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Mass spectrometry based proteomics technologies have allowed for a great progress in identifying disease 
biomarkers for clinical diagnosis and prognosis. However, they face acute challenges from a data 
reproducibility standpoint, in that no two independent studies have been found to produce the same 
proteomic patterns. Such reproducibility issues cause the identified biomarker patterns to lose repeatability 
and prevent real clinical usage. In this work, we propose a profile biomarker approach to overcome this 
problem from a machine-learning viewpoint by developing a novel derivative component analysis (DCA). As 
an implicit feature selection algorithm, derivative component analysis enables the separation of true signals 
from red herrings by capturing subtle data behaviors and removing system noises from a proteomic profile. 
We further demonstrate its advantages in disease diagnosis by viewing input data as a profile biomarker. The 
results from our profile biomarker diagnosis suggest an effective solution to overcoming proteomics data‘s 
reproducibility problem, present an alternative method for biomarker discovery in proteomics, and provide a 
good candidate for clinical proteomic diagnosis.   

1.  Introduction 

With the recent surge in proteomics, large volumes of mass spectral serum/plasma/urine 
proteomic data are available to conduct molecular diagnosis in complex diseases. As a promising 
way to revolutionize medicine, mass spectral proteomics demonstrates a great potential in 
identifying novel biomarker patterns from a proteome for diagnosis, prognosis, and other diverse 
clinical needs [1,2]. However, robust clinical diagnosis from mass spectral data remains an acute 
challenge in translational bioinformatics due to the special characteristics of proteomics data.  

First, mass spectral proteomics data are high-dimensional data that can be represented as a 
matrix after preprocessing, where each row represents protein expression at a mass-to-
charge (m/z) ratio of peptides or proteins, usually called a feature from a machine learning 
perspective, and each column represents protein expression from a sample (observation) (e.g., a 
control or cancer subject) across all m/z ratios in an experiment. The number of rows is much 
greater than the number of columns, 𝑝 ≪ 𝑛, that is, #variables (peptides/proteins) is much greater 
than #samples. Usually 𝑛~𝑂(10!) and 𝑝~𝑂 10! . While there are a large amount of m/z ratios 
(peptides or proteins), only a few number of variables (e.g., peaks) have meaningful contribution 
to data variations and disease diagnosis. Moreover, they are not noise-free data because 
preprocessing and normalization methods themselves cannot remove built-in system noise from 
mass spectrometry technology itself.  In fact, it remains a challenge to separate true signals in a 
mass spectral profile from red herrings though different endeavors from machine learning.  

Second, mass spectral proteomics data usually suffer from data reproducibility problems, 
which mean that no two independent studies have been found to produce same proteomic patterns 
[2,3]. As such, corresponding biomarker patterns identified, which consists a small set of 
meaningful peaks, from these data may lose repeatability due to the poor reproducibility and 
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difficulty in validating biomarker patterns identified from multiple data sources. In fact, there are 
almost no reproducible biomarker patterns reported for mass spectral proteomic data in the 
literature [2]. Although several methods are proposed to mitigate this problem from a 
quantification perspective [2,3], there is no method to tackle this problem from a machine learning 
viewpoint as of yet.  

The non-reproducibility of proteomic source data and their biomarker patterns, which are 
usually obtained by peak-selection methods using different machine learning algorithms, is mainly 
due to mass spectrometry technology’s exquisite sensitivity to any subtle change in the proteome 
caused by biological or technical factors [3]. In other words, tiny changes in the proteome may 
lead to a set of completely different mass spectral peak patterns. Thus, a desirable diagnosis from 
identified protein or peptide biomarkers may not be reusable for other “same data” generated using 
the identical patient and control samples under the same profiling technologies and protocols.   

In this work, we propose a de novo profile biomarker approach to achieve clinical level 
diagnosis. Unlike traditional biomarker discoveries that collect a few meaningful peaks, our 
profile biomarker approach views input data as a “whole biomarker” by proposing a novel 
derivative component analysis (DCA), which evolves from our previous work [4-6], and combing 
it with state-of-the-art classifiers. It is noted that a profile biomarker has the same dimension as the 
input data but with less variance and storage.  In our approach, we aim at the reproducibility of 
diagnosis performance instead of looking for specific peptides or proteins, i.e., we believe a 
profile biomarker would be more robust than traditional biomarkers, provided it could achieve 
clinical level diagnoses for different proteomic data. That is, the motivation of this study is to 
solve the data reproducibility problem in proteomics by developing a novel profile biomarker 
diagnosis. 

