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Statistical machine learning methods, especially nonparametric Bayesian methods, have become
increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP,
an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric
mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in
the population of cancer cells. We also propose new split-merge updates tailored to the subclonal
reconstruction problem that improve the mixing time of Markov chains. In comparisons with the
tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running
time using the treeCRP with our new split-merge procedures. We also show that given the same
number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a
tumor.
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1. Background

The clonal theory of cancer posits that tumors contain multiple, genetically diverse subclonal
populations of cells that evolved from a single progenitor population through successive waves
of expansion and selection.1 Recent genetic analyses of tumor subpopulations support this
theory.2,3 These analyses also identify characteristic driver mutations involved in cancer de-
velopment and progression4 and provide insight into understanding and predicting treatment
response.5 Understanding this intratumor genotype heterogeneity is especially important be-
cause different subclonal populations have different abilities to metastasize and resist treat-
ment.2,6 These somatic mutations are detected through high-throughput sequencing of tumor
and normal tissue; and can be broadly divided into two types: Simple Somatic Mutations
(SSMs) consisting of substitutions and small insertions / deletions, and Copy Number Varia-
tions (CNVs) resulting from larger structural changes.



Current, widely-used high-throughput sequencing (HTS) technology generates short reads
that rarely span multiple SSM loci, so in almost all cases only the variant allele frequency
(VAF), i.e., the proportion of reads containing the variant, are available for individual SSMs.
These VAFs have been used to partially reconstruct the tumor subpopulations.2,7–19 However,
surprisingly, these VAFs can be used to completely reconstruct subpopulation genotypes in
some cases, by reconstructing the evolutionary history of the subpopulations;14,15,19 SSM VAFs
from multiple tumor samples improve this reconstruction.15,17,18

These evolution-based subclonal reconstruction methods use a specific tree representation
in which mutations are assigned to both internal and leaf nodes. This representation excludes
tree inference methods, like hierarchical clustering or the nested Chinese restaurant process20

that assign observations (mutations) only to leaf nodes. To our knowledge only two tree-based
statistical models have been described that i) allow mutations to be assigned to internal nodes
and ii) are non-parametric, i.e., that do not require pre-specification of the number of nodes.
PhyloSub15 has previously applied the tree-structured stick-breaking (TSSB) prior21 to this
problem. Here, we derive a version of the tree-Chinese Restaurant Process (treeCRP)22 for
subclonal reconstruction and new associated split-merge MCMC updates. We compare the
two models in terms of their sampling efficiency and accuracy in subclonal reconstruction.

In the next section we provide an overview of the subclonal reconstruction problem. The
remainder of this paper consists of a formal description of the treeCRP model and the results
from a series of empirical comparisons of the TSSB model against several treeCRP variants.

2. Methods

2.1. Subclonal Reconstruction

Figure 1 provides an illustrative overview of the assumed process of tumor evolution and the
task of subclonal reconstruction. Panel (i) of this figure shows a visualization of the evolu-
tion of a tumor over time as noncancerous cells (grey) are replaced by, at first, one clonal
cancerous population (green) which then further develops into multiple cancerous subpopu-
lations. Tumor cells define new subpopulations by acquiring new oncogenic mutations that
allow their descendants to expand relative to the other tumor subpopulations. Each circle in
Panel (i) refers to a subpopulation. We associate each subpopulation with the set of shared
somatic mutations (shown as a diamond) that distinguish it from its parent subpopulation.
However, each subpopulation also inherits all of its parent’s mutations; as such, mutations
may be present in multiple subpopulations. We define the subclonal lineage of a mutation as
the set of all subpopulations that contain it. For example, the subclonal lineage corresponding
to the blue diamond includes the subpopulation (D) associated with that set of mutations
and all decedent subpopulations (E,F,G). For clarity, and to highlight the link between sub-
populations and their set of subpopulation-defining mutations, we will use the corresponding
lower-case letter to refer to these mutations. For example, we will use d to refer to the set of
mutations represented by the blue diamond.

