
 

DETECTING STATISTICAL INTERACTION BETWEEN SOMATIC MUTATIONAL 
EVENTS AND GERMLINE VARIATION FROM NEXT-GENERATION SEQUENCE 

DATA 

HAO HU 
 

Department of Epidemiology 
The University of Texas MD Anderson Cancer Center 

1155 Pressler Street 
Houston, TX, 77030, USA 

Email: hhu1@mdanderson.org 
 

CHAD D. HUFF 
 

Department of Epidemiology 
The University of Texas MD Anderson Cancer Center 

1155 Pressler Street 
Houston, TX, 77030, USA 

Email: chuff1@mdanderson.org 
 

The two-hit model of carcinogenesis provides a valuable framework for understanding the 
role of DNA repair and tumor suppressor genes in cancer development and progression. 
Under this model, tumor development can initiate from a single somatic mutation in 
individuals that inherit an inactivating germline variant. Although the two-hit model can be 
an overgeneralization, the tendency for the pattern of somatic mutations to differ in cancer 
patients that inherit predisposition alleles is a signal that can be used to identify and 
validate germline susceptibility variants. Here, we present the Somatic-Germline 
Interaction (SGI) tool, which is designed to identify statistical interaction between 
germline variants and somatic mutational events from next-generation sequence data. SGI 
interfaces with rare-variant association tests and variant classifiers to identify candidate 
germline susceptibility variants from case-control sequencing data. SGI then analyzes 
tumor-normal pair next-generation sequence data to evaluate evidence for somatic-
germline interaction in each gene or pathway using two tests: the Allelic Imbalance Rank 
Sum (AIRS) test and the Somatic Mutation Interaction Test (SMIT). AIRS tests for 
preferential allelic imbalance to evaluate whether somatic mutational events tend to 
amplify candidate germline variants. SMIT evaluates whether somatic point mutations and 
small indels occur more or less frequently than expected in the presence of candidate 
germline variants. Both AIRS and SMIT control for heterogeneity in the mutational 
process resulting from regional variation in mutation rates and inter-sample variation in 
background mutation rates. The SGI test combines AIRS and SMIT to provide a single, 
unified measure of statistical interaction between somatic mutational events and germline 
variation. We show that the tests implemented in SGI have high power with relatively 



 
 

 

modest sample sizes in a wide variety of scenarios. We demonstrate the utility of SGI to 
increase the power of rare variant association studies in cancer and to validate the potential 
role in cancer causation of germline susceptibility variants. 

 
1.  Introduction 

In 1971, Alfred Knudson proposed the two-hit hypothesis for retinoblastoma, demonstrating 
that the distribution of age-of-onset for familial retinoblastoma cases was consistent with 
inheritance of a germline variant followed by a somatic mutation, while age-of-onset for sporadic 
cases was consistent with two independent somatic mutations1. The gene responsible for this 
process was identified 15 years later as RB1, the first tumor suppressor gene2,3. The two-hit 
hypothesis is now the classic model for DNA repair and tumor suppressor genes, which follow a 
dominant mode of inheritance but are typically recessive at the cellular level. This model provides 
a useful framework for understanding cancer predisposition, although DNA repair and tumor 
suppressor genes can be either dominant or recessive at the cellular level, depending on the 
context. Germline mutations in the tumor suppressor gene TP53 follow both one- and two-hit 
models in Li-Fraumeni syndrome, with some inherited genetic causes resulting from cellular 
recessive loss-of-function nonsense variants and others resulting from dominant gain-of-function 
missense variants4. The DNA repair genes BRCA1 and BRCA2 variants are also either recessive or 
dominant at the cellular level depending on the type of cancer, with complete loss of the wild type 
allele in ovarian cancer but occasional haplo-insufficiency in breast cancer5. In general, inherited 
variants in the tumor suppressor gene APC are recessive at the cellular level in colorectal cancer6, 
but can exert dominant effects that can lead to chromosomal instability7. In contrast to DNA repair 
and tumor suppressor genes, oncogenes are generally dominant at both the germline and cellular 
levels, and thus tend to follow a one-hit model. Nonetheless, there are a number of examples of 
oncogenes that follow a two-hit model8. Thus, although one- and two-hit models are sometimes 
overgeneralizations, many genes display a pattern of somatic mutational events in tumors that 
occur more or less frequently than expected among individuals that carry particular germline 
susceptibility variants. 

