
	  

SYSTEMATIC ASSESSMENT OF ANALYTICAL METHODS FOR DRUG 
SENSITIVITY PREDICTION FROM CANCER CELL LINE DATA* 

IN SOCK JANG1, ELIAS CHAIBUB NETO, JUSTIN GUINNEY, STEPHEN H. FRIEND, ADAM A. 
MARGOLIN1 
Sage Bionetworks 

1100 Fairview Ave. N Seattle, WA 98109, USA  
Email: in.sock.jang@sagebase.org  

Email: elias.chaibub.neto@sagebase.org 
Email: justin.guinney@sagebase.org  

Email: friend@sagebase.org 
Email: margolin@sagebase.org  

 
Large-scale pharmacogenomic screens of cancer cell lines have emerged as an attractive pre-clinical system for 
identifying tumor genetic subtypes with selective sensitivity to targeted therapeutic strategies. Application of modern 
machine learning approaches to pharmacogenomic datasets have demonstrated the ability to infer genomic predictors 
of compound sensitivity. Such modeling approaches entail many analytical design choices; however, a systematic 
study evaluating the relative performance attributable to each design choice is not yet available. In this work, we 
evaluated over 110,000 different models, based on a multifactorial experimental design testing systematic 
combinations of modeling factors within several categories of modeling choices, including: type of algorithm, type of 
molecular feature data, compound being predicted, method of summarizing compound sensitivity values, and whether 
predictions are based on discretized or continuous response values. Our results suggest that model input data (type of 
molecular features and choice of compound) are the primary factors explaining model performance, followed by 
choice of algorithm. Our results also provide a statistically principled set of recommended modeling guidelines, 
including: using elastic net or ridge regression with input features from all genomic profiling platforms, most 
importantly, gene expression features, to predict continuous-valued sensitivity scores summarized using the area under 
the dose response curve, with pathway targeted compounds most likely to yield the most accurate predictors. In 
addition, our study provides a publicly available resource of all modeling results, an open source code base, and 
experimental design for researchers throughout the community to build on our results and assess novel methodologies 
or applications in related predictive modeling problems. 
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1.  Introduction 

Molecular analysis of cancer has revealed that tumor subtypes differ in pathway activity, 
progression, and chemotherapeutic response, leading to the development of therapeutic approaches 
with demonstrated efficacy in molecularly defined cancer subtypes [1-4]. Human cancer cell lines 
represent an attractive pre-clinical system for identifying molecular characteristics of tumors 
predictive of therapeutic response.  

Recently, two ambitious initiatives, named the cancer cell line encyclopedia [5, 6] and the 
genomics of drug sensitivity projects [7] have performed large-scale small molecule screens on 
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panels of hundreds of molecularly characterized cancer cell lines. Both studies also demonstrated 
that employing modern machine learning algorithms to develop predictors of drug response based 
on molecular profiling measurements of each tumor could effectively identify known 
pharmacogenomic predictive biomarkers. These proof-of-concept studies have established cell 
line-based screens as a viable pre-clinical system for identifying functional biomarkers underlying 
drug sensitivity or resistance and for suggesting patient selection strategies for clinical trial design. 

As computational approaches for modeling therapeutic response become increasingly common 
in research and translational applications, a study is warranted to systematically assess different 
modeling approaches, and recommend best practices for future applications. To address this 
question, we defined important categories of modeling choices, such as the predictive algorithm 
and genomic features for model inclusion (among others), and performed a large multifactorial 
experiment with crossed factors, where the modeling choices represent the experimental factors, 
and the predictive performance measures (derived from model fits, and spanning all possible 
combinations of modeling choices) represent the response data. This experimental design allows 
for formal statistical testing and quantification of the relative importance of the modeling choices. 

Our results provide statistically principled, data-driven guidelines for best-in-class modeling 
practices. Our findings suggest the use of elastic net or ridge regression applied to continuous 
valued response data, summarized using the area under the fitted dose response curve, and using 
all molecular features (in particular, gene expression data). Moreover, our results suggest that 
pathway targeted compounds lead to more accurate predictors than classical broadly cytotoxic 
chemotherapies. In addition, we performed detailed analysis comparing models based on 
continuous versus discretized response measurements, suggesting that discretizing data (e.g. into 
sensitive and resistant calls) causes decreased model accuracy. Finally, we report a discordance in 
reported values across the 2 datasets for the same compounds and suggest that raw dose-response 
data should be made publicly available to facilitate comparison of the 2 datasets based on the same 
procedures for processing and summarizing dose-response values. 

