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Label propagation methods are extremely well-suited for a variety of biomedical prediction tasks
based on network data. However, these algorithms cannot be used to integrate feature-based data
sources with networks. We propose an efficient learning algorithm to integrate these two types of
heterogeneous data sources to perform binary prediction tasks on node features (e.g., gene priori-
tization, disease gene prediction). Our method, LMGraph, consists of two steps. In the first step,
we extract a small set of “network features” from the nodes of networks that represent connectivity
with labeled nodes in the prediction tasks. In the second step, we apply a simple weighting scheme
in conjunction with linear classifiers to combine these network features with other feature data. This
two-step procedure allows us to (i) learn highly scalable and computationally efficient linear clas-
sifiers, (ii) and seamlessly combine feature-based data sources with networks. Our method is much
faster than label propagation which is already known to be computationally efficient on large-scale
prediction problems. Experiments on multiple functional interaction networks from three species
(mouse, fly, C.elegans) with tens of thousands of nodes and hundreds of binary prediction tasks
demonstrate the efficacy of our method.
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1. Introduction

Network-based prediction algorithms are widely used in biomedical prediction tasks.1–3 These
prediction tasks often share a number of properties – a small number of labeled nodes (e.g.,
genes or patients), a large number of unlabeled nodes, and sparse connectivity among the nodes
– that make label propagation algorithms particularly well-suited to the domain. In particular,
algorithms proposed by Zhu et al.4 and Zhou et al.5 have only a single free parameter and
permit very efficient implementations, and can therefore be applied to very large prediction
problems with very little labeled data. Despite their simplicity, these algorithms perform
surprisingly well on prediction benchmarks, see for example, Refs. 6 and 7.

However, “feature-based” data are often available for individual nodes in the networks –
for example, gene features could include the presence of particular protein domains, sequence
conservation levels, associations with disease, phenotypes associated with its deletion mutants.



Representing this feature data by a network-based similarity measure requires grouping fea-
tures and measuring similarity among feature profiles. This approach loses information about
individual feature values, as well as generating a dense similarity network that slows down
label propagation algorithms. In this paper, we describe a new algorithm related to label
propagation which retains many of its advantages while also allowing heterogeneous feature
and network data to be integrated into a common framework.

Although the algorithm we describe can be applied to any domain, for concreteness and
because of the existence of comprehensive benchmark data, we consider the problem of pre-
dicting gene function from heterogeneous genomic and proteomic data sources.8–11 Here, one
is given a set of genes (query) with a given annotation, and asked to find genes similar to
the query. The classic example of this type of problem is predicting Gene Ontology (GO)
annotations but could also involve predicting disease associated genes. Functional interaction
networks are a widely used representation to capture information about shared gene function
present in genomic and proteomic data sources.8,11 A popular approach to solving this prob-
lem is to combine these networks into a composite network6,12 and, along with a set of labels
that describe the gene function, use them as inputs to a graph-based learning algorithm such
as label propagation.4,5 The main advantage of these methods is that they are computation-
ally efficient. Both label propagation and the method of Tsuda et al.12 admit a solution of
the form P−1q, where P is a sparse matrix, and can be computed by solving a sparse linear
system whose time complexity is almost linear in the number of non-zero entries in P .13

Despite being computationally efficient, the algorithms proposed by Tsuda et al.12 and
Mostafavi et al.6 cannot be used to integrate feature-based data sources (attributes) with
networks. A natural solution to this problem is to construct a similarity grapha (preferably
sparse) from the feature-based data. This can be done by first computing a kernel matrix
from the features, for example, using the dot-product kernel or the radial basis function
(RBF) kernel, and then by using an appropriate method to sparsify the dense kernel matrix.
However, as mentioned above, the main drawback of this approach is the potential loss of
information during the graph construction step and the inability to produce interpretable
models. By interpretable models, we mean linear prediction models learned from feature-based
data sources that allow us to assess the importance of the learned weights/parameters.