Mutation sets, and their associated subpopulations, are defined by analyzing the popu-
lation frequencies of somatic mutations detected in a tumor sample. In the simple case that
we consider here, SSMs occur in one copy of diploid regions of the genome; allowing one to



estimate the clonal frequency (i.e. the proportion of the sampled cells with the mutation) of a
mutation by simply doubling its variant allele frequency, i.e., the proportion of reads mapping
to the mutated locus that contain the SSM. See Deshwar et al.23 for the case when SSMs
occur in non-diploid sections of the genome. Panel (ii) shows an example histogram of the
SSM VAFs found in a heterogeneous tumor sample. Each subpopulation is defined by both
the small number of oncogenic ‘driver’ mutations that cause rapid expansion but also a larger
number of ‘passenger’ mutations acquired before the driver mutation(s) through errors in DNA
replication (even noncancerous cells accumulate somatic mutations at a rate of 1.1 per cell
division24). When a subpopulation expands, both the driver and the passenger SSMs increase
in clonal frequency, and so have essentially identical frequencies. Due to sampling noise in
the measurement of the VAFs, these mutation sets correspond to clusters (or modes) in the
VAF distribution. The central VAF of a particular cluster is determined by the population
frequency of its subclonal lineage. It is important to note that a given VAF cluster need not
correspond to a subpopulation that is currently present in the tumor. For example, in Panel
(ii), there is a VAF mode corresponding to mutation set d even though subpopulation D has
a population frequency of 0% in the tumor sample. Only methods that attempt to reconstruct
phylogenies (shown as panel (iii)), such as PhyloSub15 and rec-BTP,19 can detect when ‘ves-
tigial’ VAF clusters correspond to historical subpopulations that are no longer present in the
sample.

2.2. Our Approach

We use a directed tree to represent the evolutionary relationship among the tumor subpopu-
lations. Each node in the tree represents a subpopulation (either currently in the sample or
that existed at some point in the tumor development) and the links connect parental sub-
populations to their direct descendants. The set of SSMs assigned to a node are the defining
set for the node’s associated subpopulation. The subclonal lineage of an SSM consists of the
subpopulation it is assigned to and that population’s descendants. Each node i is also assigned
a frequency φi ∈ [0, 1] which is the inferred clonal frequency of the SSMs in the node. The pop-
ulation frequency of the node’s subpopulation, ηi, is the difference between the node’s clonal
frequency and the sum of the clonal frequencies of the node’s children, i.e., ηi = φi−

∑
j∈C(i) φj

where C(i) is the set of the indices of the children of node i. The complete set of SSMs present
in a subpopulation is the union of the SSMs assigned to it and those of all its ancestral nodes.

2.3. Dirichlet process mixture models

The treeCRP is derived from the Dirichlet process mixture model (DPMM) which we introduce
here. Consider the problem of clustering N data objects {xi}Ni=1 using a Bayesian finite mixture
model of K components (clusters) with the following generative process:25

ω ∼ Dirichlet(α/K, . . . , α/K) ; zi ∼Multinomial(ω) ; φk ∼ H ; xi ∼ F (φzi) , (1)

where ω are the non-negative mixing weights such that
∑K

k=1 ωk = 1, α is the concentration
parameter of the symmetric Dirichlet prior placed on the mixing weights, zi ∈ {1, . . . ,K}
is the cluster assignment variable, H is the prior distribution from which the component



Fig. 1. The development of intratumor heterogeneity (i), the resulting distribution of variant allele frequencies
(ii) and the desired output of subclonal inference (iii)



parameters {φk} are drawn, F (φ) is the component distribution parameterized by φ. The finite
mixture model can be extended to a model with an infinite number of mixture components
by replacing the Dirichlet prior with a Dirichlet process (DP) prior resulting in what is known
as the DPMM.26 Unlike finite mixture models, DPMMs automatically estimate the number
of components from the data thereby circumventing the problem of fixing the number of
components a priori. The Chinese Restaurant Process (CRP) provides a method to draw
samples from a Dirichlet process. In this construction, an observation xi is assigned to an
existing cluster k with probability proportional to the number of objects N−ik in that cluster,
excluding xi. A new cluster K+1 is created with probability proportional to the concentration
parameter. More formally,

p(zi = k | z\i, α) =
N−ik

N + α− 1
, ∀k ∈ {1, . . . ,K} ;

p(zi = K + 1 | z\i, α) =
α

N + α− 1
,

(2)

where z\i = {z1, . . . , zi−1, zi+1, . . . , zN}. The generative process for infinite mixture models using
the Chinese restaurant process is:

zi ∼ CRP(α; z\i) ; φk ∼ H ; xi ∼ F (φzi) . (3)

2.4. Tree-structured Chinese restaurant process

The Chinese restaurant process construction (2) described above can be used to produce
a flat clustering of objects, where the clusters are independent of each other. Meeds et al.22

extended this construction for relational clustering that produces a clustering of objects where
the clusters are connected to form a rooted tree.