Our study provides a publicly available interactive resource of modeling results and an open 
source analysis package. The results for all >110,000 models are available at 
(https://www.synapse.org/#!Synapse:syn2009053), providing a resource for other researchers to 
interactively browse the results of all models and perform additional downstream analyses. 
Moreover, we are releasing the open source “predictiveModeling” R package 
(https://github.com/Sage-Bionetworks/PredictiveModel_pipeline and https://github.com/Sage-
Bionetworks/predictiveModeling), containing all code used to infer models in this study, and 
providing a modular API that may be extended by the community and used to conduct similar 
research studies. 

 
2. Material and Methods 
 
2.1 Data Sets 

The CCLE and Sanger datasets contain compound screening data performed on large panels of 
molecularly characterized cancer cell lines. Both datasets contain genome-wide gene expression 
and copy number profiling, as well as sequencing data on a subset of genes (described in the next 
section). Gene expression, copy number, and mutation data were summarized to gene-level 
features. The Sanger panel is composed of 30,672 genomic features and 138 compounds profiled 



	  
	  

	  

on 714 cell lines (535 cell lines contain all measurement types). The CCLE panel is composed of 
41,814 genomic features and 24 compounds profiled on 504 cell lines (411 cell lines contain all 
measurement types). All data was normalized as described in the original papers [5-9]. Mutation 
data was summarized to binary gene-level variables represented as 0 (wild type) and 1 (mutation). 
We also annotated each cell line with a representative “tumor type” label, derived by manually 
curating the provided meta-data annotations. Each tumor type was then included as a binary 
feature variable. 

 

Figure 1 – Summary of evaluation of regression models. (A) Results for CCLE. (B) Results for Sanger. The 
left panel displays the percent variance of predictive accuracy (COR) explained by each category of modeling choice 
after fitting our 4-way ANOVA model. The panels labeled Compound, ResponseSummary, Algorithm, and 
GenomicFeatures correspond to each of our tested categories of modeling choices, and display the distribution of 
predictive performance (COR) scores for each modeling choice (factor levels) within the category. For the CCLE 
Compound panel, compounds classified as “BroadlyCytotoxic” are displayed as shaded boxes and bold text, and 
compounds classified as “PathwayTargeted” are displayed as white boxes and non-bold text. The panel titled 
Compound Class displays the distribution of predictive performance scores for the BroadlyCytoxic vs. 
PathwayTargeted compound classes. 
 

Both studies provide multiple statistics used to summarize dose-response curves to compound 
sensitivity values for each cell line (described in the next section). We used the summarized 
sensitivity values reported in each dataset, as raw dose-response values were not available to 
process both datasets using the same procedures. 

 



	  
	  
	  

2.2 Definition of modeling choices 
Our goal was to systematically assess the effect of modeling choices on predictive 

performance given a drug response vector and a molecular feature matrix. We enumerated the 
following 5 categories of modeling choices, as well as the possible choices of modeling factors 
within each category 

 
Figure 2 – Summary of evaluation of classification methods. (A) Results for CCLE. (B) Results for Sanger. 

Results are presented as described in Figure 1, based on evaluation of classification models using the AUC predictive 
performance statistic. 
 

GenomicFeatures: Represent the distinct data types used as features in the predictive 
algorithms. In Sanger we have 4 distinct types: gene expression measurements (E) on 12,024 
genes; copy number variation measurements (C) on 18,601 genes; cell line tumor type 
classifications (L) according to 93 distinct tumor lineages; and mutation profiling (Mo) on 47 
genes. We tested 12 distinct data type combinations as shown in the GenomicFeatures panels in 
Figure 1B and Figure 2B (specifically, we tested all combinations other than those corresponding to 
small feature sets, such as L+Mo). For the CCLE panel we have 5 distinct data types: gene 
expression measurements (E) on 18,897 genes; copy number measurements (C) on 21,217 genes; 
cell line tumor type classifications (L) of 97 tumor lineages; mutation profiling (Mo) on 33 genes 
using the oncomap 3.0 platform [10]; and mutation profiling of 1,667 genes using hybrid capture 
sequencing (Mh). We tested 20 distinct data type combinations shown in the GenomicFeatures 
panels in Figure 1A and Figure 2A. 

