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Complex diseases such as major depression affect people over time in complicated patterns. Lon-
gitudinal data analysis is thus crucial for understanding and prognosis of such diseases and has
received considerable attention in the biomedical research community. Traditional classification and
regression methods have been commonly applied in a simple (controlled) clinical setting with a small
number of time points. However, these methods cannot be easily extended to the more general set-
ting for longitudinal analysis, as they are not inherently built for time-dependent data. Functional
regression, in contrast, is capable of identifying the relationship between features and outcomes
along with time information by assuming features and/or outcomes as random functions over time
rather than independent random variables. In this paper, we propose a novel sparse generalized func-
tional linear model for the prediction of treatment remission status of the depression participants
with longitudinal features. Compared to traditional functional regression models, our model enables
high-dimensional learning, smoothness of functional coefficients, longitudinal feature selection and
interpretable estimation of functional coefficients. Extensive experiments have been conducted on
the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) data set and the results
show that the proposed sparse functional regression method achieves significantly higher prediction
power than existing approaches.

Keywords: Depression, generalized functional linear model, STAR*D, longitudinal analysis, fused
Lasso, group Lasso

1. Introduction

The increasing life expectancy of the worldwide population has led to a growing number of
patients with serious mental disease such as depression. Research on the diagnosis and prog-
nosis of these diseases has received increasing attention in the biomedical domain. Depression,
or major depression (MD) is a common mental disorder affecting estimated 350 million peo-
ple worldwide, featured by symptoms such as depressed mood, loss of interest or pleasure,
feelings of guilt or low self-worth.1 It is expected to be the second leading cause of disability
worldwide.2 Though the efficacy of several antidepressant medications and therapies has been
proven, a universal and long-term treatment of MD has not been well explored due to its high
risk of relapses and recurrences.3

Like many other mental conditions, major depression affects people over time and it is
notorious for the chronicity. Thus, the analysis of longitudinal data is one crucial step towards
the understanding and prognosis of major depression. One valuable resource for such research
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is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial initiated by
National Institute of Mental Health (NIMH), which was originally designed for seeking the
optimal combination and sequence of treatment strategies for non-psychiatric depressed pa-
tients.3 Based on the evaluation of the therapeutic responses, participants in STAR*D may
receive up to 4 levels of treatments and their information such as symptomatic status, daily
functioning, treatment side effects is collected during every clinical visit.

In STAR*D, a range of clinical scales have been applied to evaluate or describe the sever-
ity of diseases. For instance, the 17-item Hamilton Rating Scale for Depression (HRSD17) is
collected via telephone interview for research purposes.3 The 16-item Quick Inventory of De-
pressive Symptomatology - Clinician Rated (QIDS-C16) provides the evidences for clinicians
to decide whether the patients proceed to the next treatment level.3 Exploring the longitu-
dinal relationship between clinical measurements (input features) and therapeutic responses
(outcomes) and detecting features with significant statistical power are two fundamental and
important research questions. Several tools based on machine learning techniques have been
developed for longitudinal study.4–7

In our paper, we adopt sparse functional regression for the longitudinal data analysis.
Functional data (FD) refers to the data samples whose features are viewed as random func-
tions or surfaces over one or more continuum such as time, spatial location.8,9 For instance,
the average daily temperatures observed in a weather station can be viewed as a functional
data sample over time; the intensity or color composition of a brain image can be taken as a
functional sample over spatial location.9 Functional data analysis (FDA), an important branch
of statistics, is referred to the statistical analysis built on functional data, where the random
functions are assumed to be independent and smooth.8–10 As the extension of classic regres-
sion methods to functional data, functional regression is used to estimate the relationship
among functional features. Variant forms of functional regression are applicable in different
problem setups. For example, it can be applied for regressing functional outcomes on scalar
features;9,11–13 it can also be applied on estimating relationships between functional features
and scalar outcomes.14–16 Under the assumption that the functional coefficient is sparse over
time, the FliRTI model was proposed by James et al.15 and it showed better predictive power
than regular functional regression models. However, the FliRTI model is only limited to the
settings with one functional feature. For higher flexibility, multivariate functional regression
models were developed. To enhance interpretability of the multivariate functional regression
model, Zhu et al.17 and Gertheiss et al.18 applied the group Lasso type constraint for curve
(functional feature) selection. Zhu et al.17 combined both functional features and scalar fea-
tures together in their model, however it imposed smoothness of coefficient functions only by
controlling the number of basis functions. Gertheiss et al.18 introduced the sparsity-smoothness
penalty for simultaneously selecting functional feature and controlling the smoothness of the
coefficient functions, however it does not incorporate extra scalar features or achieve sparse
feature effects over time. Fan et al.19 proposed a functional additive regression (FAR) model
which managed functional feature selection via concave penalties in both linear and non-linear
settings, while the resulting solutions are not interpretable in term of functional feature ef-
fects over time. Therefore, there is a need to develop a general and interpretable formulation
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of functional regression that simultaneously achieves functional feature selection, smoothness
of functional coefficients and interpretable estimation of functional coefficients.

