset, equal weights were given to both
classes. All numbers reported are from five-fold cross-validation.

Table 2. Machine learning features per dataset A breakdown of the number and type of features
used.

Dataset # Genes # Features Type

GOA curated 12,704 39,329 Curated GO annotations from the GOA database.
NLP abstract 23,849 39,329 GO annotations recognized from MEDLINE abstracts.
NLP full-text 15,168 39,329 GO annotations recognized from full-text journal articles.
Abstract GO + Bigrams 23,849 858,472 GO annotations and bigrams from MEDLINE abstracts.
Full-text GO + Bigrams 15,168 906,935 GO annotations and bigrams from full-text journal articles.
Combined GO + Bigrams 23,867 1,189,175 Curated and NLP GO annotations and all bigrams.
Abstract GO + Collocations 23,849 346,878 GO annotations and collocations from MEDLINE abstracts.
Full-text GO + Collocations 15,168 54,951 GO annotations and collocations from full-text journal articles.
Combined GO + Collocations 23,867 349,243 Curated and NLP GO annotations and all collocations.

2.7. Features derived from natural language processing

Additional features were extracted from the abstract and full-text document collections using
natural language processing. (This is in addition to the automatically extracted Gene Ontology
annotations, which are also produced by natural language processing.) These features were
word bigrams and collocations. Collocations, or sets of words that co-occur more often than
expected, have not been commonly used in text classification, but provide a better reflection
of the semantics of a text than bigrams. Both bigrams and collocations were extracted using
the Natural Language Tool Kit (NLTK).23 Any bigram or collocation where one of the tokens
only contained punctuation was removed. Additionally, only those features that appear in
three or more documents were retained. Six different NLP-derived feature sets were created
by combining the three datasets (abstract, full-text, curated + abstract + full-text) along
with the two different types of surface linguistic features (bigrams and collocations); these
feature sets were tested and trained on both the balanced and unbalanced datasets.



2.8. Machine learning input

A breakdown of the kind and number of features used in each dataset can be seen in Table 2.

2.9. Evaluation metrics

The performance of our classifier was assessed by estimating precision (P), recall (R), and F-
measure (F). The area under the receiving operator characteristic curve (AROC) is reported,
as it allows for comparison against other classifiers, but with a word of caution interpreting
the unbalanced dataset: inflated AROCs have been seen when working with skewed class
distributions.24 All scores were determined by taking the average of 5-fold cross-validation for
all datasets.

3. Results and Discussion

3.1. Enriched Gene Ontology concepts

To assess the viability of a machine learner separating background and pharmacogenes, we first
determine whether functional differences between the pharamcogenes and background genes
exist. At least one curated or text-mined functional annotation was retrieved for 23,647 out of
26,236 total genes (90% of all genes in PharmGKB). The details of obtaining the annotations
are given in Sections 2.3 and 2.4. The gene sets and their annotations were passed to FatiGO,
a web tool that extracts over- and under-represented GO concepts from two lists of genes, and
a list of enriched GO concepts and probabilities was returned as output. Examining the output
from FatiGO, we found that, depending on the dataset, between 800-4000 GO concepts were
enriched, consistent with our hypothesis that there are enriched pharmacogenetic functions.
The top 10 enriched GO concepts for Molecular Function and Biological Process can be seen
in Tables 3 and 4, respectively. These lists were obtained by comparing the annotations from
all pharmacogenes to all background genes. To ensure that bias was not introduced solely
because there is a large difference in the number of genes and the number of annotations
between the two sets, another comparison was done between all pharamacogenes and the
set of 1,124 background genes with equal representation in the biomedical literature. The
enriched GO concepts returned are similar the concepts returned when comparing against all
background genes, and therefore we can conclude that no bias is introduced. Because 800-4000
statistically enriched GO concepts were returned for each dataset, we can conclude that there
are functional differences between the set of pharmacogenes and background genes.