Next-generation sequencing now provides efficient, high-coverage interrogation of nearly the 
entire genome and is revolutionizing our understanding of somatic mutational events that drive 
tumorigenesis9-11. The use of next-generation sequencing to identify rare germline variants that 
influence cancer risk also holds great promise but is fundamentally a more difficult problem given 
that purifying selection ensures that intermediate-penetrance germline variants are usually very 
rare. A number of rare variant association tests have been developed recently to identify disease-
susceptibility genes from case-control next-generation sequence data. The primary advantage of 
these methods over traditional approaches is that they aggregate rare variants to perform a single 
statistical test for each gene, which greatly increases power while reducing the multiple testing 
burden. However, as we have previously shown, although rare variant association tests greatly 
improve statistical power, studies involving thousands of cases and controls will likely be needed 
to identify novel gene associations for common cancers12-14. The tendency for somatic mutational 
events to occur more or less frequently than expected given the presence of a germline 



 
 

 

susceptibility variant is an additional piece of evidence that can aid in the search for novel gene-
cancer susceptibility associations or in the validation and characterization of candidate germline 
susceptibility variants. The primary motivation of this work is to provide a framework for 
identifying these statistical interactions between somatic and germline variation in a high-
throughput manner that takes advantage of available bioinformatic tools and existing next-
generation sequencing capacity. The methods we present are implemented in the Somatic 
Germline Interaction (SGI) tool.  

SGI analyzes next-generation sequencing data from tumor-normal tissue pairs and normal 
tissue in matched controls to determine whether germline variation in a gene or pathway 
statistically interacts with the occurrence of somatic events. The two-hit model describes one 
process that can result in statistical interaction, in which two damaged copies of a gene are 
required to initiate tumorigenesis. If the two-hits model holds, then the tumors of cancer patients 
with a deleterious germline variant in a driver gene are likely to have a second somatic mutation 
event in the same gene. Another process that can result in statistical interaction involves cis-acting 
germline variants that can greatly increase the somatic mutation rate in the local genomic  
region15-18. SGI identifies candidate germline susceptibility variants by interfacing with the 
Variant Annotation, Analysis and Search Tool (VAAST)19. The rare variant association test in 
VAAST incorporates amino acid substitution severities, phylogenetic conservation, and the 
distribution of allele frequencies in cases and controls to variants and genes that are likely to 
influence disease susceptibility12. After identifying individuals in the study with candidate 
germline variants, SGI then analyzes tumor-normal pair sequence data to evaluate whether 
somatic mutational events occur more or less frequently than expected by testing the null 
hypothesis that the occurrence of somatic events is independent of the presence or absence of 
germline variation.  

We divide somatic mutational events into two categories: somatic mutations and preferential 
allelic imbalance. SGI implements the Allelic Imbalance Rank Sum (AIRS) test to evaluate 
evidence for preferential allelic imbalance. Specifically, within each gene or pathway, AIRS tests 
whether the chromosomes harboring putatively deleterious germline mutations are preferentially 
amplified in tumor tissues. Allelic imbalance is an important signal of somatic mutations resulting 
from copy number variants (CNVs) or loss-of-heterozygosity (LOH) that has been used to identify 
and validate modest penetrance germline-cancer associations in both humans15,20,21 and mice22-24. 
In addition to allelic imbalance, SGI also evaluates whether somatic mutations occur more or less 
frequently than expected in the tumors of individuals that harbor putatively deleterious germline 
mutations using the Somatic Mutation Interaction Test (SMIT). SMIT only considers single 
nucleotide and small indel somatic mutations that do not result in LOH or CNVs in a large 
genomic region, as these larger somatic events are evaluated by allelic imbalance evidence. SGI 
also combines AIRS and SMIT to provide a single unified framework to detect statistical 
interaction between germline and somatic variation.  