In this paper, we propose a novel sparse generalized functional linear model for longitu-
dinal biomedical data analysis, which can be applied to predict the disease status based on
longitudinal features. Specifically, we empower basic functional regression models to simulta-
neously identify features with significant predictive power across time points with the group
Lasso penalty,20 enforce smoothness of functional coefficients with the fused Lasso penalty21

and achieve interpretable estimations of functional coefficients with the Lasso penalty.22 Since
the unknown coefficient matrix is a multiplication factor of the penalized term, the proposed
formulation is challenging to solve. Our proposed algorithm integrates the Alternating Direc-
tion Method of Multipliers (ADMM)23 and the accelerated gradient method (AGM)24,25 to
estimate the unknown coefficient matrix. We demonstrate the effectiveness and flexibility of
the proposed formulations for longitudinal data analysis using STAR*D data. Experimental
results show that the proposed method achieves better prediction performance with longitu-
dinal features than existing approaches.

The rest of the paper is organized as follows. We briefly introduce FDA and the basic
functional regression model in section 2. We propose a novel sparse generalized functional
linear model and present the algorithm to solve the proposed formulations in section 3. In
section 4, we evaluate the proposed sparse generalized functional regression model on STAR*D
data and report the experimental results. We conclude our paper in section 5.

2. Basics of Functional Regression

2.1. Functional Data Analysis

Functional data is usually assumed to be generated by an underlying smooth function. In
practice, a functional data sample consists of sequences of numerical values (or vectors) varying
over a certain continuum. For instance, the series of QIDS-C16 scores of a depression patient
over his/her visiting time can be considered as a functional data sample. Fig. 1 gives an
illustration of functional data. Sequences of QIDS-C16 scores of 6 depression patients are
recorded over 14 weeks. In the functional context, we assume each sequence of QIDS-C16

scores is generated by an underlying function varying over time t (weeks).
One important issue in FDA is to recover the underlying function based on the sequences

of observed numerical values. A common approach is to express the underlying function by a
linear combination of basis functions using smoothing techniques. Specifically, given the evalu-
ations of basis functions over time as features and the observed numerical values as outcomes,
the coefficients of basis functions can be fitted using least square methods with roughness
penalty.9 However, the basis smoothing technique is only effective when the functional data
is observed continuously or densely. When it comes to longitudinal data, observations are al-
ways sparse and irregular. Rice et al.26 contrasted and compared FDA with longitudinal data
analysis (LDA). James et al.27 and Yao et al.28 connected FDA and LDA by proposing ap-
proaches that estimate the underlying function of sparsely and irregularly observed functional
data by exploiting both population and individual information. The former extended the basis
smoothing technique with mixed effect models while the latter proposed the “PACE” method
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Fig. 1. Illustration of functional data. The QIDS-C16 scores of 6 patients are recorded over 14 weeks. In the
functional context, we assume each sequence of QIDS-C16 scores is generated by an underlying function.

which involves the kernel smoothing technique and computing the conditional expectation. In
our paper, we adopt PACE to estimate the underlying function of functional data.

2.2. Functional Regression Model with Functional Features and Scalar
Outcomes

In classic statistical analysis, regression methods play an important role in analyzing the
relationship between features (independent variables) and outcomes (dependent variables).
FDA extends the philosophy of classic regression to functional data and develops functional
regression which involves various models for different purposes.