Our profile biomarker approach relies on a novel feature selection algorithm: derivative 
component analysis (DCA) as proposed in this work. Traditional feature selection algorithms (e.g., 
t-test) are usually characterized by the explicit feature number decrease or dimension reduction of 
the input data. It is noted that a feature refers to a row of protein/peptide expression of all samples 
at an m/z ratio. However, as an implicit feature selection algorithm, DCA conducts feature 
selection implicitly, i.e., there is no feature number decrease after DCA. More importantly, DCA 
enables the retrieval of the true signals from input proteomic data by removing redundant 
information and built-in noises, which provide a robust information support for our profile-
biomarker diagnosis. Considering similar diagnosis mechanisms for proteomic profiles, we use 
benchmark serum proteomic data to demonstrate our profile biomarker diagnosis in this study.    

The paper is organized as follows. Section 2 discusses essential components in profile 
biomarker discovery and proposes DCA in addition to addressing the weaknesses of the traditional 
feature selection methods. Section 3 investigates DCA-based profile biomarker diagnosis by 
integrating it with state-of-the-art classifiers. We further demonstrate our approach’s superiority 
by comparing it with other state-of-the-arts, besides addressing DCA-induced biomarker 
discovery. Finally we discuss the pros and cons of our profile biomarker diagnosis and conclude 
our paper. 

2. Derivative Component Analysis (DCA) 

Before we proceed, we need to answer the question: ‘what essential components are needed to 
make a profile biomarker successful in proteomics?’ We believe that essential components for a 
profile biomarker approach may rely on whether we can separate true signals from red herrings for 



 
 

 

each proteomic profile. Traditional feature selection methods usually fail to capture true signals 
from mass spectral proteomic data set because of their built-in weaknesses. Although various 
feature selection methods are employed in proteomics to glean informative features for the sake of 
diagnosis [7], there is no study to address their weaknesses systematically.  

We categorize feature selection into input-space and subspace methods. The former seeks a 
feature subset 𝑋! ∈ ℜ!×!,  𝑚 ≪ 𝑛,  in the same space ℜ!×!  as input data 𝑋  by conducting a 
hypothesis test (e.g., t-test), or wrapping a classifier to select features recursively; the latter 
conducts a dimension reduction by transforming data into a subspace 𝑆 induced by a linear or 
nonlinear transformation 𝑓:𝑋 → 𝑆,  where 𝑆 = 𝑠𝑝𝑎𝑛 𝑠!, 𝑠!,⋯𝑠! ,  𝑠! ∈ ℜ! ,  𝑘 ≤ 𝑝 ≪ 𝑛,  and seeking 
meaningful linear combinations of the features. For example, the subspace S will be spanned by all 
principal components when the transformation is induced by principal component analysis (PCA) 
[8]. In fact, almost all PCA, ICA, PLS, and NMF and their extensions such as nonnegative 
principal component analysis (NPCA), sparse NMF, and other related methods fall into this 
category [4-6,9]. However, the two types of methods have the following built-in limitations. 

The weakness of the input and subspace methods. The input-space methods usually assume 
input data are clean or nearly clean, and lack de-noising schemes. The clean data assumption 
appears to be inappropriate for proteomic profiles because they usually contain nonlinear noise 
from technical or biological artifacts (e.g., built-in noise generated from profiling systems). The 
noise would enter feature selection as outliers and cause those peaks with less biological meaning 
to be selected, leading to an inaccurate or even poor decision function in classification and 
affecting the disease diagnosis and generalization. 

On the other hand, subspace methods have difficulties capturing subtle data characteristics, 
because the subspace methods transform data into another subspace in order to seek meaningful 
feature combinations and the original spatial coordinates are lost in the transformation, which 
makes it almost impossible to track the mapping relationships between features and the specific 
data characteristics they interpret or contribute to. It is noted that subtle data characteristics refer to 
latent data behaviors interpreting transient data changes in a short time interval.  