Another solution is to use multiple kernel learning (MKL).14 Given a set of kernels {Kd},
the goal of MKL is to learn a (linear) combination of kernels, K =

∑
d µdKd (where µd ≥ 0 are

the weights assigned to the individual kernels), along with the classifier parameters. Although
there has been a lot of progress in designing efficient optimization methods for MKL (see, for
example, Refs. 15 and 16, and references therein), these methods are not efficient to solve the
specific problem of learning from multiple graphs for several reasons. In order to use MKL
on graphs, we have to first compute a kernel on graphs.17 Unfortunately, the resulting kernel
matrix is dense and storing a pre-computed kernel matrix is infeasible for graphs with tens
of thousands of nodes. Also, it is not possible to compute graph kernels “on-the-fly” unlike,
for example, an RBF kernel, thereby forcing us to store the entire kernel matrix in memory.
Furthermore, training a kernelized classifier (for example, non-linear SVMs) is computationally

aWe use the terms graph and network interchangeably.



more expensive than training a linear classifier, and has the drawback of not being able to
produce interpretable models. Although several advances have been made in machine learning
to scale linear classifiers (see, for example, Ref. 18), large-scale learning of kernelized (non-
linear) classifiers still remains a difficult problem to solve.

We propose a computationally efficient two-step procedure to integrate multiple functional
interaction networks and feature-based data sources for gene function prediction. First, we
extract a small set of discriminative features from the network nodes. Then, we apply a
simple weighting scheme in conjunction with linear classifiers to combine these features. When
compared to the methods proposed by Tsuda et al.12 and Mostafavi et al.,6 our method has the
advantage of being able to combine networks with feature-based data sources. Furthermore,
our method allows us to learn highly scalable and efficient linear classifiers for gene function
prediction from tens of thousands of nodes and hundreds of GO biological process categories.
Using our method, we were able to train classifiers much faster than label propagation which
is already known to be computationally efficient on large-scale prediction problems.

1.1. Preliminaries

Given k undirected graphs, Gd = (V,Ed), d ∈ {1, . . . , k}, each of them having n nodes, and a
set V` ⊂ V of labeled nodes, the goal is to learn a binary classifier f : V → {0, 1} to predict
node labels by using (edge) information from all the graphs. For single graphs, the standard
approach to learn such a classifier is to propagate labels in the graph.4,5 Let W = (wij)i,j=1,...,n

denote the weighted adjacency matrix of the graph, D denote the diagonal degree matrix
whose entries are dii =

∑
j wij, ∀i ∈ {1, . . . , n}. Let L denote the unnormalized graph Laplacian

defined as L = D −W . Label propagation is reduced to the following optimization problem:

f̂ = argmin
f∈Rn

∑
i∈V`

(fi − yi)2 + λ
∑
i,j∈E

wij(fi − fj)2

= argmin
f∈Rn

∑
i∈V`

(fi − yi)2 + λf>Lf ,
(1)

where y is the label vector and λ > 0 is a regularization parameter. The estimate f̂ can be used
to score/rank the nodes where higher scores imply higher confidence in the classifier to assign
a positive label to the nodes. Label propagation is a transductive learning algorithm where
unlabeled examples are used for training. Since gene function prediction is a highly unbalanced
classification problem, we redefine the labels to take one of three values from {-1,+1,u} and
label all the unlabeled nodes with u = (n+ − n−)/n, where n+ and n− are the number of
positive and negative labels respectively.6 The solution to this problem can be computed by
solving the sparse system of equations: (L+ λI)f̂ = y, where I denotes the identity matrix.

To combine multiple graphs, we construct a composite graph with adjacency matrix
W =

∑k
d=1 µdWd, where µd ≥ 0 are the weights assigned to the individual graphs. If these

weights are known, then we can compute the corresponding composite Laplacian and plug
it into the optimization problem (1). Tsuda et al.12 showed that the weights {µd} can be



computed by solving for

µ̂ = argmin
µ

y>

(
I +

k∑
d=1

µdLd

)−1
y, s.t.

∑
d

µd ≤ λ .

Mostafavi et al.6 proposed another algorithm to compute the network weights and showed
that it performed better than the method of Tsuda et al.12 In this algorithm, network weights
are estimated by solving the following constrained linear regression problem:

µ̂ = argmin
µ
‖T −

∑
d

µdWd‖22, s.t. µd ≥ 0, ∀d ∈ {1, . . . , k} , (2)

where T is the target matrix whose entries are tij = (n−/n)2 if genes i and j are both positive
and −n+n−/n2 if genes i and j have opposite labels.