Compound: Represents the anti-cancer compounds screened by the cell line projects. There 
are 138 compounds in Sanger and 24 in CCLE. 



	  
	  

	  

ResponseSummary: Represents the statistic used to summarize the dose response curves to a 
single number, corresponding to the degree of sensitivity of a given cell line to a given compound. 
For Sanger, the choices are: AUC – the area under the fitted dose response curve; IC50 – the 
concentration at which the compound reaches 50% reduction in cell viability. For CCLE, the 
choices are: ActArea – the area above the fitted dose response curve (inverse measure of AUC in 
Sanger); IC50 – the same as in Sanger; EC50 – the concentration at which the compound reaches 
50% of its maximum reduction in cell viability. We note that although they use the same 
terminology, both studies used different procedures for fitting dose response curves and generating 
summary statistics. 

Continuous vs. categorical models: Whether predictions are made based on continuous or 
discretized ResponseSummary measurements. We tested multiple discretization schemes, 
including: mean and median based deviation statistics; Gaussian mixture models; and upper/lower 
third quartile thresholds. We report results based on upper/lower third quartile thresholds, which 
was the discretization scheme that achieved the highest average classification accuracy (AUC). 

Algorithm: Represents the predictive algorithms compared in this study. In the analysis of 
continuous response variables, we compared: principal component regression (PCR); partial least 
square regression (PLS); least squares support vector machine regression with linear kernels 
(SVM); random forests (RF); least absolute shrinkage and selection operator (LASSO); ridge 
regression (RIDGE); and elastic net regression (ENet) [11-19, 27]. For the analysis of binary 
response variables, we considered: least squares support vector machine classification with linear 
kernels (SVM); random forests (RF); binomial least absolute shrinkage and selection operator 
(LASSO); ridge binomial regression (RIDGE); and elastic-net binomial regression (ENet) [8, 11, 
12, 14, 15, 20].  
 
2.3  Model fitting procedures 

We employed a multifactorial experimental design and tested all combinations of modeling 
choices (e.g. the cross product of all choices of ResponseSummary × Compound ×  
GenomicFeatures ×  Algorithm ×  Discretization, excluding application PCR and PLS to discrete 
data). This resulted in testing a total of 114,048 models. 

For Sanger and CCLE the input dataset was divided into five non-overlapping sample groups, 
used as cross-validation folds for training and testing data. For each cross-validation fold, each 
model was trained on 4/5ths of the samples, and used to make predictions of sensitivity for the held 
out 1/5th of samples. Within each training step, a separate 5-fold cross-validation procedure was 
employed for parameter tuning of each model. 

Predicted vs. observed response vectors were compared to assess the performance of each 
algorithm. The predicted response vector was computed by concatenating the prediction vectors 
for each cross-validation fold. For continuous models we computed the Pearson correlation 
coefficient (COR). For discrete models we computed area under the receiver operating 
characteristics curves (AUC). 
 
2.4 Statistical Analysis 

We evaluated the effect of modeling choices on predictive performance using multiway-
ANOVA with crossed factors. For instance, in the analysis of continuous models in the CCLE 
panel, we adopted COR as the response variable, and performed ANOVA using 4 factors: 



	  
	  
	  

GenomicFeatures, composed of 20 levels representing distinct data type combinations; 
Compound, composed of 24 levels, each representing one of the anti-cancer compounds tested in 
the CCLE panel; ResponseSummary, represented by levels ActArea, EC50, and IC50; and 
Algorithm represented by levels ENet, RIDGE, PLS, SVM, PCR, LASSO, and RF. For each one 
of the possible 20 × 24 × 3 × 7 = 10,080 modeling choice combinations, we fit a predictive model 
and recorded the correlation between the observed and predicted outcome as the response variable. 
Since we only have a single observation per modeling choice combination, our design corresponds 
to a multiway-ANOVA with 4 crossed factors and a single observation per cell. Hence, we cannot 
fit a complete model (i.e., with all interaction terms up to order 4) and we restrict our analysis to 
interactions of order up to 3. In addition to the analysis described above, we also performed 
analogous ANOVA analyses for the evaluation of continuous models in Sanger, discrete models in 
CCLE, and discrete models in Sanger. 