When the features are functional and the outcomes are scalar, we have

Yi = α+

∫
Ωt

Xi(t)β(t)dt+ ϵi, i = 1, . . . , n, (1)

where n is the total number of samples, Yi is a scalar outcome of the ith sample, Xi(t) is a
1-dimensional functional feature of the ith sample, β(t) is a functional coefficient, Ωt is the
domain of continuum t, scalar α is a bias term, and ϵi corresponds to the scalar residual. Note
that the model above only allows one functional feature, which greatly limits its application.
A simple but useful extension to multiple functional features is

Yi = α+

p∑
k=1

∫
Ωt

Xik(t)βk(t)dt+ ϵi, i = 1, . . . , n, (2)

where Xik(t) is the kth functional feature of the ith sample, and βk(t) is the functional coeffi-
cient corresponding to the kth functional feature.

3. Proposed Sparse Functional Regression Models

In this section, we propose a novel sparse generalized functional linear model which simul-
taneously selects useful features, enforces smoothness of functional coefficients and achieves
interpretable estimations of functional coefficients. Suppose there are N samples and each sam-
ple has d scalar features s1, s2, . . . , sd and p functional features x1(t), x2(t), . . . , xp(t). Then, for
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the ith sample, we denote si = (si1, si2, . . . , sid)
T and xi(t) = (xi1(t), xi2(t), . . . , xip(t))

T . In matrix
form, we let S ∈ RN×d be the scalar data matrix with each row as a sample of d scalar features,
i.e., Si,· = sTi = (si1, si2, . . . , sid), and let X(t) be an N×p matrix of functions where the ith row
denotes the ith sample of p functional features i.e., Xi,·(t) = xi(t)

T = (xi1(t), xi2(t), . . . , xip(t)).
Let y = (y1, y2, . . . , yN )T ∈ RN×1 be the vector of scalar outcomes, and w = (w1, w2, . . . , wd)

T

be the coefficients of d scalar features and b(t) = (β1(t), β2(t), . . . , βp(t))
T be the vector of p

functional coefficients. Moreover, we assume the functional coefficients can be represented by
a set of kb basis functions Θ(t) = (θ1(t), θ2(t), . . . , θkb

(t))T , i.e., b(t) = BΘ(t), where B ∈ Rp×kb .
Then, for a known link function g(·), we have the generalized functional linear model

g(yi) =α+

d∑
g=1

sigwg +

p∑
h=1

∫
Ωt

xih(t)βh(t)dt = α+ siw +

∫
Ωt

xi(t)b(t)dt. (3)

In matrix form, we have

g(y) =α1+ Sw +

∫
Ωt

X(t)β(t)dt = α1+ Sw +

∫
Ωt

X(t)BΘ(t)dt, (4)

where 1 ∈ RN×1 is a column vectors of ones. When g(·) is the identity function, i.e., g(u) = u,
the proposed model is functional linear regression. Then the optimization procedure involves
minimizing the quadratic loss. When g(·) is the sigmoid function, the proposed model turns
out to be a functional logistic regression, i.e.,

Prob(y|S,X) =
1

1 + exp
(
−y ⊙

(
α1+ Sw +

∫
Ωt

X(t)BΘ(t)dt
)) , (5)

where “⊙” denotes the componentwise multiplication. Let Θ ∈ Rkb×T be the evaluation matrix
of Θ(t) at T time points, where Θ·,t ∈ Rkb×1 corresponds to the evaluation at time t. Then the
unknown coefficients α,w and matrix B can be obtained by minimizing the average logistic
loss (negative log-likelihood function),

L(α,w, B) =
1

N

N∑
i=1

log (1 + exp (−yi(α+ siw +
∑
t

X(t)BΘ·,t))). (6)

The logistic loss is convex and smooth and can be solved via standard optimization methods.
When βj(t) = 0, the changes of the jth functional feature has no effect on the outcome

at time t. We apply the Lasso penalty22 on BΘ, i.e., ∥BΘ∥1 =
∑

j,t |Bj,·Θ·,t|, resulting in
interpretable estimations, i.e., many entries of BΘ are zero. That is, the changes of many
features have no effects on prediction at some time points. For feature selection purpose,
we also introduce the group Lasso penalty20 with ∥BΘ∥2,1 =