2. Methods

2.1. Extracting features from graph nodes

We first describe a method to extract discriminative features from graphs, where by discrimi-
native we mean that the feature extraction method takes label information into account. Our
feature extraction method is based on the 3Prop algorithm proposed by Mostafavi et al.19

that labels the nodes of graphs using only three degrees of propagation. Let P = D−1W de-
note the transition probability matrix of the graph. The entries pij of P are the probability
that a random walk of length one starting from node i ends at node j. The r-step proba-
bility matrix P r can be similarly interpreted as the random walk probabilities of length r.
Let y denote the 0/1 vector of labels used for training. Now, if we compute the matrix-vector
product x(r) = P ry, then the i-th element x(r)i can be interpreted as the probability that a
random walk of length r from node i ends at a positively labeled node. Mostafavi et al.19

argued and demonstrated empirically that random walks of length at most three suffice to
propagate labels in biological networks. We use these probabilities as features for the nodes
in the graph, i.e., for every node i ∈ V , we form the three-dimensional 3Prop feature vector
[x

(1)
i , x

(2)
i , x

(3)
i ]. Note that the probability matrix P is asymmetric. A symmetric version can be

computed by setting P = D−1/2WD1/2. Algorithm 2.1 describes the feature extraction method.
It is important to note that this feature extraction method is computationally highly efficient.
As shown in Step 2 in Algorithm 2.1, it is not necessary to explicitly compute P (r) using dense
matrix-matrix products; instead, it can be computed efficiently in a recursive manner using
only sparse matrix-vector products. Given these features, we learn a binary linear classifier
h : X → {0, 1}, where X denotes the feature space, parameterized by a weight vector w ∈ R3

and make predictions as h(x) = w>x. Note that h(·) is essentially a scoring function that can
be used to score/rank nodes according to how confident the classifier is for the nodes to have
a positive label.

2.2. Combining multiple graphs

We extract 3Prop features from the nodes of all the k graphs using the feature extraction
method described in Algorithm 2.1. The next step is to learn a classifier by combining all



Algorithm 2.1 3Prop - Feature extraction from graph nodes

Input: Graph G = (V,E) (|V | = n) with adjacency matrix W and degree matrix D, label
vector y ∈ {0, 1}n

Output: Feature matrix X ∈ Rn×3

1: Compute P = D−1W (asymmetric) or P = D−1/2WD−1/2 (symmetric)
2: Compute x(1) = Py, x(2) = Px(1), x(3) = Px(2)

3: return X = [x(1)|x(2)|x(3)]

these feature sets. A principled solution to this problem is to use multiple kernel learning
(MKL). It is important to note that we do not have to design a kernel given the features
extracted from the graph nodes. In other words, MKL can applied with a linear kernel. This
greatly reduces the computational complexity of learning classifiers in the MKL framework
and allows us to scale our method to graphs with thousands of nodes. Although several
advances have been made to solve the MKL problem, it has been found that a uniform
weighting of kernels is a hard baseline to outperform.20,21 Cortes et al.21 proposed a simple yet
computationally efficient algorithm that was shown to perform better than uniform weighting
and also traditional MKL methods.14 The algorithm consists of two steps: first, independent
classifiers are trained using each of the given kernels; then, the weights of these classifiers
are determined using an appropriate weighting scheme. We use a similar approach in our
algorithm and describe the two steps below.

We use regularized least-squares regression (RLSR) since the loss function minimized by
label propagation is squared loss noting, however, that any loss function such as the hinge loss
(SVM), the logistic loss (logistic regression) or the ranking loss (RankSVM22) can be used.
We solve the following set of (independent) optimization problems to estimate the parameters
of the classifiers, one for each of the k graphs:

ŵd = argmin
w

∑
i

(yi − w>xid)2 + λ‖w‖22 , ∀d ∈ {1, . . . , k} ,

where we have used xid ∈ R3 to denote the 3Prop feature vector for the i-th node in graph
d. The solution to this problem can be computed in closed form as ŵd = (X>d Xd + λI)−1X>d y,
where Xd ∈ Rn×3 is the feature matrix corresponding to the graph Gd (cf. Algorithm 2.1).
Note that computing this solution requires the inversion of a small 3× 3 matrix. In practice,
we found this method to be much faster than label propagation (1).