In contrast, global data characteristics refer to the holistic data behaviors interpreting long-time 
interval data changes, which happen more often than subtle data behaviors. The global data 
characteristics are easily extracted by general subspace methods like PCA, because there are more 
features contributing to holistic data behaviors than those contributing to subtle data behaviors. 
Furthermore, since most subspace methods treat all features uniformly regardless of which types 
of data behaviors they interpret, global characteristics are more likely to be selected than subtle 
data characteristics, because the former’s features are more frequent than those of the latter in the 
feature domain.   

As such, global data characteristics are usually over-extracted and subtle data characteristics 
may be totally missed or overshadowed after feature selection. The signals extracted from such 
feature selection are far from ‘true signals’ because the global data characteristics are over-
expressed. The redundant global data characteristics would lead to a biased decision function for 
the following classifier (e.g., SVM) that favors the extracted global data characteristics, which 
may present a hurdle for clinical diagnosis, because the subtle characteristics are essential to 
achieve high-accuracy diagnosis for proteomics data, especially as different subtype tumor 
samples usually share similar or the same global data characteristics but different subtle data 
characteristics [5,6].      

It is clear that the built-in weaknesses of the traditional feature selection methods prevent true 



 
 

 

signal extraction and the possibility of profile biomarker diagnosis, because they lack de-noising 
and subtle data characteristics retrieval schemes. We sketch the key reasons for these weaknesses 
as follows before we present our derivative component analysis. 

The reasons for traditional feature selection’s weaknesses. The following are the major 
reasons why traditional feature selection methods are unable to extract subtle characteristics and 
remove systems noise effectively. 1) These methods are single resolution data analysis methods 
that view each feature as an indivisible information unit, which makes system noise removal 
almost impossible; 2) They treat all features uniformly regardless of their frequencies in the 
feature space, which makes subtle data characteristics extraction difficult due to lower frequencies 
in the feature domain. Mathematically, retrieving subtle data characteristics, which are represented 
by transient data behaviors, means to seek the derivative of the original data. However, this is 
theoretically quite difficult to complete in a single resolution mode.  

Derivative component analysis (DCA). We propose a novel feature selection algorithm: 
derivative component analysis (DCA) to separate true signals from red herrings, that is, conduct 
de-noising for system noise and retrieve subtle data characteristics in a multi-resolution data 
analysis mode. As a multi-resolution feature selection algorithm, the proposed DCA no longer 
views a feature as an indivisible information element. Instead, all features are hierarchically 
decomposed into different components to discover data derivatives so as to capture the subtle data 
characteristics and conduct de-noising. The proposed derivative component analysis (DCA) 
mainly consists of the following three steps.  

First, a discrete wavelet transform (DWT) [10] is applied to all features to decompose it 
hierarchically as a set of detail coefficient matrices 𝑐𝐷!, 𝑐𝐷!⋯ 𝑐𝐷! and an approximation matrix 
𝑐𝐴! under a transform level J. It is worthwhile to point out that we view each m/z ratio as a 
corresponding time point in our context for the convenience of the DWT [10].  Since the DWT is 
calculated on a set of dyadic grid points hierarchically, the dimensionalities of the approximation 
and detail coefficient matrices shrink dyadically level by level.  

It is noted that the approximation matrix and coarse level detail coefficient matrices (e.g. 𝑐𝐷!) 
capture global data characteristics, because they contain contributions from those features 
contributing to data behaviors in ‘long-time windows’, and outlining the global tendency of the 
data. Similarly, the fine level detail coefficient matrices (e.g., 𝑐𝐷!, 𝑐𝐷! ) capture subtle data 
characteristics, because they contain contributions from those features that disclose quick changes 
in ‘short-time windows’, and describe data derivatives locally. In fact, these fine level detail 
matrices are the components for reflecting the data derivatives in different short-time windows. As 
such, they can be called ‘derivative components’ for the functionality in describing data behaviors.   

Furthermore, most system noises are transformed in these derivative components due to its 
heterogeneity with respect to the features contributing to the global tendency of data. Clearly, the 
DWT in the first step separates the global characteristics, subtle data characteristics, and noises in 
different resolutions.  