Many of the enriched GO concepts can be categorized as playing a role in pharmacody-
namics (PD) or pharmacokinetics (PK). Pharmacodynamics is the study of the activity of
a drug in the body, e.g. its binding and effect on the body. Examples of PD concepts are
“integral to plasma membrane” (GO:0005887), “drug binding” (GO:0008144), and “positive
regulation of protein phosphatase type 2B activity” (GO:0032514)—they are either associ-
ated with receptors that drugs bind to, or refer to the possible effect that a drug has on the
body. Pharmacokinetics is the study of drug absorption, distribution, metabolism, and ex-
cretion. Examples of PK concepts are “xenobiotic metabolic process” (GO:0006805), “small
molecule metabolic process” (GO:0044281), and “active transmembrane transporter activity”



(GO:0022804)—they refer to metabolism of a molecule or are involved in the metabolism or
transportation of a molecule.

Table 3. Top 10 enriched GO concepts from the Molecular
Function hierarchy. The enriched GO concepts from the Molec-
ular Function branch of Gene Ontology obtained when comparing
pharmacogenes versus all background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value

GO:0005515 protein binding < 1.0 × 10−8

GO:0019899 enzyme binding < 1.0 × 10−8

GO:0042803 protein homodimerization activity < 1.0 × 10−8

GO:0046982 protein heterodimerization activity < 1.0 × 10−8

GO:0004497 monooxygenase activity < 1.0 × 10−8

GO:0005245 voltage-gated calcium channel activity < 1.0 × 10−8

GO:0020037 heme binding < 1.0 × 10−8

GO:0004713 protein tyrosine kinase activity < 1.0 × 10−8

GO:0004674 protein serine/threonine kinase activity < 1.0 × 10−8

GO:0003677 DNA binding < 1.0 × 10−8

NLP abstracts
Concept ID Concept name Adj. P-value

GO:0022804 active transmembrane transporter activity < 1.0 × 10−8

GO:0005322 low-density lipoprotein < 1.0 × 10−8

GO:0005321 high-density lipoprotein < 1.0 × 10−8

GO:0005320 apoplioprotein < 1.0 × 10−8

GO:0005179 hormone activity < 1.0 × 10−8

GO:0005041 low-density lipoprotein receptor activity < 1.0 × 10−8

GO:0005215 transporter activity < 1.0 × 10−8

GO:0016088 insulin < 1.0 × 10−8

GO:0004697 protein kinase C activity < 1.0 × 10−8

GO:0045289 luciferin monooxygenase activity < 1.0 × 10−8

NLP full-text
Concept ID Concept name Adj. P-value

GO:0042031 angiotensin-converting enzyme inhibitor activity < 1.0 × 10−8

GO:0005262 calcium channel activity < 1.0 × 10−8

GO:0016088 insulin < 1.0 × 10−8

GO:0022804 active transmembrane transporter activity < 1.0 × 10−8

GO:0005179 hormone activity < 1.0 × 10−8

GO:0004872 receptor activity < 1.0 × 10−8

GO:0005215 transporter activity < 1.0 × 10−8

GO:0016791 phosphatase activity < 1.0 × 10−8

GO:0008083 growth factor activity < 1.0 × 10−8

GO:0004601 peroxidase activity < 1.0 × 10−8

There are interesting dif-
ferences when examining the
top enriched concepts between
the different datasets (curated,
abstracts, and full text). Im-
pressionistically, curated anno-
tations seem to be more spe-
cific, while NLP annotations
appear to be more general (es-
pecially evident when examin-
ing Biological Processes, Table
4). This may be the case be-
cause there are limitations to
the depth in GO that concept
recognizers can identify; a large
gap exists between how near-
terminal concepts are stated in
the ontology and their expres-
sion in free text.

3.2. Classification
of pharmacogenes

Having established that the
functions of pharmacogenes are
different from background genes,
the next step is to test the abil-
ity of machine learning to dif-
ferentiate between them. Our
goal is to predict at genome-
wide scale pharmacogenes that

are not currently known in PharmGKB to have drug or disease relationships. We approach
the problem as binary classification, where the classifier separates pharmacogenes from the
rest of the genes.