We then evaluate the performance of these classifiers on a separate validation set and use
this performance measure directly as the network weights {µd}. Specifically, we use the area
under the ROC curve (AUC) as the performance measure, which is defined as follows:

AUC(y, ŷ) ∝
∑

(i,j):yi>yj

(
[ŷi > ŷj ] +

1

2
[ŷi = ŷj ]

)
, (3)

where y and ŷ are the target and the predicted label vectors respectively, and [p] = 1 if p is
True and 0 otherwise. We use AUC since the data sets in this domain are typically highly
unbalanced and the use of other performance measures such as 0/1 error is not useful in such



Algorithm 2.2 LMGraph - Learning from Multiple Graphs

Input: k undirected graphs, Gd = (V,Ed) (|V | = n) with adjacency matrix Wd, label vector
y ∈ {0, 1}n, training and validation set indices t, v ⊂ {1, . . . , n}

Output: classifier parameters {w1, . . . , wk}, network weights {µ1, . . . , µk}

1: For all i ∈ {1, . . . , n}: ỹi = yi if i ∈ t, 0 otherwise {training labels}
2: for d = 1 . . . k do
3: Xd = 3Prop(Gd, ỹ) {extract features}
4: wd = RLSR ((Xd)t, (ỹ)t) {train classifier}
5: For all i ∈ {1, . . . , n}: ȳi = yi if i ∈ v, 0 otherwise {validation labels}
6: µd = AUC ((ȳ)v, (Xd)vwd) {estimate network weights}
7: end for
8: return {w1, . . . , wk}, {µ1, . . . , µk}

scenarios. We note that Cortes et al.21 used a learning method (for example, SVM, Lasso
or RLSR) to learn the weights {µd} of the independent models using their predictions on
the validation set as “features.” While it is indeed possible to optimize AUC22 and learn
the weights {µd}, we refrained from following this approach because training a RankSVM
is computationally expensive. Our own experience with learning these weights by solving the
constrained least-squares regression problem: argmin0≤µ≤1

∑
i (
∑

d µdhd(xi)− yi)
2 did not result

in performance gains when compared to simply using AUC for the network weights.
Algorithm 2.2 describes our method, LMGraph, for gene function prediction from multiple

graphs. The final predictions are made according to ŷ(x) =
∑

d µdhd(x) =
∑

d µd · (w>d x). Given
this algorithm, it is straightforward to integrate feature-based data sources with the functional
interaction networks – we simply combine any additional feature-based data with the 3Prop
feature sets extracted using Algorithm 2.1 and train LMGraph described in Algorithm 2.2
using these feature sets.

3. Results and Discussion

3.1. Data sets and experimental setup

The data sets in our experiments consists of multiple functional interaction networks in three
species – mouse, fly and C.elegans. The mouse data set consists of seven networks with 19,559
genes constructed from gene expression, protein interaction and domain composition data.
To demonstrate the integration of feature-based data with networks, we also included 6,273
protein domain features extracted from Ensembl.23 The fly data set consists of 28 networks
with 13,457 genes constructed from genetic and physical interaction, co-expression, and co-
localization data. The C.elegans data set consists of 30 networks with 18,946 genes constructed
from co-expression and shared protein domain data. All the network and feature-based data
sources were downloaded from the GeneMANIA prediction server.24

To evaluate the gene function prediction task, we use the GO biological process (BP)
function categories25 as target labels. In all the experiments, we use all the categories with at
least 30 annotations. This resulted in 954, 963 and 724 categories (binary prediction tasks)



for the mouse, fly and C.elegans data sets respectively.
We report results from three main experiments: (i) In the first experiment, we evaluate

the predictive ability of classifiers trained with 3Prop features extracted from graphs in direct
comparison to label propagation (cf. (1)). In this experiment, we combine the networks using
uniform weights. (ii) In the second experiment, we compare our algorithm to learn from
multiple graphs, LMGraph, as described in Algorithm 2.2 with both label propagation and
regularized least-squares regression trained on a composite network where the networks are
combined using uniform weights. We use 3Prop features in all the comparisons. (iii) In the
final experiment, we combine feature-based data and networks from the mouse data set and
evaluate the performance of LMGraph.