SGI has a number of potential applications. For known germline-susceptibility genes, SGI can 
validate germline variants of unknown significance. For genes that are known to be significantly 
mutated in tumors but not known to play a role in cancer predisposition, SGI can search for novel 



 
 

 

germline variant associations. SGI can also identify novel cancer-associated genes that would be 
much more difficult to detect than germline case-control studies or somatic mutational analysis 
alone due to rarity and/or effect size. Here, we present the methods implemented in SGI and 
evaluate the performance of the tool in a wide variety of scenarios.  

2.  Methods 

2.1.  Identifying candidate germline variants 

SGI processes VAAST output files to identify individuals with candidate germline 
susceptibility variants. For each gene, any variant that has a VAAST score of greater than 0 is 
identified as a candidate. SGI then performs the AIRS and SMIT tests based on the binary 
classification of individuals with and without candidate germline susceptibility variants. The 
VAAST score threshold is a tunable parameter. Other association tests can be supported, but 
require combining the association test results with a variant classifier – such as SIFT25,26, 
PolyPhen-226, Align-GVGD27,28, or VAAST 2.012 – to identify candidate susceptibility variants. 
For the AIRS and SMIT tests below, set A contains the affected individuals with candidate 
germline susceptibility variants, and set B contains all other affected individuals.  

2.2.  AIRS  

AIRS evaluates candidate germline susceptibility variants to test for preferential allelic 
imbalance. For each individual i at site j, we use the raw somatic read counts for the reference and 
non-reference allele for each germline heterozygous to calculate the binomial one-tail probability, 
pij, that the allele frequency of the non-reference allele is greater than 0.5. To control for inter-
sample variation in the distribution of allelic imbalance throughout the genome, we transform pij 
to the percentile rank, fij, using the empirical distribution function of binomial p-values among all 
variant sites throughout the genome for each individual. This transformation does not necessarily 
require whole-genome data and should effectively control for inter-sample variation in genome-
wide levels of allelic imbalance in targeted gene panels that include as few as 50 genes. To control 
for differences in the level and distribution of allelic imbalance throughout the genome, we restrict 
the test to variants in or around the gene of interest (by default, all variants between the beginning 
of the first and the end of the last exon). Let G equal the set of variants around the gene, and let C 
equal the subset of candidate germline susceptibility variants. Our test statistic is a Wilcoxon-
Mann-Whitney U that compares values of fij for candidate variants to all other variants in the gene 
among individuals that do not carry a candidate germline variant: 
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approximation is assumed. 
Although we include only candidate germline alleles from individuals in set A, we include all 

heterozygous germline alleles from individuals in set B. Including multiple variants from an 
individual is a violation of the independence assumption in the U test, given that the observation 
of allelic imbalance in one variant would alter the expected distribution of read counts for other 
variants in the region. However, in our tests, we observed a modest increase in power and no 
inflation in Type I error by including all variants from B for sample sizes as small as 40. The 
inclusion of all heterozygous germline alleles is designed to detect subtle signals of allelic 
imbalance resulting from low levels of tumor purity or multiclonality. If the allelic imbalance 
signals are infrequent yet unambiguous, a more powerful alternative is to only include alleles in 
the rank sum test that are on the tails of the binomial distribution (e.g., pij less than 0.05 or greater 
than 0.95). These thresholds can be set as optional parameters.  