In the tree-structured Chinese restaurant process (treeCRP), initially, a tree consists of a
single root node (cluster) with all the data objects assigned to it. Subsequently, an object xi is
assigned to an existing node k with probability proportional to the number of objects N−ik in
that node, excluding xi. A new node K + 1 is created as a child node to one of the K existing
nodes in the tree with probability proportional to α/K. More formally,

p(zi = k | z\i, α) =
N−ik

N + α− 1
, ∀k ∈ {1, . . . ,K} ;

p(zi = K + 1 | z\i, α) =
1

K

(
α

N + α− 1

)
.

(4)

2.5. Binomial observation model

Our probabilistic model for read count data is based on the one used by PhyloSub.15 Let ai and
bi denote the number of reads matching the reference allele and the variant allele respectively
at position i, and let di = ai + bi. This represents the total number of reads at locus i. Let
ηk represent the population frequency of subpopulation k (node k in our tree). Let µri = 1− ε
denote the probability of sampling a reference allele from the reference population where ε

is the error rate of the sequencer. We set ε to 0.001 for all our experiments. Let µvi denote
the probability of sampling a reference allele from the variant population. For the purposes



of this paper we assume that all mutations are heterozygous and all loci have two copies, so
we set µvi to 0.5. Our model constrains the subpopulation frequencies ηi such that ηi ≥ 0 ∀i
and that

∑
i ηi = 1. We recover the node clonal frequencies using the recursive equation:

φi = ηi +
∑

j∈C(i) φj. The observation model for read counts has the following likelihood:

ai | zi = k, di, φk, µ
r
i , µ

v
i ∼ Binomial(di, (1− φk)µri + φkµ

v
i ) . (5)

2.6. Inference

Given this model and a set of N observations {(ai, di, µri , µvi )}Ni=1, the tree structure and the
subpopulation frequencies {ηk}Kk=1 are inferred using Markov Chain Monte Carlo (MCMC)
sampling. To sample the assignments of observations (SSMs) to nodes in the tree (zi) we use
Gibbs sampling where the probability of assigning a node is the prior probability (Equation
(4)) multiplied by the likelihood of the data given that cluster identity (Equation (5)). After
completing a single pass through the observations in random order we then use Metropolis-
Hasting sampling for 100 iterations to sample the ηk variables. We use an asymmetric Dirichlet
distribution as the proposal distribution where the concentration parameter is set during burn-
in to achieve an acceptance ratio between 0.05 and 0.75.

For all experiments we sample for 2600 iterations and discard the first 100 samples as
burn-in.

2.7. Split-merge updates

The Gibbs updates described previously only allow one cluster assignment to change at a
time, which can result in slow mixing as described in the original treeCRP paper.22 Meeds
et al.22 overcame this limitation by using split-merge updates in their implementation of the
treeCRP. However, their updates relied on the partial conjugacy of the cluster parameters as
described in Ref. 27, which is not the case in our observation model. In addition, the subclonal
tree we are inferring has a natural ordering not present in the original treeCRP model. This
natural ordering is that the clonal frequency of a node in our tree must always be greater than
or equal to the sum of the clonal frequencies of its children. This natural ordering means that
arbitrary split-merge moves are unlikely to be accepted. We therefore propose two “local”
split-merge updates that are more likely to be accepted: the parent-child split merge (PCSM)
and the leaf-sibling-split-merge (LSSM).

The PCSM selects a node in the tree at random and then with equal probability either
splits or merges that node. If merge is selected, then the node is merged with its parent (i.e.,
its SSMs are assigned to its parent) and all its children become its parent’s children. If split
is selected, a new node is added to the tree as the child of the selected node. The selected
node’s children are split with the new node, assigning a given child to the new node with
probability 0.5. The LSSM selects a leaf of the tree at random and, as the PCSM, selects with
equal probability whether to add a new sibling node (i.e., split) or merge the selected node
with a randomly selected sibling node. Only leaf nodes are considered in this operation for
implementation simplicity and because our subjective observation that leaf nodes exhibited
slower mixing than the internal nodes. Whenever a new node is created through a split in either