 
3. Results 
 
Modeling factors influencing predictive performance 
In order to assess the individual contributions of each category of modeling choices (and their 
interactions) to explaining the total variability of the predictive performance statistic (COR or 
AUC), we examined the decomposition of the total sum of squares of the predictive performance 
variable into residual sum of squares plus sum of squares terms for each one of the factors and 
factor interactions in our 4way-ANOVAs, including all possible interactions of order up to 3. We 
first describe results for continuous models. The left panels in Figure 1A and B present barplots in 
which each bar represents the sum of squares of the respective term divided by the total sum of 
squares. 

For both the CCLE and Sanger datasets, most of the variance of predictive accuracy is 
explained by the modeling factors considered in our study, as indicated by the small percent of 
variance attributable to residuals. For both CCLE and Sanger the modeling factors explaining the 
highest percent variance are: 1) the type of molecular features used to build the model; and 2) the 
compound being predicted by the model. The third most important modeling factor is the type of 
algorithm, although this factor is considerably less important than the first 2.  This result is 
consistent with previous studies [21], suggesting that input data is the dominant factor related to 
model performance, whereas the specific modeling strategies are of secondary importance. 

The CCLE dataset contains a strong interaction term between Compound and 
ResponseSummary, suggesting that model performance depends both on the compound being 
modeled, and the ability to summarize the compound’s dose response measurements. By contrast, 
ResponseSummary has negligible effect in the Sanger dataset. We point out that, although Sanger 
and CCLE both report response data in terms of IC50 and AUC (referred to as ActArea in CCLE) 
summarizations, the 2 studies use quite different procedures for fitting dose response curve and 
summarizing them to IC50 of AUC statistics. The discordant importance of the ResponseSummary 
factor between the 2 studies, compared with the highly concordant importance of all other factors, 
suggests that the procedures for summarizing dose response curves to summary statistics may be 
inconsistent between the 2 studies. Indeed, comparison of IC50 and AUC values for compounds 
profiled in both datasets suggests a relatively high degree of inconsistency (Figure 3). 
Unfortunately, raw dose response data used for curve fitting it not available in either study, 



	  
	  

	  

limiting our ability to investigate this issue further. This result highlights the importance of 
making raw forms of data publicly available, in addition to computed summary statistics, such that 
the community may more transparently analyze and improve the value of the data resource. 

 

Figure 3 – Comparison of IC50 and AUC summary statistics for 14 compounds and 283 cell lines in 
common between the Sanger and CCLE datasets. (A) Distribution of IC50 and AUC/ActArea values in Sanger and 
CCLE. Note that the AUC value reported in Sanger corresponds to the area under the dose response curve in which 
values of 0 correspond to complete reduction in cell viability and values of 1 correspond to no reduction in cell 
viability. The ActArea value reported in CCLE corresponds to the area over the dose response curve in which values 
of -100 correspond to complete reduction in cell viability and values of 0 correspond to no reduction in cell viability. 
Therefore a negative correlation is expected between AUC and ActArea values. (B) Scatter plots comparing 
AUC/ActArea values (top) and IC50 values (bottom) across the 2 studies. (C) Histograms of the distribution of 
correlations across the 2 studies for the 14 common compounds based on ActArea/AUC (top) and IC50 (bottom). 
 
Assessment of best performing modeling strategies 
The ANOVA analysis detected highly significant interaction and main effects in explaining 
predictive performance, indicating the importance of some modeling choices over others. Figure 1 
and Figure 2 depict boxplot panels for each one of the modeling choice factors in our analyses, 
showing the distribution of predictive performance as a function of the modeling factor levels. For 
both datasets, expression data was the most informative molecular feature type, as all of the best 
performing models included use of expression data. Models using other molecular features types 
in addition to expression data performed slightly better than using expression data alone, although 
performance improvements were modest. For both datasets, elastic net and ridge regression were 
the top performing algorithms. For the CCLE dataset, summarizing dose response values based on 
ActArea achieved the highest performance. For Sanger, response summarization had little effect 
on model performance, warranting closer investigation starting from raw dose response data. 