We evaluated two allelic imbalance metrics other than the binomial, the proportion of non-
reference alleles and a one-sided Fisher’s exact test comparing read counts between normal and 
somatic tissue. The proportion of non-reference alleles suffered from an inability to account for 
differences in coverage depth. The Fisher’s exact test had the advantage of controlling for allele-
specific read count biases that are present in both the normal and somatic data, but this was offset 
by a modest reduction in power. More sophisticated methods that incorporate haplotype 
information to test for allelic imbalance, such as Haplotype Amplification in Tumor Sequences 
(HATS)29 or Haplotype LOH (hapLOH)30, may provide a replacement to the binomial in the 
future. In all cases, the raw allelic imbalance metric should be transformed using the empirical 
distribution function for each individual to control for inter-sample variation in the level of allelic 
imbalance throughout the genome.  

2.3.  SMIT  

SMIT is designed to evaluate whether somatic mutations occur more or less frequently than 
expected for individuals with a candidate germline susceptibility variant in a gene or pathway of 
interest. More generally, SMIT tests for statistical interaction between somatic mutation 
frequencies and any binary classifier in a defined genomic feature. SMIT addresses the same 
general question as the Clinical Correlation Test (CCT) in the Mutational Significance of Cancer 
package (MuSiC)31, but provides the additional advantage of controlling for inter-sample variation 
in the somatic background mutation rate. Because the same genomic regions are evaluated in the 
two sample groups, the method is robust to heterogeneity in the mutational process between 
genomic regions, which is a major potential source of false-positives when searching for cancer-
associated genes10. 

Let M equal the set of individuals with at least one somatic mutation observed in the genomic 
feature (typically gene). Let ti equal the total number of somatic mutations throughout the genome 
for sample i, and let l equal the proportional length of the gene in base pairs relative to the total 
sequenced region of the genome. For each sample i, we estimate the background mutation rate at 
the gene by the approximation ri = ti×l. Let sA and sB equal the probability for sets A (affected 
individuals with candidate germline susceptibility variants) and B (all other individuals), 



 
 

 

respectively, that a somatic mutation occurs in the gene through a process that is unrelated to the 
background mutation rate, which approximates the somatic driver mutation rate. SMIT tests the 
null hypothesis that sA = sB against the alternative hypothesis that sA ≠ sB using a likelihood ratio 
test:  
 

 
We estimate the maximum likelihood of s, sA, and sB using a grid search. Note that when ri 
does not vary between samples and the maximum likelihood of s, sA, and sB are all greater than 0, 
Eq. 2 collapses to a multinomial likelihood ratio test. We estimate the significance level of the 
two-tailed test using a chi-square approximation (-2lnΛ ~ χ2

1).  We also implement one-sided tests 
by applying the appropriate transformations to the significance levels of the two-sided test.  The 
one-tailed test. sA > sB evaluates a cellular recessive (or partially recessive) two-hit hypothesis and 
the one-tailed test. sB > sA evaluates a cellular dominant (or partially dominant) one-hit hypothesis. 

2.4.  Somatic-Germline Interaction (SGI) Tool 

SGI implements both AIRS and SMIT, and also combines the two tests to evaluate two- and 
three-hit hypotheses using a Fishers Combined Probability Test (FCPT). We refer to the combined 
AIRS-SMIT test as the SGI test. We also use the FCPT to perform the VAAST-AIRS, VAAST-
SMIT, and VAAST-SGI tests in Figure 4. 