Second, retrieve the most important subtle data characteristics and conduct de-noising by 
reconstructing these fine level detail coefficient matrices before or at a presetting cutoff level τ 
(e.g.,τ=3). Such a construction is summarized in two steps: 1) Conduct principal component 
analysis (PCA) for the detail matrices 𝑐𝐷!, 𝑐𝐷!⋯ 𝑐𝐷! . 2) Reconstruct each detail coefficient matrix 
by using its first m principal components, in each principal component (PC) matrix. Usually, m = 
1, i.e., we employ the first PC to reconstruct each detail coefficient matrix, which means we only 
retrieve the most important subtle data characteristics in the detail coefficient matrix 



 
 

 

reconstruction. In fact, the first PC based reconstruction also achieves de-noising by suppressing 
the noises’ contribution in the detail coefficient matrix reconstruction because the noises are 
usually least likely to appear in the 1st PC.  

On the other hand, those coarse level detail coefficient matrices after the cutoff τ: 
𝑐𝐷!!!, 𝑐𝐷!!!⋯ 𝑐𝐷! and approximation coefficient matrix 𝑐𝐴! are kept intact to retrieve global data 
characteristics. In fact, the parameter m can be also determined by using a variability explanation 
ratio 𝜌! defined as follows, such that it is greater than a threshold ρ (e.g., ρ = 60%), which is the 
variability explanation ratio interpreted by the first principal components of the detail coefficient 
matrices before or at the cutoff.  

Variability explanation ratio. Given a data set with n variables and p observations, usually, 

p<n, the variability explanation ratio is the ratio between the variance explained by 

the first m PCs and the total variances, where 𝜎! is the variance explained by the 𝑗!! PC, which is 
the 𝑗!! eigenvalue of the covariance matrix of the input proteomic data. 

Such a selective reconstruction process extracts the most important subtle data characteristics 
and achieves de-noising by suppressing the noises’ contribution to the fine detail coefficient 
matrix reconstruction. This is because only the 1st PC or few top PCs are employed to reconstruct 
each targeted fine level coefficient matrix 𝑐𝐷! and the other less important and noise-contained 
principal components are dropped in reconstruction. 

Third, conduct the corresponding inverse DWT by using the current detail and approximation 
coefficient matrices to obtain meta-data 𝑋∗,  which is a de-noised data set with subtle data 
characteristics extraction, because of the highlight of the most significant subtle data behaviors in 
the “derivative components” based reconstructions. The meta-data are just ‘true signals’ separated 
from red herrings that share the same dimensionality with the original data but with less memory 
storage because less important PCs are dropped in our reconstruction.   

It is noted that, unlike traditional feature selection methods, DCA is an implicit feature 
selection method, where useful characteristics are selected implicitly without an obvious variable 
removal or dimension reduction.  Algorithm 1 gives the details about DCA as follows, where we 
use 𝑋! instead of X for the convenience of description, i.e., each row is a sample and each column 
is a feature. 
 

Algorithm 1 Derivative Component Analysis (DCA) 
1. Input:  DWT level J; cutoff τ; wavelet  thereshold    
2. Output: Meta-data  
3. Step 1. Column-wise discrete wavelet transforms (DWT) 
4. Conduct J-level DWT with wavelet for each column of to obtain 
5.   and  

6. Step 2. Subtle data characteristics extraction and de-noising  
7. for j = 1 to J 
8.     if j ≤ τ 
9.        a) Do principal component analysis for each detail matrix  to obtain its PC and score matrix 

10.            and  

11.        b) Reconstruct matrix by employing first m principal components s.t.   

12.                   

ρm = σ i

i=1

m

∑ / σ i

i=1

p

∑

XT = [x1, x2,…xn ], xi ∈ ℜp, ψ; ρ;

XT
*

ψ XT

[cD1,cD2…cDJ ;cAJ ], cDj ∈ℜpj×n, cAJ ∈ℜpJ×n, pj = p / 2 j!" #$, j =1, 2,…J.

cDj

U = [u1,u2,…upj ], ui ∈ℜn S = [s1, s2,…spj ], si ∈ℜpj , i =1, 2,, pj.

cDj u1,u2,…um, ρm ≥ p

cDj ← cDj × (I × I
T ) / pj + ui × si

T ,
i=1

m

∑ I = [1,1,1]T ∈ℜpj



 
 

 