For both datasets, some compounds were easier to predict than others, as clearly shown by the 
Compound panels in Figure 1. Inspection of predictability scores for CCLE compounds suggested a 
general trend. Compounds with low predictability scores tended to be more classical 
chemotherapeutics that disrupt broad cellular processes (e.g. topoisomerase inhibitors). 
Compounds with high predictability scores tended to target proteins in specific pathways, 
primarily related to mitogen signaling (e.g. MEK inhibitors). To test this hypothesis, we manually 
annotated each compound in one of these 2 classes, which we called “BroadlyCytotoxic (BC)” and 



	  
	  
	  

“PathwayTargeted (PT)”. Indeed, PT compounds displayed significantly higher predictability 
scores compared to BC (P=0.003529 by Wilcoxon rank sum test, as shown in the top-right panel 
of Figure 1). 
 
Assessment of categorical models 
An alternative strategy to modeling the drug response as a continuous-valued variable is to 
discretize the response vector into a binarized “sensitive” and “resistant” vector. To evaluate this 
strategy, we implemented the categorical analogues of lasso, ridge, elastic net, random forests, and 
support vector machines, and discretized each response summarization (IC50, EC50, AUC or 
ActArea) base on the upper and lower third quartiles.  

Results from this analysis were highly consistent with results from our continuous models 
(Figure 2). For both CCLE and Sanger, the relative importance of model factors was consistent with 
results for continuous models (e.g. GenomicFeatures and Compound being most important, 
followed by Algorithm). The relative performance of modeling choices was also consistent 
between categorical and continuous models (e.g. the order of predictive performance of algorithms 
is fully consistent). 

One advantage of categorical models is the ability to interpret AUC values as the probability 
of correctly classifying a new sample as sensitive or resistant. For example, analysis of the 
distribution of AUC scores suggests that sensitive vs. resistant samples can be classified with 
>70% accuracy for 22 of 24 (91.7%) compounds in CCLE and 83 of 138 (60.1%) compounds in 
Sanger. More specific analysis of the AUC curves can be used to determine the expected trade-
offs between false positives and false negatives. We suggest that such analysis may be useful in 
assessing the potential clinical utility of a predictive model, for example, by applying criteria such 
as requiring less than a 5% false positive rate (e.g. correctly prescribing a drug to 95% of patients 
who might benefit) at the expense of a less than 20% false negative rate (e.g. failing to prescribe 
the drug to 20% of the patients who will benefit from it). Of course, such statistics derived from 
cell line studies are unlikely to directly translate in a clinical context, but may be useful to identify 
predictive models that should be prioritized for further clinical studies. 

 
Comparison of continuous vs. categorical models 
In order to directly compare the performance of continuous vs. categorical models, we computed 
the AUC scores of the rank-ordered predictions in comparison to the discretized response data. 
That is, we calculated the sensitivity and specificity at each threshold of the rank-ordered 
predictions in order to compute an ROC curve for each model. We based our comparison on the 
best performing regression and classification methods, which was elastic net in both cases (results 
were similar for other methods). In general, regression models, trained using continuous 
ResponseSummary values, outperformed classification models, trained using discretized 
ResponseSummary values (P<< 2.2e-16 for Sanger, based on AUC; P<< 2.2e-16 for Sanger, based 
on IC50; P<< 2.2e-16 for CCLE, based on ActArea; P=0.1587 for CCLE, based on IC50. See 
Figure 4. Classification methods outperformed regression methods only when using the CCLE IC50 
values, as explained by the fact that these values are inherently discretized. Sanger IC50 values 
utilized extrapolations of the curve fits beyond the tested concentration range. By contrast, out of 
11,670 IC50 values reported in CCLE (426 excluding NA values), 6,499 (55.69%) were set to a 
value of 8, corresponding to the maximum tested compound dose of 8µM (Figure 3A). 



	  
	  

	  

 

Figure 4 – Comparison of predictive performance of continuous (regression) vs. categorical (classification) 
models. Results were compared for the continuous and categorical versions of elastic net, which were the best 
performing continuous and categorical models. (A) CCLE data with ActArea, (B) CCLE data with IC50, (C) Sanger 
data with AUC, and  (D) Sanger data with IC50. 
 