∑
j=1,...,p∥Bj,·Θ∥2 which enforces

many rows of BΘ to be zero. If the jth row of matrix BΘ is zero, then the jth feature has no
predictive power along with time. In addition, we employ the fused Lasso penalty21 on matrix
BΘ to enforce the smoothness of the functional coefficients. The resulting sparse functional
logistic regression model with scalar features and functional outcomes can be obtained by

min
α,w,B

L(α,w, B) + λ1∥w∥1 + λ2∥BΘ∥1 + λ3∥BΘR∥1 + λ4∥BΘ∥2,1, (7)

where R is a T by T − 1 sparse matrix with Rj,j = 1, Rj+1,j = −1, and λ1, λ2, λ3, λ4 are the
tuning parameters. We solve problem (7) by alternately minimizing over α and w with B
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fixed, and minimizing over B with α and w fixed. Note that the penalty of w only involves the
Lasso penalty, and we have already known that the optimization in terms of w (i.e., sparse
logistic regression problem) can be solved efficiently by the Accelerated Gradient Methods
(AGM).24,25,29

The proposed sparse functional logistic regression model is much more challenging to
solve than usual multi-task learning algorithms since the unknown coefficient matrix B is a
multiplication factor of the penalized term BΘ. In this paper, we integrate the Alternating
Direction Method of Multipliers (ADMM)23 and AGM24,25 to solve B. When α and w are
fixed, we write the objective (7) in the following form:

min
B

L(α,w, B) + λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1

s.t. BΘ = Z.
(8)

Then, the augmented Lagrangian function is given by

Lρ(B,Z, ξ) = L(α,w, B) + λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1 + ⟨ξ,BΘ− Z⟩+ ρ

2
∥BΘ− Z∥2F , (9)

where ξ ∈ Rp×T is the lagrangian dual variable and ρ is a penalty parameter. The ADMM-
based procedures for solving the unknown matrix B in the proposed sparse functional logistic
regression at the kth iteration can be described as follows:23

B(k) := min
B

E(B) = min
B

L(α(k),w(k), B) + ⟨ξ(k−1), BΘ− Z(k−1)⟩+ ρ

2
∥BΘ− Z(k−1)∥2F , (10)

Z(k) := min
Z

λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1 + ⟨ξ(k−1), B(k)Θ− Z⟩+ ρ

2
∥B(k)Θ− Z∥2F , (11)

ξ(k) := ξ(k−1) + ρ(B(k)Θ− Z(k)). (12)

For the B-update step (10), the unknown matrix B can be solved by the accelerated gradient
descent method24,25,29 with gradient

∇BE(B) = − 1

N
UT (1− p) + ρ(BΘ+

ξ(k−1)

ρ
− Z(k−1))ΘT ,

where

U = [y1
∑
t

X1,·(t)
TΘT

·,t, y2
∑
t

X2,·(t)
TΘT

·,t, . . . , yN
∑
t

XN,·(t)
TΘT

·,t]
T ,

p = 1./

(
1+ exp

(
−y ⊙

(
α(k) + Sw(k) +

∑
t

X(t)BΘ·,t

)))
,

and “./” denotes the componentwise division. For the Z-update step (11), it has been shown
that the proximal operator can be solved efficiently in two stages as stated in the following
lemma,30

Lemma 3.1. Given vectors u,v ∈ R1×T , penalty parameters γ1, γ2, γ3, and the sparse matrix
R defined as above, let

F(v) = argmin
u

1

2
∥u− v∥22 + γ1∥u∥1 + γ2∥uR∥1,

G(v) = argmin
u

1

2
∥u− v∥22 + γ3∥u∥2,

FG(v) = argmin
u

1

2
∥u− v∥22 + γ1∥u∥1 + γ2∥uR∥1 + γ3∥u∥2.

(13)
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Then, the following relationship holds

FG(v) = G(F(v)). (14)

The details of the proposed algorithm for solving (7) are summarized in Algorithm 1. Steps
3 and 4 are solved by AGM, and readers may refer to Liu et al.29 for more details. In terms
of solving the fused Lasso problem (step 6), readers may refer to Liu et al.31 The ADMM
parameter ρ is fixed as a constant in our experiment.