Fig. 2. Example of a Parent-Child Split-Merge move (left) and a Leaf-Sibling Split-Merge move (right)

Table 1. Table of subclonal lineage proportions
used

Number of populations φ values used

3 0.44, 0.11
4 0.56, 0.25, 0.06
5 0.64, 0.36, 0.16, 0.04
6 0.71, 0.44, 0.25, 0.11, 0.03

a PCSM or a LSSM update, the SSMs assigned to the split node are reassigned between the
split and new node using restricted Gibbs updates. The population frequency of a new node
(ηnew) is selected uniformly at random between 0 and the population frequency of its parent,
while the parents population frequency is decreased by ηnew to maintain

∑
i ηi = 1. Figure 2

shows an example of PCMS and LSSM updates.

3. Results and Discussion

In order to compare our approaches we constructed a series of simulated datasets and applied
PhyloSub15 (which uses the TSSB prior) and the treeCRP model with either Gibbs updates
only (treeCRP-Gibbs), Gibbs updates and Parent Child Split-Merge moves (treeCRP-PCSM),
Gibbs updates and Leaf-Sibling Split-Merge moves (treeCRP-LSSM) and all three types of
updates (treeCRP-all). For treeCRP-all, we propose a PCSM update and then a LSSM update
after each Gibbs update. Our simulations looked at a range of total population counts (3, 4, 5,
6), read depths (20, 30, 50, 70, 100, 200, 300) and number of SSMs per population (5, 10, 25,
50, 100, 200, 500). In each case, the first population is a normal population with no associated
SSMs, while each subsequent population is a descendant of all previous populations (i.e. a
chain phylogeny). For each simulated SSM k in population u, reference allele reads (ak) were
drawn as:

ak ∼ Binomial(dk, 1− φu + 0.5φu) ; dk ∼ Poisson(r) ,

where φu is the clonal frequency of population u and r is the simulated read depth. A table
of the φ values used can be found as Table 1.

First, we compared how quickly the Markov chain mixes for the different tree priors and
MCMC sampling strategies. A chain that is fast-mixing requires fewer burn-in samples, is
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Fig. 3. The relationship between number of SSMs and sampling efficiency for the five algorithms. Lines are
are Loess curves. X-axis positions are jittered for clarity.

less likely to remain stuck in local modes and for a fixed desired accuracy requires fewer
samples (or for the same number of samples delivers estimates with higher accuracy). We
measure mixing by first computing the effective sample size of the chain and then dividing by
the number of actual samples taken. By dividing the effective sample size by the number of
actual samples we get a measure of sampling efficiency, where a higher value indicates better
mixing. Effective sample size is calculated by the Coda package,28 using the spectral density at
frequency zero. Figure 3 shows the sampling efficiency for the five algorithms on our simulated
datasets. The TSSB, the treeCRP-Gibbs and treeCRP-LSSM methods have consistently lower
sampling efficiency than the treeCRP-PCSM and the treeCRP-all. Furthermore, for treeCRP-
PCSM and treeCRP-all the sampling efficiency is not strongly affected by the number of
SSMs, whereas the efficiency of the other three methods decreases with increasing numbers of
SSMs.

Next, we assessed the accuracy of the mapping from population to SSM. To measure
accuracy in a systematic way that accounts for class-imbalance, varying number of mutations
and differing number of populations we used the Area Under the Precision-Recall Curve
(AUPR) between the known true co-clustering matrix and the average co-clustering matrix
over all samples. The co-clustering matrix M is a binary matrix where Mij = 1 if SSM i and
SSM j are in the same subclonal lineage. Figure 4 shows the distribution of AUPR values over
all simulations. Although the absolute differences in AUPR are small, most of the pairwise
differences are significant (7 out of 10, P < 0.005, Wilcoxon paired signed rank test, Bonferroni
correction) and generally correspond to the differences in sampling efficiency in figure 3 except
that there are no significant differences between the AUPRs for TSSB and those of treeCRP-all
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Fig. 4. Distribution of AUPR results for the five algorithms. Horizontal lines indicate statistically significant
differences (P < 0.005, Wilcoxon paired signed rank test, Bonferroni correction)

and -PCSM. This suggests that the sampling efficiency differences have practical implications
in reconstruction accuracy but neither prior is clearly superior.