4. Discussion 

As large-scale complex genomic resources become increasingly available, there is a pressing 
need to develop community standards and robust assessment methods to determine the best 
performing approaches for analyzing such data. Pharmacogenomic screens performed on 
genomically characterized cancer cell lines provide rich data resources, and application of 
machine learning methodologies to such data have demonstrated evidence of uncovering genomic 
mechanisms underlying drug response. 

From an analytical perspective, such pharmacogenomic data resources are particularly well 
suited to application of statistical learning methods by representing genomic and compound 
sensitivity data, respectively, as predictive features and response variables in a supervised learning 
scheme. In this study, we performed a controlled analysis of many modeling choices that may be 
used in this application. We believe this work contributes to the community in 3 ways: 1) by 
providing a set of recommended best practices for inferring pharmacogenomic predictive models, 
and a study on the relative importance of each; 2) by establishing a resource of over 110,000 
modeling results, providing a baseline set of scores that researchers may use in future studies to 
demonstrate improved performance of novel methodologies; 3) by providing an experimental 
design template, and open source modeling package, that can be extended for use in other 
predictive modeling applications. 

Our study suggests a statistically principled set of recommended best modeling practices: 
using elastic net or ridge regression with input features from all genomic profiling platforms, 
most importantly, gene expression features, to predict continuous-valued sensitivity scores 
summarized using the area under/over the dose response curve, with pathway targeted 
compounds will most likely yield the most accurate predictors. 

The use of elastic net regression is consistent with modeling choices reported in previous 
studies [14][16], and is a particularly attractive option due to the ability to perform feature 
selection based on inferred feature weights. We investigated several methods that have previously 
been shown to achieve superior predictive accuracy, but lead to less interpretable models, such as 
support vector machines, random forests, and principal components regression [22, 23]. 



	  
	  
	  

Nonetheless elastic net regression achieves the highest predictive accuracy without requiring a 
trade-off of model interpretability. Moreover, elastic net is designed to seek the optimal trade-off 
of model complexity penalties imposed by lasso and ridge regression. While the sparse feature 
selection encouraged by lasso indeed leads to inferior predictive performance, elastic net performs 
as well as ridge regression based on predictive accuracy, suggesting that elastic net effectively 
balances the strengths of the two methods by encouraging sparser models without compromising 
predictive accuracy. We note that although we employed standard and well-accepted cross-
validation schemes for parameter tuning of all models, it is possible that alternative methods could 
improve the performance of some models. 

The observation that gene expression features provide the most informative predictors might 
be explained by the increased “information content” of gene expression data. In particular, copy 
number values are highly correlated with each other and the mutation data profiles only a small 
subset of genes. Although gene expression data provides advantages in predictive accuracy, 
genomic (e.g. somatic mutation and copy number) data possess advantages in potential translation 
to clinical biomarkers. From a technical standpoint, the increased molecular stability of DNA 
compared to RNA facilitates easier development of clinical assays, even from archival samples. 
Perhaps more importantly, features derived from genomic data are more likely to correspond to 
functional driver events related to drug sensitivity, whereas features derived from gene expression 
may be correlative, rather than causal, biomarkers. Thus genomic features are more likely 
amenable to functional validation experiments, such as testing if knockdown or overexpression of 
predicted functional biomarkers confers the predicted suppression or enhancement of sensitivity. 
By extension, genomic predictors of drug resistance may suggest targets for combination therapies 
[24]. 

 

 
Figure 5 – Illustration of differences in dose response curves not captured by IC50 or EC50 statistics. (A) 

The red curve and black curve achieve 50% reduction in cell viability at the same compound concentration, but the 
black curve achieves increased reduction in cell viability at higher compound concentrations. Both curves correspond 
to the same IC50 value (vertical dotted green line), while the area under the dose response curve (AUC) captures the 
increased sensitivity shown in the black curve. The blue curve illustrates a sample with limited maximal reduction in 
cell viability at high compound concentrations. The EC50 statistic would be the same for the blue and black curves 
(vertical dotted green line), while the AUC statistic captures the increased response of the black curve. (B) The red 
and blue curves fail to reach 50% reduction in viability within the tested concentration range. The IC50 statistic would 
be set to the maximum tested concentration in both cases (or extrapolated outside the tested range), while the AUC 
statistic naturally captures the increased sensitivity displayed in the blue curve. 