3.3. Classification using Gene Ontology concepts

To see how well known pharmacogenes can be classified through their functional annotation
similarity, five classifiers were created using the manually curated and text-mined functional
annotations on both the unbalanced and balanced datasets. Baselines for comparison against
are a one-node decision tree (OneR), Naive Bayes, and randomly assigning class labels. Per-
formance of all classifiers and baselines can be seen in Table 5. A breakdown of features used



for each dataset can be seen in Table 2 and a summary of functional annotations is seen in
Table 1.

Table 4. Top 10 enriched GO concepts from the Biological Process
hierarchy. The enriched GO concepts from the Biological Process branch
of the Gene Ontology obtained when comparing pharmacogenes versus all
background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value

GO:0044281 small molecule metabolic process < 1.0 × 10−8

GO:0007596 blood coagulation < 1.0 × 10−8

GO:0030168 platelet activation < 1.0 × 10−8

GO:0006805 xenobiotic metabolic process < 1.0 × 10−8

GO:0048011 neurotrophin TRK receptor signaling pathway < 1.0 × 10−8

GO:0007268 synaptic transmission < 1.0 × 10−8

GO:0008543 fibroblast growth factor receptor signaling pathway < 1.0 × 10−8

GO:0007173 epidermal growth factor receptor signaling pathway < 1.0 × 10−8

GO:0045087 innate immune response < 1.0 × 10−8

GO:0055085 transmembrane transport < 1.0 × 10−8

NLP abstracts
Concept ID Concept name Adj. P-value

GO:0007568 aging < 1.0 × 10−8

GO:0009405 pathogenesis < 1.0 × 10−8

GO:0046960 sensitization < 1.0 × 10−8

GO:0008152 metabolic process < 1.0 × 10−8

GO:0006629 lipid metabolic process < 1.0 × 10−8

GO:0007610 behavior < 1.0 × 10−8

GO:0006810 transport < 1.0 × 10−8

GO:0014823 response to activity < 1.0 × 10−8

GO:0006280 mutagenesis < 1.0 × 10−8

GO:0042638 exogen < 1.0 × 10−8

NLP full-text
Concept ID Concept name Adj. P-value

GO:0009626 plant-type hypersensitive response < 1.0 × 10−8

GO:0007568 aging < 1.0 × 10−8

GO:0016311 dephosphorylation < 1.0 × 10−8

GO:0032514 positive regulation of protein phosphatase type 2B activity < 1.0 × 10−8

GO:0008152 metabolic process < 1.0 × 10−8

GO:0009405 pathogenesis < 1.0 × 10−8

GO:0042592 homeostatic process < 1.0 × 10−8

GO:0046960 sensitization < 1.0 × 10−8

GO:0006810 transport < 1.0 × 10−8

GO:0050817 coagulation < 1.0 × 10−8

The results are shown
in Table 5. A clear effect
of balance versus imbalance
in the data is evident. F-
measure increases between
0.29 and 0.53 when using
a balanced training set. Ex-
amining performance across
unbalanced training sets,
we notice that Naive Bayes
produces the highest recall
(0.68) but the lowest pre-
cision (0.17), whereas Ran-
dom Forest produces high-
est precision (0.69) but low-
est recall (0.11). The same
trends do not hold for the
balanced training sets. On
both training sets, it is the
SVM-based classifiers that
balance precision and recall
and produce the highest F-
measures. The highest F-
measures of 0.81 and 0.78,
are produced by LibSVM
and SMO, respectively, on
the balanced NLP abstract
annotations. Naive Bayes
and Random Forrest per-
form poorly in comparison to the SVM classifiers, but better than a single-node decision
tree or random assignment; OneR performs slightly better than random assignment.

For a majority of the classifiers, GO annotations from literature produce the best
performance—surprisingly, text-mined annotations seem to be better features than those from
curated datasets. This could be explained by the difference in number of annotations, there
are 15 times more text-mined annotations than curated ones (Table 1). Another explanation
could be that more information is encoded in text-mined annotations than just gene function.
From this set of experiments, we can conclude that using only Gene Ontology concepts, we are
able classify pharmacogenes on the balanced training set but it remains unclear, because of
poor performance, whether it is sufficient to use only GO concepts with an unbalanced train-
ing set. We can also conclude that LibSVM should be used for the next set of experiments



because it is best performing and was the fastest to train (training time not shown).