In all the experiments, we split the data sets in a stratified manner into training, validation
and test sets in the ratio of 3:1:1. We report the performance of the algorithms measured in
terms of the average ranking error, i.e., 1-AUC (cf. (3)), on the test data sets from five such
trials in all the experiments. We use the validation sets to tune the regularization parameter,
selected from the set {2−14, 2−12, . . . , 26, 28}, in label propagation and regularized least-squares
regression. We evaluate the statistical significance of the results based on the Wilcoxon signed-
rank test when comparing the AUC for all the GO categories resulting from pairs of algorithms.
In all the figures below, double asterisk (∗∗) indicates that the predictive performance gains
due to our method are significant when compared to the competing/baseline methods with
p ≤ 0.005; single asterisk (∗) indicates that the differences in performance are not significant.

3.2. Justification for 3Prop features

We begin with an empirical justification for extracting node features from random walks
of length at most three. As mentioned before, Mostafavi et al.19 argued and demonstrated
empirically that random walks of length three suffice to propagate labels in several types
of networks, including functional interaction networks. In most of these networks, random
walks quickly converge to the stationary distribution over the nodes, and therefore longer
random walks do not carry any discriminative information useful for labeling the nodes. Let
π ∈ Rn denote the stationary distribution with the property limr→∞P

r = 1π> (1 is vector
whose elements are all one), and is computed as π = d/

∑
i di, where di is the degree of the

node i. The total variation distance between probability distributions p and q is defined as
δ(p, q) := (1/2)

∑
i |pi−qi|. This distance can be used to study the convergence of random walks.

For a random walk starting from node i, we compute the total variation distance between the
distribution e>i P

r (ei is a vector with 1 at position i and 0 elsewhere) and the stationary
distribution π. The smallest value of r at which this distance falls below a fixed value ε is
known as the mixing time of the random walk, which gives us a measure of how close the
distribution for random walk of length r is to the stationary distribution π. Typically, ε is
chosen to be 0.25. The total variation distance computed for varying random walk lengths
is shown in Figure 1 for mouse, fly and C.elegans networks for 100 different random walks
starting from 100 randomly chosen nodes. Each gray line shows the effect of random walk
length on the total variation distance for a random walk starting from a random node, and
the red line shows the median of 100 such random walks. For each species, we combine all
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Fig. 1. Total variation distance for varying random walk lengths for mouse, fly and C.elegans networks,
computed for 100 different random walks. Each gray line indicates a random walk starting from a random
node, and the red line shows the median. The dashed line corresponds to a total variation distance of 0.25.

the networks with uniform weights and compute the transition probability matrix P = D−1W

from this combined network. From the figure, we observe that for r = 3, the total variation
distance has dropped below or close to 0.25 for all the networks, thus confirming the findings
of Mostafavi et al.19 for the data sets used in our experiments.

3.3. 3Prop vs. LProp

We compare the performance of label propagation (LProp) with regularized least-squares
regression (RLSR) trained with asymmetric and symmetric 3Prop features. In this experiment,
we first combine all the networks for a given species with uniform weights to construct a single
composite network. We then extract 3Prop features (cf. Algorithm 2.1) from this composite
network and train RLSR with these features. For label propagation, we optimize the objective
function (1) on the composite network. In Figure 2, we show the ranking errorsb for both
these methods trained on mouse, fly and C.elegans networks across all the GO biological
process function categories. For all the networks, RLSR trained with both asymmetric and
symmetric 3Prop features performs significantly better than or its performance is on par with
label propagation.

bWe do not show absolute AUC scores in the figures due to space constraints. In general, we observed percentage
decrease in ranking errors across a wide range of AUC scores in all the experiments.
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Fig. 2. Performance of label propagation and RLSR trained with asymmetric (left) and symmetric (right)
3Prop features on mouse, fly and C.elegans networks. The box plots show the percentage decrease in ranking
error across all the GO biological process function categories.

This experiment clearly demonstrates the predictive ability of classifiers trained with
3Prop features and their potential as an alternative to label propagation for graph-based
semi-supervised learning. We also observed that training a classifier with 3Prop features is
computationally more efficient than label propagation even on sparse networks. As an exam-
ple, on the mouse networks with 19,559 genes and a biological process function category with
100 annotations, the training time of RLSR with asymmetric and symmetric 3Prop features
were 2.64s and 3.02s respectively for one trial which includes the tuning of regularization pa-
rameter, whereas label propagation took 35.29s for the same task on a 2 x 2.66 GHz dual-core
processor with 4 GB of memory.