2.5.  Datasets 

The breast cancer samples used in Figures 1 and 3 are from Complete Genomics (CG) whole-
genome sequence data of a tumor-normal pair32. This sample exhibited high levels of allelic 
imbalance throughout the genome, with 77% of heterozygous germline SNPs having a somatic 
allele frequency significantly different from 0.5 at the 0.05 level. In Figures 1 and 4, we used the 
breast cancer sequence data to establish a distribution of read counts to represent next-generation 
sequence data in tumors. For individuals without candidate germline susceptibility alleles (group 
B), we sampled 50 Kb segments with replacement from the breast cancer whole-genome data. To 
represent the marker density of whole-exome data (approximately 2% of the genome), we 
performed rejection sampling on each heterozygous germline variant, rejecting each variant with 
probability 0.98. The top half of Figure 1 was based on the tumor tissue data and represents loci 
with relatively high levels of allelic imbalance in group B. The bottom half of Figure 1 was based 
on the normal tissue data and represents loci with very low levels of allelic imbalance in group B. 
For candidate germline susceptibility alleles in Figure 1 (group A), we simulated the distribution 
of read counts using the following procedure: For each candidate germline variant in each 
individual, we first designated it as preferentially amplified with probability q (between 0.1 and 1). 
Note that the proportion of samples with higher frequency of the preferred allele is approximately 
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q+(1-q)b, where b is the proportion of variants with a higher frequency for the preferred allele in 
group B (Figure 1). The read counts of alleles not designated as preferentially amplified were 
randomly sampled from breast cancer whole-genome data. For the remaining variants, we set the 
total number of reads to a Poisson random variate, t, with mean equal to 52 to match the mean 
read count in the normal tissue whole-genome data. We then set the expected proportion of the 
preferred allele, w, to between 0.6 and 1 and the number of non-reference to a binomial random 
variate with parameters t and w. In Figure 4, the breast cancer ATM case-control sequence data in 
Figure 4 is from a meta-analysis described in13. The genomic variants in group B were simulated 
by sampling 50 Kb segments from the breast cancer whole-genome data, and the variants in group 
A were simulated using the same protocol as Figure 1, with w equal to 1. 

3.  Results 

We evaluated the performance of AIRS, SMIT, and SGI across a range of parameter values 
using a combination of simulated data and bootstrapped next-generation sequencing datasets (see 
Methods). In each comparison, we divide the cases into two groups, the normal group and the 
candidate germline group, representing individuals with and without candidate germline 
susceptibility variants, respectively. 

To benchmark AIRS, we simulated the distribution of read counts according to the parameters 
in Figure 1 for the candidate germline group. For the normal group, we sampled whole-genome 
sequence data from the breast cancer tumor-normal pair. We evaluated two scenarios for the 
normal group, one with very low rates of allelic imbalance and one with relatively high levels of 
imbalance (see Figure 1). When the level of allelic imbalance in the normal group is low, 
preferential allelic imbalance in the candidate germline group is easier to detect, but AIRS 
performs well in both scenarios when 40 or more individuals are included in the candidate 
germline group or when the proportion imbalanced reads for the preferred allele is high. For 
example, with complete amplification of the preferred allele, AIRS has approximately 99% power 
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at the significance level (α) of 0.05 with a sample size of only two individuals in the candidate 
germline group for both scenarios. Because AIRS is designed to detect preferential allelic 
imbalance, it cannot be used to search for genes that tend to follow a one-hit model.  

The performance of SMIT depends heavily on the frequency of somatic mutations in the gene. 
When the mutation frequency is high in the normal group (e.g. 0.5 for APC and colorectal 
cancer)11, SMIT can detect both relative increases and decreases in the candidate germline group 
(Figure 2). In contrast, when the mutation frequency is very low in the normal group, SMIT can 
only detect mutation frequency increases in the candidate germline group. Thus, genes that follow 
a one-hit model can only be detected if somatic mutations are common or if the sample sizes are 
large. In contrast, genes that strictly follow a 2-hit model can be detected with nearly 100% power 
at α = 0.05 with sample sizes of just 10 individuals in the candidate germline group, although the 
detection of subtle increases in mutation frequency require substantially larger sample sizes.  