3.4. Classification using GO concepts and literature features

To test the hypothesis that features derived from surface linguistic features can increase per-
formance over conceptual features alone, we trained classifiers with two additional feature
types: bigrams and collocations. Bigrams consist of every sequence of two adjacent words in a
document and are commonly used in text classification. Collocations are a subset of bigrams,
containing words that co-occur more frequently than expected. They are a better representa-
tion of the semantics of a text than bigrams alone. The methods for extracting these features
are described above in Section 2.7. Adding bigrams and collocations introduces up to 30x
more features than functional annotations alone (Table 2).

The performance of LibSVM with GO annotations and bigrams/collocations on both train-
ing sets can be seen in Table 6. Baselines are the same.

Table 5. Classification using Gene Ontology concepts
Five-fold cross validation performance of five binary classi-
fiers when providing Gene Ontology concepts as features.
Results from both unbalanced and balanced training sets
are shown. The highest F-measure is bolded. The baselines
provided are OneR (one-node decision tree), Naive Bayes,
and randomly assigning classes (median of 5 random assign-
ments).

GOA curated NLP abstracts NLP full-text
Classifier P/R/F P/R/F P/R/F

Unbalanced Training
Random 0.05/0.50/0.09 0.07/0.50/0.12 0.05/0.50/0.09
OneR 0.57/0.01/0.03 0.56/0.17/0.25 0.80/0.10/0.18
Naive Bayes 0.17/0.60/0.26 0.17/0.68/0.27 0.17/0.59/0.26
Random Forest 0.53/0.17/0.25 0.69/0.12/0.21 0.58/0.11/0.18
SMO 0.43/0.31/0.36 0.39/0.41/0.40 0.37/0.34/0.35
LibSVM 0.29/0.55/0.38 0.41/0.58/0.48 0.37/0.52/0.42

Balanced Training
Random 0.50/0.50/0.50 0.50/0.50/0.50 0/50/0.50/0.50
OneR 0.71/0.41/0.52 0.68/0.51/0.59 0.73/0.48/0.56
Naive Bayes 0.65/0.72/0.68 0.75/0.70/0.72 0.67/0.70/0.68
Random Forest 0.63/0.71/0.67 0.72/0.77/0.74 0.67/0.73/0.69
SMO 0.64/0.66/0.65 0.79/0.77/0.78 0.70/0.73/0.72
LibSVM 0.71/0.71/0.71 0.83/0.80/0.81 0.76/0.79/0.78

On the unbalanced training set,
the maximum F-measure seen is 0.57,
obtained by using text-mined func-
tional annotations and bigrams ex-
tracted from abstracts. By using bi-
grams in addition to GO annotations,
precision is increased by 0.17 while re-
call is decreased by 0.02, resulting in an
increase in F-measure of 0.09 (Table 5
versus Table 6). On the balanced train-
ing set, the maximum F-measure seen
is 0.81, also obtained by using text-
mined functional annotations and bi-
grams from abstracts. With the addi-
tion of bigrams, both precision and re-
call are increased by 0.06 and 0.03,re-
spectively, resulting in an increase in F-
measure of 0.06 (comparing Table 5 to
Table 6).

3.4.1. Comparison with other methods

As mentioned in the introduction, there are very few methods against which our method can
be compared. Most gene-disease or gene prioritization methods are designed to work on small
sets of disease-specific genes,12–14 while our method predicts pharmacogenes on a genome-wide
scale. One method, Garten et al.,25 utilizes text mining to extract drug-gene relationships from
the biomedical literature, also using PharmGKB as a gold standard, with an AUC of 0.701.
The closest methods to ours do not predict pharmacogenes as defined here, but only pre-
dict disease genes. CIPHER26 predicts human disease genes with precision of ∼0.10 using
protein-protein interaction networks and gene-phenotype associations. PROSPECTR27 uses



Table 6. Classification with GO concepts and natural language processing Five-fold
cross-validation performance of LibSVM when combining Gene Ontology concepts and litera-
ture-based features. Both the balanced and unbalanced training results are shown. The highest
F-measure and AROC are bolded. The baselines provided are OneR (one-node decision tree),
Naive Bayes, and randomly assigning classes (median of 5 random assignments).