Algorithm 1 Sparse Functional Logistic Regression

Input: y ∈ RN×1, S ∈ RN×d, X(j) ∈ RN×p, j = 1, . . . , T , Θ ∈ Rkb×T , R ∈ RT×(T−1), ρ ∈ R
Output: α ∈ R, w ∈ Rd×1, B ∈ Rp×kb

1: Initialize starting points α(0), w(0), B(0), ξ(0), Z(0)

2: for k = 1 : K do
3: (α(k),w(k)) := argminα,w L(α,w, B(k−1)) + λ1∥w∥1
4: B(k) := argminB L(α(k),w(k), B) + ⟨ξ(k−1), BΘ− Z(k−1)⟩+ ρ

2∥BΘ− Z(k−1)∥2F
5: for i = 1 : p do
6: ui := argminz

ρ
2∥B

(k)
i,· Θ+ ξ

(k−1)
i,· /ρ− z∥22 + λ2∥z∥1 + λ3∥zR∥1

7: Z
(k)
i,· := argminz

ρ
2∥ui − z∥22 + λ4∥z∥2

8: end for
9: ξ(k) := ξ(k−1) + ρ(B(k)Θ− Z(k))

10: end for

4. Experiments

In this section, we evaluate the proposed sparse functional logistic regression model on the
STAR*D data set. We use the functional data analysis codea for the construction and evalua-
tion of basis functions. We also use the PACE packageb for estimating the underlying smooth
functions of functional data.

4.1. STAR*D Data Set

The STAR*D project consists of four treatment levels aimed to help outpatients achieve de-
pressive symptom remission with measurement-based care treatment.32 Throughout STAR*D
study, the QIDS-C16 score, which measures the general symptoms of depression, provides clin-
icians evidences for deciding the remission status of patients.32 All the participants enrolled to
STAR*D receive the same antidepressant treatment at level 1, where the selective serotonin
reuptake inhibitor citalopram is used. If the participant’s therapeutic response is satisfactory,
i.e., QIDS-C16 <= 5, he/she will be recommended to the follow-up phase. If the initial therapy
is not sufficiently effective on the participants, they will be recommended to the level 2 treat-
ment. At level 2, participants will enter into a set of randomized clinical trials. In a similar

ahttp://www.psych.mcgill.ca/misc/fda/software.html
bhttp://www.stat.ucdavis.edu/PACE/
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manner, participants who fail to achieve satisfactory responses will enter level 2A, level 3 and
up to level 4. In this paper, we concentrate on the longitudinal analysis of the data collected
from level 1 and level 2. Since all the participants receive the same treatment at level 1, the
questions we aim to address in this paper are: Can we use the level 1 information to predict
the participant’s remission status at level 2? Which features are most important for the pre-
diction of remission status? How do the important longitudinal features affect the prediction
over time?

Fig. 2. This figure gives a brief description of the STAR*D data used in our experiment. In our experiment,
we use the scalar features at level 1 baseline and level 2 baseline and the longitudinal features at level 1. Note
that the longitudinal data is observed sparsely and irregularly. Therefore, if we align the longitudinal data in
a regular time grid as shown in the figure, some feature values will appear as the “missing” values. In our
experiment, we first estimate the underlying curves using PACE28 and then evaluate them on a dense grid of
time points.

At each level of treatment, clinical visit information including medication names and doses,
side effect intensity, burden and frequency, is collected every 2 or 3 weeks during the acute
treatment stage. In our study, we name the time point based on the duration time from
baseline to the clinical visit, e.g., “W2” refers to the time point 2 weeks after baseline. At
level 1, there are 7 time points scheduled for the regular visits, i.e., W0, W2, W4, W6, W9,
W12, W14. Fig. 2 gives a brief description of the STAR*D used in our experiment. The red
matrices in Fig. 2 refer to the longitudinal data stated above. Besides the longitudinal data,
the enrolment information involving Cumulative Illness Rating Scale, demographics, HRSD,
Medication History, Protocol Eligibility, Psychiatric History, and some level 1 W0 information
without further follow-up are also available for the prediction. Those information refers to the
level 1 baseline scalar features and corresponds to the blue matrix in Fig. 2. Moreover, we also
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want to test the predictive power of the information collected at level 2 baseline (i.e., week 0
at level 2) since the participants did not receive new treatments at that time. These level 2
baseline scalar features are diagramed as the green matrix in Fig. 2.