 



	  
	  

	  

We also investigated alternative methods of assigning a summary statistic representing the 
sensitivity of a given cell line to a given compound. Predictive accuracy was improved by 
computing the area under/over the dose response curve (AUC/ActArea), as opposed to the more 
traditional metric of IC50. Following the theme described above, we suggest that AUC/ActArea 
captures more information from the experiment than IC50. Specifically, IC50 assumes a canonical 
sigmoidal shape of dose response curves, with zero growth inhibition in the absence of compound 
and 100% growth inhibition at high compound doses. This assumption fails to differentiate 
samples that achieve 50% growth inhibition at the same dose, even if one of the samples achieves 
far higher growth inhibition at higher doses (Figure 5A). An alternative statistic, EC50, is designed 
to account for this situation by computing the concentration at which a sample achieves 50% of its 
maximal growth inhibition; but this statistic suffers from additional degeneracies. Moreover, many 
samples do not achieve 50% growth inhibition within the tested dose range (Figure 5B). Therefore, 
IC50 calculations must set all such cases to a single threshold value (e.g. the highest tested dose, 
as reported for CCLE), or attempt to extrapolate based on fitted curves (as reported for Sanger). 
By contrast, the AUC/ActArea statistic is able to discriminate the examples listed above, and 
captures additional information contained in the dose response curves related to differential 
sensitivity (see Figure 5). 

Our observation that continuous regression models, in general, outperform discrete 
classification models also follows the general theme of using data with the maximal amount of 
information as model inputs. Discretization of sensitivity data reduces the amount of information 
contained in the continuous valued data. Such a trade-off may be desirable if discretization 
reduces noise in the data (e.g. by only modeling the tails of the data, which are more likely to 
correspond to true differences in sensitivity and resistance, while ignoring the noisy intermediate 
values). Although this argument may apply in selective cases, it is highly dependent on choosing 
an accurate discretization scheme. We investigated several alternatives, including mixture models 
and mean and median-based deviation statistics (not shown). We observed that each scheme 
worked in some cases but not others; e.g. deviation-based statistics may classify no samples as 
sensitive or resistant for some compounds, while quartile-based statistics do not capture variable 
numbers of samples that may be sensitive to different compounds. 

In addition to assessing the performance of modeling choices within our evaluated categories, 
we also assessed the relative importance of the categories themselves. Consistent with previous 
studies [21], our general conclusion is that the choice of input data (which molecular features are 
used and which compound is being predicted) dominates in explaining the high or low accuracy of 
a model. The choice of modeling algorithm also matters, but far less than the input data. While 
this conclusion may be sobering for data analysts (such as ourselves) in pursuit of the next great 
algorithm, we point out that our study was limited to machine learning methods designed to 
operate on specified feature and response data. Thus we suggest that optimization of 
methodologies in this context are unlikely to achieve dramatic improvements over current state-of-
the-art methods; however, methodologies that incorporate additional information sources, such as 
other large-scale genomic datasets or information from pathway databases, were not tested in our 
study and may yield such improvements. This intuition is consistent with our observation that the 
quality and information content of input data dominates predictive performance, as such strategies 
augment the amount of information used to build a predictor. Indeed, in a recent community-based 
assessment of genomic predictors of breast cancer survival, the best performing method integrated 
information from all of TCGA in addition to the dataset directly used to build predictors [25, 26]. 



	  
	  
	  

We note that our study does not assess all possible modeling choices. For example, we utilized 
the normalized genomic data provided by the CCLE and Sanger resources and did not assess the 
impact of alternative normalization or data processing procedures. We invite researchers 
throughout the community to build on and improve our work to investigate the myriad of 
additional approaches. Indeed, we hope the resource released by our study serves as initial input to 
a community effort promoting critical assessment of modeling methodologies. Innovative 
approaches developed by any researcher may be assessed in comparison to our results, thus 
providing a pre-defined set of performance criteria and baseline model scores against which novel 
approaches may objectively demonstrate their value. 
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