13.    end if  
14. end for 
15. Step 3. Approximate the original data by the inverse discrete wavelet transform 
16. with the wavelet   

Although an optimal DWT level can be obtained theoretically according to the maximum 
entropy principle [11], it is reasonable to adaptively select the DWT level J according to the 
’nature’ of input data, where large #samples corresponds to a relatively large J value, for the 
convenience of computation. As such, we select the DWT level as 4 ≤ 𝐽 ≤ log! 𝑝  considering the 
magnitude level of the samples number p in proteomics data to avoid too large or too small 
transform levels. Correspondingly, we empirically set the cutoff as 1 < 𝜏 ≤ 𝐽/2 to separate the fine 
and coarse level detail coefficient matrices for good performance.  

Furthermore, we require the wavelet 𝜓 in the DWT orthogonal and have compact supports 
such as Daubechies wavelets (e.g., ‘db8’), for the sake of subtle data behavior capturing.  
Interestingly, we have found that the first PC of each fine level detail coefficient matrix usually 
has a quite high variability explanation ratio (e.g., >60%) for each fine level detail coefficient 
matrix 𝑐𝐷! (1≤j≤τ ). Thus, we relax the variability explanation ratio threshold by only using the 
first PC to reconstruct each 𝑐𝐷! matrix in order to catch subtle data characteristics along the 
maximum variance direction. In fact, we have found that using more PCs in the fine level detail 
coefficient matrix reconstruction does not demonstrate advantages in subtle data characteristics 
extraction and de-noising than using the first PC.  

 
Fig 1. The true signals of 10 cancer and control samples across 16331 m/z of the Colorectal data by DCA 

Figure 1 shows the true signals (meta-data) of the 10 cancer and control samples, which are 
randomly selected from Colorectal data [12] with total 48 controls and 64 cancer samples across 
16331 m/z ratios, extracted by our DCA under the cutoff τ=2, transform-level J = 7, and wavelet 
‘db8’.  Interestingly, the each type of samples in the extracted true signals appear to be smoother 
and more proximal to each other besides demonstrating less variations, because of the major subtle 
data characteristics extraction and system noise removal.  

Such a case is demonstrated more clearly by Figure 2, where the 10 cancer and control 
samples and their true signals are highlighted between 1400 Da and 1500 Da. It is quite clear to 
observe that the same type samples are closer to each other spatially, and some small spikes are 
removed as the built-in noises in true signals.  Obviously, from a classification viewpoint, these 
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true signals will contribute to high accuracy diagnoses than the original proteomic data, because 
the built-in noises and redundant global data characteristics would have a much lower chance to 
get involved in classification due to derivative component analysis. Instead, subtle data 
characteristics would have a greater chance of participating in the decision rule inference. 

 
Fig 2. The true signals of 10 cancer and control samples of the Colorectal data between 1400-1500 Da. 

 
 

 
 

Fig 3. Random five features in Colorectal data and its meta-data across 112 samples (64 cancers + 48 controls). 
 

Similarly, Figure 3 shows the meta-data of randomly picked five features from Colorectal data 
under the same parametric setting for DCA. Interestingly, the meta-data (meta-features) are 
smoother and have values in a smaller range than the original features for its subtle data 
characteristics extraction and de-noising. The meta-features are actually more distinguishable than 
their original features, which reflect the true expression level of the peptides/proteins at the m/z 
ratios better. In other words, DCA provides a ‘zoom’ mechanism to capture the original data’s 
subtle behaviors that are usually latent in general machine-learning methods. 

 

Profile Biomarker Diagnosis with DCA 

Since DCA can separate true signals from red herrings by extracting subtle data characteristics 
and removing built-in noises, it is natural to combine DCA with start-of-the-art classifiers to 
conduct profile biomarker diagnosis, where input proteomics data are viewed as a profile 
biomarker. We chose support vector machines (SVM) for its efficiency and advantages in 
handling large-scale data, popularity in proteomics diagnosis and biomarker discovery [13]. As 
such, we propose novel derivative component analysis-based support vector machines (DCA-
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SVM) in order to attain a profile biomarker disease diagnosis, which is actually equivalent to a 
binary or multi-class classification problem.  