In STAR*D, there are 730 participants in total entering level 2 with their level 1 longitudi-
nal information recorded until W12 or W14. After eliminating extremely sparse observations,
we have a total number of 596 samples with 202 longitudinal features (LV1 L) available for
analysis. There are 1438 level 1 baseline scalar features (LV1 S) and 1667 level 2 baseline scalar
features (LV2 S) where the missing values for categorical features are imputed by zeros and
the missing values for continuous features are imputed by the mean values. For research pur-
poses, the 16-item Quick Inventory of Depressive Symptomatology – Self-Report (QIDS-SR16)
is used as outcomes in many existing studies.32 In our experiments, we also adopt QIDS-SR16

as the criterion of remission, and define QIDS-SR16 <= 5 as remission and a QIDS-SR score of
> 5 as non-remission. We evaluate our proposed sparse functional logistic regression model on
differentiating the remission cohort from non-remission cohort with available level 1 and level
2 features. Moreover, we classify the remission samples and a subgroup of non-remission sam-
ples whose QIDS-SR16 >= 11; this subgroup is sometimes referred to as severe depression.32

Detailed sample statistics are shown in Table 1.

Table 1. The sample statistics of the STAR*D data used in our experiments. Group
(All) refers to all qualified samples for the experiment; and Group (Sub) refers to the
remaining samples after removing those with QIDS-SR16 between 6 and 10.

Cohort Remission (+) Non-remission (−) Total Data Name Dim
Group (All) 240 356 596 LV1 S 1438
Group (Sub) 240 161 401 LV1 L 202

LV2 S 1667

4.2. Predicting Remission Status at Level 2

We compare the proposed sparse functional logistic regression with two classic multivariate
classifiers, i.e., Random Forest and sparse logistic regression on exactly the same training
and testing sets. Our report presents the average accuracy, sensitivity and specificity and
the corresponding standard deviations obtained from the 5-fold cross-validation. In all the
experiments, both the parameters of sparse functional logistic regression and the sparse logistic
regression are tuned via 5-fold cross-validation in the training process. We use B-spline basis
functions in our proposed sparse functional logistic regression model, which are the common
choice for approximating non-periodic functions.9

We first conduct the classification experiment on the level 1 longitudinal data. For classi-
fiers such as Random Forest and sparse logistic regression, the input data is the the average
of the longitudinal features over time. The detailed report is shown in Table 2. Compared
with Random Forest and sparse logistic regression, the classification performance achieved
by the proposed sparse functional logistic regression is consistently better demonstrating the
effectiveness of the sparse functional logistic regression in capturing the temporal information.
In addition, we observe that, when the sparse functional logistic regression is applied, the level
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Table 2. Comparisons of classification performance between Random Forest, sparse logis-
tic regression and sparse functional logistic regression on the longitudinal STAR*D data.

Experimental Results Using All Samples

LV1 L LV1 S+LV1 L LV1 S+LV1 L+LV2 S
Random Forest

Accuracy (%) 68.63 ± 1.16 69.47 ± 2.23 68.46 ± 3.12
Sensitivity(%) 68.83 ± 3.31 68.83 ± 4.28 67.71 ± 5.17
Specificity(%) 68.33 ± 2.72 70.42 ± 2.72 69.58 ± 2.38

Sparse Logistic Regression
Accuracy (%) 65.94 ± 2.31 66.28 ± 3.19 63.76 ± 2.30
Sensitivity(%) 64.61 ± 5.19 66.02 ± 4.92 60.41 ± 4.43
Specificity(%) 67.92 ± 6.00 66.67 ± 2.08 68.75 ± 6.91

Sparse Functional Logistic Regression
Accuracy (%) 69.79 ± 2.38 70.30 ± 1.60 70.30 ± 1.95
Sensitivity(%) 70.83 ± 5.31 72.50 ± 5.78 73.33 ± 6.97
Specificity(%) 69.10 ± 3.20 68.82 ± 2.48 68.27 ± 3.12