3.4. LMGraph vs. LProp and 3Prop

In this experiment, we first compare the performance of LMGraph with label propagation
trained on composite networks combined using uniform weights. The results are shown in
Figure 3 for asymmetric and symmetric 3Prop features. On all the networks, LMGraph per-
forms significantly better than label propagation for both asymmetric and symmetric 3Prop
features. On the C.elegans data set, we found that a slightly different version of Algorithm 2.2
wherein we first use the estimated weights {µd} to construct a composite network and then
extract 3Prop features from the resulting network, followed by training an RLSR with these
features performed better than the ensemble method described in Algorithm 2.2.

We also compare the performance of LMGraph with RLSR trained using 3Prop features
extracted from the composite networks combined using uniform weights. The results are shown
in Figure 4 for asymmetric and symmetric 3Prop features. Here, we found that LMGraph did
not significantly boost the predictive performance, especially for symmetric 3Prop features
and the C.elegans networks. However, we would like to emphasize that RLSR trained on
composite networks combined using uniform weights, where we first combine the networks
and then extract 3Prop features, is a strong baseline. In fact, this is a much stronger baseline
than training RLSR with all the 3 × K 3Prop features and this was verified by us in our
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Fig. 3. Performance of LMGraph trained with asymmetric (left) / symmetric (right) 3Prop features and
label propagation on mouse, fly and C.elegans networks.
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Fig. 4. Performance of LMGraph and RLSR trained with asymmetric (left) and symmetric (right) 3Prop
features on mouse, fly and C.elegans networks.

experiments. Indeed, as is clearly evident from Figure 2 in the previous experiment, we see
that these classifiers with a simple uniform weighting scheme performed significantly better
than label propagation trained using the same composite networks.

3.5. LMGraph with features

In the final experiment, we integrate protein domain features into our learning algorithm to
demonstrate the benefits of combining feature-based data sources with functional interaction
networks. The results are shown in Figure 5 for the mouse networks. Integrating feature-
based data into LMGraph results in significant improvements in AUC for both asymmetric
and symmetric 3Prop features when compared to LMGraph trained using only the network
data. Furthermore, when compared to RLSR trained with 3Prop features extracted from a
composite network combined with uniform weights, we found that LMGraph trained with
the protein domain features results in significant performance gains for both asymmetric and
symmetric 3Prop features. LMGraph with features also performs significantly better than
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Fig. 5. Performance comparison of LMGraph trained using asymmetric (left) / symmetric (right) 3Prop and
protein domain features with LMGraph, RLSR (3Prop) and label propagation (LProp) trained on a composite
network combined with uniform weights on the mouse networks.

label propagation trained on a composite network combined with uniform weights; we note
that it is not possible to combine features with label propagation using existing methods.12,20

4. Conclusions

We proposed a computationally efficient machine learning algorithm, LMGraph, for gene func-
tion prediction from multiple functional interaction networks. The crux and novelty of our
algorithmic contribution lies in the computationally efficient two-step procedure that allows
us to combine multiple graph-based and feature-based data sources, where in the first step we
extract features from the nodes of graphs and in the second step we combine these feature sets
and train linear predictors. Our feature extraction method is based on the method proposed
by Mostafavi et al.,19 which is known to work well on functional interaction networks. We used
a variant of the ensemble method proposed by Cortes et al.21 to combine multiple data sources
since (i) it has been shown to perform better than the traditional MKL methods,14 (ii) it has
been shown to outperform the strong uniform weighting baseline, and (iii) it is extremely easy
to implement as a machine learning practitioner in bioinformatics. However, we would like to
emphasize that the user is free to design and use other relevant feature extraction methods on
graphs such as spectral embeddings and also other standard multiple kernel learning methods
(with a linear kernel) in these steps.

We have shown experimentally that training linear predictors with symmetric and/or
asymmetric graph-based 3Prop features is a viable alternative to label propagation. Further-
more, using these features in LMGraph resulted in significant performance gains when com-
pared to propagating labels on composite networks combined using uniform weights which is
known to be a hard baseline.12,20,21 We have also demonstrated that our method, LMGraph,
can be used to combine attribute data with functional interaction networks and that this
combination can result in significant performance gains for gene function prediction tasks.
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