Abstract GO + Bigrams Full-Text GO + Bigrams Combined GO + Bigrams
Classifier P/R/F AUC P/R/F AUC P/R/F AUC

Unbalanced Training
Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.58/0.56/0.57 0.771 0.50/0.46/0.48 0.711 0.50/0.54/0.52 0.756

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.75/0.59/0.66 0.696 0.71/0.53/0.61 0.663 0.79/0.50/0.61 0.685
LibSVM 0.89/0.83/0.86 0.860 0.79/0.82/0.80 0.807 0.86/0.83/0.85 0.848

Abstract GO + Collocations Full-Text GO + Collocations Combined GO + Collocations
Classifier P/R/F AUC P/R/F AUC P/R/F AUC

Unbalanced Training
Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.54/0.56/0.55 0.767 0.41/0.52/0.46 0.730 0.47/0.56/0.51 0.763

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.78/0.46/0.58 0.664 0.67/0.64/0.66 0.675 0.75/0.59/0.66 0.698
LibSVM 0.87/0.82/0.85 0.850 0.77/0.80/0.78 0.786 0.85/0.81/0.83 0.833

23 sequence-based features and predicts disease genes from OMIM with precision = 0.62 and
recall = 0.70 with an AUC of 0.70.The most directly comparable method, presented in Costa
et al.,18 utilizes topological features of gene interaction networks to predict both morbid-
ity genes (P=0.66, R=0.65, AUC=0.72) and druggable genes (P=0.75, R=0.78, AUC=0.82).
While the majority of other methods utilize sequence-based features, protein interactions,
and other genomic networks, our method requires only Gene Ontology annotations and sim-
ple bigrams/collocations extracted from biomedical literature. Precision and recall for our
classifier trained on the unbalanced dataset with GO annotations and bigrams from abstracts
are slightly lower than both PROSPECTR and the method presented in Costa et al., our AUC
(0.771) is higher than all but the predicted druggable genes from Costa et al. Performance on
the balanced training set using GO concepts and bigrams extracted from abstracts (F=0.86,
AUC=0.860) are higher than any of the methods presented here.

3.4.2. Limitations

There are two major limitations of our work. The first is that we grouped together all pharma-
cogenes, while it may have been more useful to differentiate between disease-associated and
drug-response-associated variant. The other limitation is that we don’t provide a ranking, but
rather just a binary classification.

3.5. Prediction of pharmacogenes

Now that classifiers have been created and evaluated, we can analyze the predicted pharma-
cogenes. 141 genes were predicted to be pharmacogenes by all six unbalanced datasets seen
in Table 6. Predictions from unbalanced models were analyzed because the models produced
through balanced training were unknowingly weighted for recall. For example, the balanced
model trained on abstract GO and bigrams produces a recall of 0.99 and precision of 0.10



Table 7. Top 10 predicted pharmacogenes Top 10 pharmacogenes predicted by all combined classifiers and
ranked by functional similarity to the known pharmacogenes. All information from PharmGKB and OMIM is
presented along with the class that was predicted by Costa et al.18 (Morbid: mutations that cause human diseases,
Druggable: protein-coding genes whose modulation by small molecules elicits phenotypic effects).

EG ID Symbol PharmGKB Annotations OMIM Phenotype Costa et al.18 predicted

2903 GRIN2A None Epilepsy with neurodevelopment defects Druggable

7361 UGT1A None None Not tested

2897 GRIK1 None None Druggable

1128 CHRM1 None None Druggable

1131 CHRM3 Member of Proton Pump Inhibitor Path-
way

Eagle-Barrett syndrome Druggable

3115 HLA-DPB1 None Beryllium disease Morbid/Druggable

6571 SLC18A2 Member of Nicotine, Selective Serotonin
Reuptake Inhibitor, and Sympathetic
Nerve Pathway

None Morbid/Druggable

477 ATP1A2 None Alternating hemiplegia of childhood, Mi-
graine (familial basilar and familial hemi-
plegic)

Morbid/Druggable

3643 INSR Member of Anti-diabetic Drug Potassium
Channel Inhibitors and Anti-diabetic
Drug Repaglinide Pathways

Diabetes mellitus, Hyperinsulinemic hy-
poglycemia, Leprechaunism,
Rabson-Mendenhall syndrome

Morbid/Druggable

2905 GRIN2C None None Druggable

when the classifier is applied to all genes in PharmGKB; this is not informative and further
work and error analysis will be conducted to examine why this is.