Experimental Results Using Samples With QIDS C16 ≤ 5 and QIDS C16 ≥ 11

LV1 L LV1 S+LV1 L LV1 S+LV1 L+LV2 S
Random Forest

Accuracy (%) 73.84 ± 6.66 74.09 ± 6.56 74.08 ± 4.74
Sensitivity(%) 75.25 ± 11.50 75.23 ± 8.44 73.35 ± 10.46
Specificity(%) 72.92 ± 4.89 73.33 ± 6.32 74.58 ± 2.72

Sparse Logistic Regression
Accuracy (%) 72.58 ± 3.99 73.08 ± 4.23 74.82 ± 4.53
Sensitivity(%) 68.37 ± 7.11 70.87 ± 7.41 75.19 ± 9.74
Specificity(%) 75.42 ± 3.09 74.58 ± 3.09 74.58 ± 2.28

Sparse Functional Logistic Regression
Accuracy (%) 77.81 ± 4.11 77.82 ± 4.89 77.07 ± 4.54
Sensitivity(%) 79.17 ± 2.08 78.75 ± 4.01 77.92 ± 3.78
Specificity(%) 75.81 ± 10.77 76.46 ± 9.51 75.83 ± 10.45

1 and level 2 baseline scalar features are not helpful for improving classification performance.
We obtain similar observations when applying Random Forest and sparse logistic regression.
Since only using longitudinal data at level 1 leads to satisfactory classification performance,
we may conclude that most of the information in the level 1 and level 2 baseline data is cap-
tured by the longitudinal data at level 1. The experimental results further demonstrate the
importance of mining longitudinal data.

Besides the superior predictive performance, the sparse functional logistic regression is
also capable of selecting significant longitudinal features and giving interpretable solutions. In
our experiments, most meaningful and interesting longitudinal features including side effect
frequency, side effect burden, and QIDS-C current score, are selected as a result of the group
sparsity constraint. Moreover, the functional coefficients can be visualized to provide deeper
insights for understanding the effects of longitudinal features on predicting remission status
over time. In Fig. 3, we show 6 important functional coefficients obtained from the task of
differentiating participants with QIDS-SR16 <= 5 from those with QIDS-SR16 >= 11. From
the figure, we can see that the effect of FG-FISGQ = 0 (side effect frequency) decreases from
W0 to W6 and then increases over time. For feature FG-GRSEB = 0 (side effect burden),
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Fig. 3. The functional coefficients of some selected longitudinal features via sparse functional logistic re-
gression. Feature FG-FISGQ= 0 relates to side effect frequency; feature FG-GRSEB= 0 relates to side effect
burden; feature PRS-HERAT-PRS= 0 relates to clinical measurements of heart; feature QC-CSUIC= 0 re-
lates to QIDS Suicidal ideation; feature QS-SENGY= 0 relates to QIDS Energy/fatigability; and feature
CC-QCCUR= R relates to QIDS-C current score.

we observe that the effects are zero during W12 to W14, which indicates the corresponding
feature values during that period make no contributions to the prediction. The sparse and
interpretable results are due to the use of Lasso and fused Lasso penalty. From all the plots,
we also observe that all the obtained functional coefficients are smooth, which demonstrates the
effectiveness of the fused lasso penalty in controlling the smoothness of coefficient functions.

5. Conclusions

In this paper, we propose a novel sparse generalized functional linear model for the longitu-
dinal analysis of STAR*D data. Compared to traditional functional regression models, our
model has the advantages of simultaneously achieving high-dimensional learning, smooth-
ness of functional coefficients, longitudinal feature selection and interpretable estimation of
functional coefficients. We conduct extensive experiments on the STAR*D data set and the ex-
perimental results demonstrate that the proposed sparse functional regression model achieves
significantly higher longitudinal prediction power than existing approaches.

Since the proposed models have shown great effectiveness in capturing temporal informa-
tion, we intend to apply them to investigate the predictive effects of the biomarkers on other
longitudinal problems such as the progression of Alzheimer’s Disease (AD). Moreover, we plan
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to further study the theoretical properties of the proposed models in the future.
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