Finally, we are interested in the relative time required to draw one sample. This is because
in most situations a sampling budget is a given amount of CPU time, so greater efficiency per
sample could be counteracted by greater computational effort to compute that sample. Because
the cluster on which the experiments were run is composed of heterogeneous nodes it was
meaningless to compare the runtimes of our experiments. Instead, we ran all five algorithms
on the same computer using the simulated dataset with 5 subpopulations, read depth of 200
and 500 SSMs per subpopulation. Figure 5 (i) shows the average runtime per sampling iteration
for the different algorithms, normalized to the runtime of the treeCRP-Gibbs algorithm while
Figure 5 (ii) shows the runtime per effective sample. We observe that the TSSB algorithm
is the slowest followed by the -all, -PCSM, -LSSM and finally the Gibbs only variant of the
treeCRP. After adjusting for sampling efficiency, TSSB remains slower than the treeCRP
methods but the treeCRP-PCSM and treeCRP-all are now about 5 times faster than the
other treeCRP methods.

Chronic Lymphocytic Leukemia

To demonstrate the ability of the treeCRP family of algorithms to perform subclonal recon-
struction on a real dataset we applied the four methods to a a Chronic Lymphocytic Leukemia
(CLL) dataset from Schuh et al.11 The dataset consists of targeted sequencing data from three
patients at five different time points; we reconstructed the tree using all five samples as input
simultaneously. We examined the maximum likelihood tree found during sampling. All four
treeCRP methods recovered the same tree structure and clustered the same SSMs together.
Figure 6 shows the recovered tree structure along with the tree structure found in the original
publication for the three patients CLL003, CLL006, and CLL077. The trees we recovered are



Fig. 5. Relative time per sample (i) and relative time per effective sample (ii) for the five methods

nearly identical to the expert derived trees, and those previously recovered by PhyloSub,15

with a small number of differences. For the top two rows in Figure 6, the differences are minor
changes in clonal frequency estimates that result in reassignment of some SSMs to direct par-
ents or children. The change in the bottom row (CLL077) is more substantial, as the treeCRP
methods are predicting that the E2 population is a direct descendant of normal rather than of
the B2 population, in other words, there are two independent cancerous lineages. This change
occurred from our previous reconstruction15 because we no longer insist on a single cancer lin-
eage in the new models. Although this reconstruction differs from the expert one, it is almost
identical to one discovered by an independent, non-tree based method.17

We also compared the estimates of clonal frequencies from PhyloSub and treeCRP with
the expert/baseline frequencies. The mean absolute difference between the baseline frequen-
cies and frequencies estimated by Phylosub and treeCRP were (0.02, 0.018), (0.008, 0.028) and
(0.012, 0.016) for CLL003, CLL006 and CLL077, respectively. The Pearson correlation be-
tween the baseline frequencies and frequencies estimated by Phylosub and treeCRP were
(0.998, 0.999), (0.998, 0.984) and (0.999, 0.998) for CLL003, CLL006 and CLL077, respectively.

4. Conclusions

In our experiments with simulated data the treeCRP prior delivered similar subclonal recon-
struction accuracy to the TSSB while having reduced runtime per sample and per effective
sample. Among the treeCRP sampling strategies, treeCRP-all lead to the greatest subclonal
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Fig. 6. Expert derived subclonal evolutionary trees (left) and trees found by the treeCRP methods (right)
for patients CLL003 (top), CLL006 (middle) and CLL077 (bottom)

reconstruction accuracy and second highest sampling efficiency among all five tested methods.
When compared to the TSSB method, for the same amount of CPU time, the treeCRP-all
method could generate 10 times the number of effective samples thus permitting a 10-fold
decrease in run time. Furthermore, treeCRP-all’s sampling efficiency was independent of SSM
number whereas TSSB’s decreased with larger numbers of SSM. So, treeCRP-all appears
much more suited to subclonal reconstruction using whole genome sequencing data with tens
of thousands of SSMs. However, surprisingly, despite the increase in effective number of sam-
ples, there was not a significant difference in reconstruction accuracy between treeCRP-all and
TSSB. Furthermore, the TSSB reconstruction was a better match to the expert reconstruction
on the CLL dataset. As such, it remains an open question whether the decreased flexibility
of the treeCRP prior (one hyperparameter versus two for TSSB) introduces a prior bias that
interferes with subclonal reconstruction.
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