SMIT is designed to control for inter-sample variation in background mutation rates between 
samples, which can vary by three orders of magnitude10. Systematic differences in background 
mutation rates between the candidate germline group and control group can result from random 
sampling or differences in sample collection strategies. To investigate this problem, we performed 
simulations with identical somatic driver mutation rates but highly differentiated background 
somatic mutation rates between the candidate germline group and the control group. We found 
SMIT properly controlled for Type I error (Figure 3A). In comparison, a Fisher exact test (e.g. 
CCT in MuSiC31) exhibited a highly inflated Type I error rate (Figure 3B).  

SGI is designed to interface with VAAST to increase the power of a rare variant association 
study by combining case-control and tumor-normal pair sequence data. To demonstrate the utility 
of this approach, we analyzed a breast cancer case-control sequencing dataset of the gene ATM in 
VAAST, and then applied SGI to evaluate the potential change in performance. We set the number 
of individuals in the candidate germline group equal to the number of individual variants that had 
a positive VAAST score from the ATM results. We set the frequency of somatic mutations in the 
normal group to 5%, which is the reported frequency of ATM mutations in basal-like breast 
cancer9. For the candidate germline group, we varied the frequency of somatic mutations in the 
candidate germline group from 0 to 0.5 and set the frequency of preferential allelic imbalance 
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equal to the somatic mutation frequency. For each individual, preferential allelic imbalance and 
somatic mutation were mutually exclusive events. Figure 4 reports the sample size needed to 
achieve 80% power using SGI alone (4A-4B) and in combined VAAST-SGI analyses (4C). When 
somatic mutational events are common, combining VAAST with SGI can result in dramatic 
reductions in required sample sizes. 

4.  Discussion 

SGI incorporates several measures to avoid artifactual findings that can result from studies of 
somatic mutational events due to heterogeneity in the mutational process10. Because all 
comparisons are restricted to the same genomic regions, we avoid issues resulting from regional 
variation in mutation rates across the genome, which is the most critical source of mutational 
heterogeneity10. The transformation of binomial probabilities to empirical probabilities for each 
individual in the AIRS test allows subtle signals from low purity tumor samples to be combined 
with stronger signals from pure tumor samples while preserving power and controlling for inter-
sample variation in genome-wide levels of allelic imbalance. AIRS is comparable to the 
Amplification Distortion Test (ADT) in that both tests are designed to detect preferential allelic 
imbalance, with AIRS designed for next-generation sequence data and ADT designed for high-
density SNP microarray data33. SMIT tests for differences in the frequency of somatic mutational 
events between two groups at the same locus. SMIT performs the same role as the CCT test in 
MuSiC31, but additionally controls for inter-sample variation by incorporating sample-specific 
background mutation rates.  

The tests we present here are well powered for a broad range of realistic scenarios. Studies of 
preferential allelic imbalance have reported the proportion of samples with higher frequency of the 
preferred allele of over 60% in colorectal cancer for a common susceptibility SNP at 8q24.2121, 
70% in colorectal cancer tumors for a familial susceptibility variant in AURKA20, over 80% in 
glioblastoma for common susceptibility SNPs in the LHFPL3 gene15, and 80%, 90%, and 100%, 
respectively, for skin tumor susceptibility haplotypes in Skts6, Skts1, and Skts2 in mice22-24. Figure 

Figure 3. Observed versus expected p-values of two tests of germline-somatic interaction: A) SMIT and B) Fisher 
exact test (e.g. CCT31). Expected background mutation rate was 0.01 in the control group and 0.1 in the candidate 
germline group. Somatic driver mutation rate was 0.1 in both groups. Results generated from 100,000 simulations. 

 



 
 

 

1 demonstrates that the sample sizes needed for AIRS to detect such signals are generally modest. 
For example, when 70% of samples have a higher frequency of the preferred allele, AIRS can 
detect preferential allelic imbalance with over 85% power from a sample of 20 individuals with 
germline susceptibility variants and a comparison group of 200 individuals. Unlike allelic 
imbalance, which can be detected from SNP microarray data, most somatic mutations can only be 
detected with sequence data, and thus, fewer studies of somatic mutation-germline interaction 
have been conducted. However, promising examples include a 10-fold increase in somatic 
mutations (from approximately 5% to approximately 50%) in a specific region of APC among 
carriers of a particular germline susceptibility variant in human colorectal cancer34, and an 88% 
somatic mutation rate in carriers of the Skts2 susceptibility haplotype in mice23. Both scenarios 
could be detected by SMIT with greater than 80% power with a sample of only 10 individuals 
with candidate germline variants an a comparison group of 200 individuals (Figure 2).  