The top 10 predicted genes, ranked by functional similarity (as calculated by ToppGene)
to the known pharmacogenes, along with all known information from PharmGKB and On-
line Mendelian Inheritance in Man (OMIM),7 and if/what the gene was predicted to be by
Costa et al. can be seen in Table 7. We first notice that there are no gene-disease or gene-
drug relationships in PharmGKB for these predicted genes, but a few of them participate in
curated pathways. We expand our search to see if other databases have drug or disease infor-
mation about them. OMIM provides insight into genetic variation and phenotypes; half of the
predicted genes have a variant that plays a role in a mutant phenotype. We also looked up
our predicted genes in the results from a previous study on predicting morbid and druggable
genes, and 90% (9 out of 10) of our predicted pharmacogenes were also predicted to be morbid
(variations cause hereditary human diseases) or druggable.18

To assess the hypothesized pharmacogenes further, PubMed and STITCH28 were used to
find any known drug or disease associations not in PharmGKB or OMIM. The top-ranked
gene, GRIN2A, seems to play a part in schizophrenia and autism spectrum disorders29 along
with binding to memantine, a class of Alzheimer’s medication blocking glutamate receptors.
Interestingly, UGT1A is unable to be found in STITCH or OMIM, but an article from May
2013 introduces a specific polymorphism that suggests that it is an important determinant
of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-
induced liver injury.30 It is also known to be linked to irinotecan toxicity. We also find genetic
variations in GRIK1 have been linked to schizophrenia31 and down syndrome.32 Even only
examining the top three predicted pharmacogenes, there is evidence in other databases and
literature that suggests these should be further examined by the PharmGKB curators for
possible annotation.



4. Conclusions

One of the surprising findings of this study was that features extracted from abstracts per-
formed better than features extracted from full text. Since full text was available for a smaller
number of genes, the comparison may not be appropriate. Pursuing this remains for further
research.

The collocation features performed almost as well as the bigrams, despite the fact that
we took a poor approach to extracting them, since we did collocation recognition on the
document level, rather than on the level of the document collection as a whole. With a better
approach to collocation extraction, performance of the collocation features might have been
much higher.

The fact that features derived from text-mined functional annotations outperformed man-
ually curated annotations was a surprise. In this work, we did not evaluate the correctness of
text-mined functional annotations. Therefore, the performance of the text-mined functional
annotation features is the only indication of how well the actual Gene Ontology concept recog-
nition worked. Based on the fact that they performed higher than the manually curated Gene
Ontology concepts, it appears that the performance of the ConceptMapper approach was at
minimum good enough for this task.

In this paper we identified a set of functions enriched in known pharmacogenes. This list
could be used to rank genes predicted by our classifier, but also has usefulness beyond the
work presented here. The list could prove useful in literature-based discovery by providing
linkages to identify gene-drug or gene-disease relationships from disparate literature sources.

We also present a classifier that is able to predict pharmacogenes at a genome wide scale
(F=0.86, AUC=0.860). The top 10 hypothesized pharmacogenes predicted by our classifier
are presented; 50% contain allelic variations in OMIM and 90% were previously predicted but
remain unannotated in PhamGKB. Additionally, using other sources at least the top three
genes predicted are known to bind a drug or to be associated with a disease. Other meth-
ods attempting similar problems, utilize sequence based features and genomic networks; only
a few incorporate literature features. Our method, on the other hand, uses mainly features
mined from the biomedical literature along with functional annotations from databases. Be-
cause our method offers comparable performance to others utilizing sequence and network
based features, this work illustrates the importance of incorporating curated databases with
information available in the biomedical literature for biomedical discovery.
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