Given a binary type training samples and their labels its 
corresponding meta-data  are computed by using DCA, Then, a maximum-margin 
hyperplane in is constructed to separate the ’+1’ (‘cancer’) and ’-1’ (‘control’) 
types of the samples in the meta-data 𝑌, where 𝑤 and 𝑏 are the normal and offset vector of the 
hyperplane respectively. The hyperplane construction is equivalent to solving the following 
quadratic programming problem (standard SVM, i.e., C-SVM): 

 

                                                                           (1) 

The C-SVM can be solved by seeking the solutions to the variables 𝛼!  of a corresponding 

Lagrangian dual problem to get a decision function f (x ') = sign( αicik( yi iy ')+b)
i=1

n

∑  to determine the 

class type of a testing sample 𝑥!, where 𝑦! and 𝑦! are corresponding meta-samples computed from 
DCA for samples 𝑥! and 𝑥! . The kernel function 𝑘 𝑦! , 𝑦  maps 𝑦! and 𝑦′ into a same-dimensional or 
high-dimensional feature space. In this work, we employ the ’linear’ kernel for its simplicity and 
efficiency. Our multiclass DCA-SVM algorithm employs the ‘one-against-one’ to conduct 
multiclass phenotype diagnosis for its proved advantage over the ‘one-against-all’ and ‘directed 
acyclic SVM’ methods [14]. 

It is worthwhile to point out that our DCA-SVM has a different feature space due to true signal 
extraction from DCA. The standard SVM’s feature-space usually contains noises from input 
proteomic data, and misses subtle data characteristics. Alternatively, the DCA-SVM ’s feature 
space contains ’de-noised’ true signals with subtle data characteristics, which avoids the global 
data characteristics favored decision rule because subtle data characteristics are also invited in 
SVM hyperplane construction besides the global data characteristics. As such, the DCA-SVM can 
efficiently detect those samples with similar global characteristics but different subtle 
characteristics in disease diagnosis than the standard SVM. 

3. Results 

We demonstrate our profile biomarker diagnosis’ superiority by using five benchmark serum 
proteomic data sets, which include Cirrhosis, Colorectal, HCC, Ovarian-qaqc and ToxPath data 
[12,15-17,19]. The benchmark data used in our experiments are heterogeneous data generated 
from different experiments via different profiling technologies such as MALDI-TOF and SELDI-
TOF, and preprocessed by different methods. Table 1 describes the details of the five data sets. 

We compare the proposed DCA-SVM based profile-biomarker diagnosis with the following 
state-of-the-arts in this work. They include a partial least square (PLS) based linear logistic 
discriminant analysis (PLS-LLD) [18,20], standard SVM [13], a SVM combining with principal 
component analysis: PCA-SVM [5], and a SVM with input-space feature selection: fs-SVM, 
which employs t-test and Anona1 (one-way ANOVA) to conduct feature selection for binary and 
multi-class data respectively. For each data, fs-SVM collects a meaningful feature set including all 

X = [x1, x2,xp ]
T {xi,ci}i=1

p , ci ∈ {−1,1},

Y = [y1, y2,yp ]
T

Oh :w
T y+ b = 0 ℜn

minw,b,ξ 1
2 w 2

2
+C ξi

i=1

p

∑
s..t. ci (w

T yi + b) ≥1−ξi, i =1, 2…p
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features with p-values < 0.05 using t-test or Anova1 for phenotype diagnosis. 

We employ the ’linear’ kernel 𝑘 𝑥, 𝑦 = (𝑥 ∙ 𝑦) in all SVM-related classifiers for its efficiency 
in omics data classification, rather than nonlinear kernels (e.g., Gaussian kernels), which usually 
lead to overfitting in diagnosis [4-6]. To avoid potential biases from presetting training/test data 
partition on diagnosis, we employ the k-fold (k=5) cross-validation to evaluate the five classifiers’ 
performances for all data sets. In addition to choosing the first ten PLS components in the PLS-
LLD classifier, we uniformly set the DWT level J = 7 under ‘db8’, cutoff τ = 2; and apply the 
first PC-based detail coefficient matrix reconstruction in DCA to retrieve true signals for all 
proteomic data sets. 