The example of ATM and breast cancer in Figure 4 provides an illustration of how SGI can be 
combined with VAAST to identify novel cancer-gene associations and to yield new insights for 
known associations. ATM is not a classic two-hit tumor suppressor gene. Some rare missense 
germline variants have a dominant gain-of-function effect, and nonsense germline variants are 
reported to primarily increase the risk of breast cancer via haplo-insufficiency13,35. However, 
reports of rare ATM germline mutations and loss of the wild-type allele in tumors35 is suggestive 
of potential germline-somatic interaction with ATM and breast cancer36. Figure 4 illustrates the 
sample size needed to conclusively detect a somatic-germline interaction effect using AIRS, 
SMIT, or SGI given a range of possible effect sizes. Figure 4 also demonstrates how SGI can be 
combined with VAAST to reduce the sample size needed to identify novel cancer-gene 
associations from next-generation sequence data for genes that have patterns of variation similar to 
ATM in breast cancer.  

In a number of reported scenarios, preferential amplification tends to occur in conjunction with 
somatic mutations in a three-hit model, involving a germline susceptibility variant, a somatic point 
mutation on the same haplotype, and a subsequent CNV or LOH event that amplifies both the 
germline and somatic variants16-18,23. JAK2 and myeloproliferative neoplasms provides one such 
example. Somatic mutations preferentially occur on haplotypes with germline risk variants in 
JAK2 80% of the time, and frequent third-hit somatic events result in homozygosity for both the 
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germline risk allele and the somatic mutation16-18. One potential explanation for this three-hit 
model is that cis-acting germline variants create a hypermutable region of the gene and that the 
subsequent somatic mutations are then amplified by the second somatic event, after which the 
somatic mutation (driver) and germline variant (passenger) increase in frequency together by 
selection15-18. This mechanism has been demonstrated experimentally in mice23, and the T->A 
germline variant at APC nucleotide position 3920 has been reported as an example of a cis-acting 
hypermutable phenotype that leads to colorectal cancer in humans34. A second explanation for this 
three-hit model is that somatic mutations functionally interact in cis with specific germline 
variants and require the presence of a germline variant to promote tumorigenesis15-18. By 
combining evidence for preferential allelic imbalance and the occurrence of somatic mutations, 
SGI is well suited for detecting genes that follow a three-hit model.  

SGI is designed to detect statistical interaction between somatic mutational events and 
germline variation from next-generation sequence data. SGI is compatible with existing variant 
call formats (vcf and CG tsv) and interfaces with VAAST and other variant classifiers to identify 
candidate germline susceptibility variants in a high-throughput manner. The AIRS test evaluates 
evidence for preferential allelic imbalance from next-generation sequence data and allows for 
combined testing of multiple variants in a gene while controlling for inter-sample variation in 
tumor purity and genome-wide levels of allelic imbalance. SMIT evaluates evidence for statistical 
interaction between candidate germline susceptibility variants and somatic SNVs and small indels 
while controlling for inter-sample variation in background mutation rates. SGI combines AIRS 
and SMIT to provide a unified measure of statistical interaction between candidate germline 
susceptibility variants and the occurrence of somatic mutational events. SGI can be used to help 
demonstrate a causal role for candidate germline susceptibility variants or can be combined with 
rare-variant association tests to increase the power to identify cancer-gene associations. 

5.  Software 

SGI can be found at www.hufflab.org/software/#sgi and is freely available for academic use. 
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