 
Fig 4 Comparing profile biomarker diagnosis’ diagnostic accuracies and its standard deviations with those of others. 
s  

Before demonstrating our profile biomarker approach‘s advantages, we introduce several key 
diagnosis performance measures, namely, diagnostic accuracy, sensitivity, specificity and positive 
predication ratios, as follows. The diagnostic accuracy is the ratio of the correctly classified test 
samples over total test samples. The sensitivity, specificity, and positive predication ratio are 
defined as the ratios: !"
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 respectively, where TP(TN) is the number of 
positive (negative) targets (a positive (negative) target is a proteomic sample with ‘+1’ (‘-1’) 
label) correctly diagnosed and FP (FN) is the number of negative (positive) targets incorrectly 
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Table 1. Benchmark proteomic data 

Data #Feature #Sample Platform 

Cirrhosis 
 
23846 

72 controls + 
78 HCCs + 
51 cirrhosis 

 
MALDI-TOF 

Colorectal 16331 48 controls + 64 cancers MALDI-TOF 
HCC 6107 181 controls +176 cancers SELDI-QqTOF 
Ovarian-qaqc 15000 95 controls + 121 cancers SELDI-TOF 

ToxPath 

 
 
7105 

28 normals + 
43 potential normals + 
34 cardiotoxicities + 
10 potential cardiotoxicities 

 
SELDI-QqTOF 

 



 
 

 

diagnosed by the classifier.  
Figure 4 demonstrates rivaling clinical level performance from our profile biomarker diagnosis 

(DCA-SVM) by comparison with the other classifiers in average diagnosis accuracies and its 
standard deviations. It seems that our profile biomarker diagnosis achieves performance nearly 
clinical level and demonstrate strongly leading advantages over its peers in a stable manner. 
Alternatively, those comparison classifiers seem to show quite large level oscillations that may 
indicate they lack stability and good generalization capacities across different data sets, which 
exclude themselves as candidates for clinical proteomics diagnosis. 

For example, our profile biomarker diagnosis achieves 99.52% (sensitivity 100%, specificity 
99.17%), 100% (sensitivity 100%, specificity 100%), and 99.44% (sensitivity 98.00%, specificity 
100%) diagnostic accuracies on the Ovarian-qaqc, Colorectal and HCC data respectively. It 
further reaches 97.50%, 99.01% diagnostic accuracies for Toxpath and Cirrhosis data respectively. 
However, the standard SVM classifier can only achieve 75.80% and 88.06% diagnosis for the 
same data sets respectively. Although some input-space or subspace methods may sometimes 
boost diagnosis for binary-type data set, we have found that they are unable to increase the SVM 
classifier’s diagnosis and generation abilities significantly, especially for multiclass proteomic 
data.  In fact, in contrast to the proposed profile biomarker diagnosis, all the comparison classifiers 
show high-level oscillations in diagnoses across different data sets. It is noteworthy that the high-
level oscillations in diagnosis is further highlighted by corresponding large standard deviation 
values in diagnosis from those classifiers in Figure 4, where our DCA-SVM based profile 
biomarker diagnosis demonstrates its good stability and generalization for its smallest standard 
deviation values across all the data sets.  

Compare profile biomarker diagnosis with prior methods.  It is worthwhile to point out that 
our DCA-SVM based profile biomarker also demonstrates its superiority to its peers in terms of 
diagnostic accuracy, sensitivity, specificity and positive predication ratios. We further compare 
our profile biomarker diagnosis approach with the previous biomarker discovery diagnoses in the 
literature and have found that our method demonstrates good clinical level sensitivities in 
phenotype discriminations for different benchmark proteomic data.  For example, Alexandrov et al 
‘s work only achieved 97.5% diagnosis accuracy with sensitivity 98.4% and specificity 95.8% for 
Colorecta data by using a complicated method [12]. However, our profile biomarker diagnosis 
achieves 100% diagnosis accuracy with sensitivity 100% and specificity 100%. For Ovarian-qaqc 
data, our approach achieves a 99.53% clinical-level diagnosis accuracy with sensitivity 98.95% 
and specificity 100%, which is better than the original diagnosis level obtained in [17] and all the 
other peers. For Cirrhosis data, Ressom et al partitioned this three-class data into two binary data 
sets and proposed a novel hybrid ant colony optimization based support vector machines (ACO-
SVM), where ACO was used for biomarker discovery, to achieve 94% and 100% specificity to 
distinguish hepatocellular carcinoma (HCC) from cirrhosis [16]. There was no result available to 
distinguish normal, HCC, and cirrhosis in a multiclass diagnostic way. However, our proposed 
approach has achieved 99.01% diagnosis accuracy for this multi-class data set. 

Can DCA be used to conduct biomarker discovery by collecting meaningful peaks if we relax 
the reproducibility concern? The answer is ‘yes’ because derivative component analysis can 
identify meaningful protein or peptide peaks from true signals We simply apply t-test and Anova1 
to identify the top-ranked features with the smallest p-values, i.e. we pick the three top-scored 
peaks as biomarkers for its statistical significance. Figure 5 illustrates the separation of four 
benchmark data sets with three top-ranked biomarkers (peaks). It is interesting to see that these 



 
 

 

high-dimensional proteomic profiles can be separated almost completely with these biomarkers 
identified from true signals. 

We can also obtain some meaningful biological depth by checking these biomarkers. For 
example, the SW plot in Figure 5 shows the separation of 176 controls and 181 cancers in the 
HCC data, by the top-ranked biomarkers (peaks) at 2534.2, 2584.3, and 6486.2 m/z ratios, where 
each dot represents a sample (a patient with HCC or a healthy subject). It is also interesting to see 
that two biomarkers are from downsteam m/z ratios, which were believed to be more sensitive to 
detect phenotype information than those from upstream m/z ratios [16,19]. Moreover, The 
separation can provide meaningful biological insight for pathological disease states. For example, 
we select three top-ranked biomarkers at 1668.99, 5907.73, 5907.13 m/z ratios for the Cirrhosis 
dataset, which is a three-class high-resolution MALDI-TOF proteomic profile with 23846 
features. The phenotype separations provided by the three biomarkers give very meaningful 
biological insights, i.e., the SE plot in Figure 5 shows the three clearly independent clusters, where 
Cirrhosis cluster with 51 samples (blue) have closer spatial distances to the HCC cluster 78 
samples (red) than the normal cluster with 72 samples (yellow). Such spatial distances 
demonstrated by our biomarkers are actually consistent to their pathological distances: Cirrhosis is 
the middle stage to hepatocellular carcinoma (HCC) for a healthy subject.  

 

 
Fig 5 Separating disease phenotypes of four data sets by only using their three biomarkers with the smallest p-values. 

4. Conclusions and Discussion 

In this study, we propose a profile biomarker diagnosis approach to overcome the data 
reproducibility issue in proteomics data and demonstrate its clinical level performances across 
different data. The profile biomarker diagnosis is based on the novel implicit feature selection 
algorithm: derivative component analysis and derivative component analysis based support vector 
machines proposed in this study. As an implicit feature selection algorithm, DCA is able to 
separate true signals from red herrings by extracting subtle data characteristics and removing 
system noise via calculating a same dimensional meta-data for input proteomic data. It is noted 
that the complexity of DCA is higher than that of PCA, because DCA calls the classic PCA in 
several fine level detail coefficient matrix reconstruction, in addition to the DWT and inverse 
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DWT.  However, DCA demonstrates a promising way to overcome the data reproducibility issue 
in proteomics because the high-accuracy diagnosis results seem to be reproducible themselves for 
different data sets under our approach. In other words, our profile biomarker diagnosis presents 
itself as an ideal candidate to achieve clinical diagnosis in clinical proteomics. Furthermore, our 
work suggests a key issue in proteomic disease diagnosis, that is, subtle data characteristics 
gleaning and de-noising can be more important in proteomics data feature selection and following 
phenotype discrimination than dimension reduction. Moreover, the proposed derivative 
component analysis provides an alternative feature selection by implicitly extracting useful data 
characteristics whiling maintaining the data’s original dimensionality.  

Although we are quite optimistic to see that our profile biomarker diagnosis will be a potential 
candidate to achieve a clinical disease diagnosis in proteomics by conquering the reproducibility 
problem, rigorous proteomics clinical tests are needed urgently to explore such a potential and 
validate its clinical effectiveness. In our ongoing work, we are working with pathologists to 
investigate extending the profile biomarker diagnosis approach to TCGA and RNA-Seq data 
besides protein expression array analysis. 
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