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The environment plays a major role in influencing diseases and health. The phenomenon of environmental 
exposure is complex and humans are not exposed to one or a handful factors but potentially hundreds factors 
throughout their lives. The exposome, the totality of exposures encountered from birth, is hypothesized to 
consist of multiple inter-dependencies, or correlations, between individual exposures. These correlations may 
reflect how individuals are exposed. Currently, we lack methods to comprehensively identify robust and 
replicated correlations between environmental exposures of the exposome. Further, we have not mapped how 
exposures associated with disease identified by environment-wide association studies (EWAS) are correlated 
with other exposures. To this end, we implement methods to describe a first “exposome globe”, a 
comprehensive display of replicated correlations between individual exposures of the exposome. First, we 
describe overall characteristics of the dense correlations between exposures, showing that we are able to 
replicate 2,656 correlations between individual exposures of 81,937 total considered (3%). We document the 
correlation within and between broad a priori defined categories of exposures (e.g., pollutants and nutrient 
exposures). We also demonstrate utility of the exposome globe to contextualize exposures found through two 
EWASs in type 2 diabetes and all-cause mortality, such as exposure clusters putatively related to smoking 
behaviors and persistent pollutant exposure. The exposome globe construct is a useful tool for the display and 
communication of the complex relationships between exposure factors and between exposure factors related 
to disease status. 
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1.  Introduction 

1.1.  A need to identify correlations between exposures 

The environment is hypothesized to play a significant role in health and disease, but we lack 
methods to elucidate how multiple environmental exposures are associated together with disease. 
Along this line, Wild and Rappaport and Smith have documented a new way to conceptualize the 
environment called the “exposome” [1, 2], the environmental analog of the genome that consists 
of the totality of exposures from birth to death. Recently, others and we have proposed a new 
method to search for environmental factors associated with disease called the environment-wide 
association study (EWAS) (e.g.,[3-6]). EWAS is analytically analogous to the genome-wide 
association study (GWAS), a comprehensive way to search for genetic variants associated with 
disease. 

While EWAS and GWAS are operationally similar, genotypes and exposures are very 
different data types and correlation structures. Genotypes are static and often assume a fixed 
number of discrete values (e.g., homozygous/heterozygous for single nucleotide polymorphisms). 
Correlation between genetic variants is a function of chromosomal location due to the 
phenomenon of “linkage disequilibrium” (LD). The closer variants are located along the genome, 
the greater the chance they will be inherited together and correlated. 

On the other hand, environmental exposures are heterogeneous (in measurement modality and 
data type) and are dependent on geographic location, human behavior, and time. Their correlation 
is known to be “denser” than that of genetic variants [3, 7] as many exposures are correlated with 
many others [8, 9]. Importantly, given an exposure identified from an EWAS, it is very difficult to 
infer if the exposure is independently associated with the disease, the direction of association 
(“what causes what”), or if the exposure is simply a correlate [7, 9]. 

Given these challenges, it is a priority to develop methods to identify robust correlations 
between exposures. Correlation between exposures may allow investigators to describe how 
exposures can lead to other exposures (as identified in an EWAS). For example, many nutrients 
are consumed together. A non-optimal diet (however it may be defined) may lead to a deficiency 
in a whole group of vitamins and nutrients. As another example, individuals who are exposed to 
air pollution may have high levels of several products of combustion, including hydrocarbons, 
volatile compounds, and heavy metal levels. In the environmental health sciences it is 
hypothesized that prevalent “mixtures”, or combinations of exposures, may dictate health [10]; 
understanding how exposures are correlated is one step toward defining what mixtures are relevant 
to human health.  

Many methods have been proposed to describe the correlation between multiple variables, 
often under the analytical category of “unsupervised learning”, and have been used successfully in 
the genomics field (e.g, [11-13]). We have yet to apply these methods to describe relationships 
between exposures. In this report, we describe correlations between exposure variables to 
construct an “exposome globe”, extending methods developed for unsupervised learning with 
genomic data called “relevance networks” [13]. We utilize the exposome globe to identify clusters 
of exposures correlated with exposures identified in EWAS (“EWAS-identified exposure”). We 



 
 

 

hypothesize it is possible to attain a broader and more interpretable view of EWAS-identified 
exposures with an exposome globe.  

1.2.  Methods 

1.2.1.  About the National Health and Examination Survey (NHANES) data 

As documented earlier (e.g., [4]), we attained four NHANES surveys data each representing 
independent samplings from the US population in years 1999-2000, 2001-2002, 2003-2004, and 
2005-2006. Each NHANES survey dataset ascertains an array of environmental factors, 
sociodemographic factors (e.g., income), and clinical indicators (e.g., serum glucose, time to 
death). NHANES is a representative sampling of the US population and therefore covers the entire 
age, sex, and demographic distribution of the US. 

We constructed a correlation globe with factors of the exposome. These factors include direct 
and quantitative measurement of environmental exposures representing chemicals, nutrients, or 
infectious agents (assayed directly in human tissue, such as blood serum, urine and hair). For 
example, quantitative measurements of nutrient (e.g., vitamins, carotenes) and pollutant (e.g., 
heavy metals, polychlorinated biphenyls) levels in human tissue are ascertained via mass 
spectrometry (MS), such as gas chromatography and inductively coupled plasma MS. Infectious 
agents (e.g., bacteria) were measured via immunological assays. Second, the CDC ascertained 
other indicators of environmental exposure including participant self-reported nutrient 
consumption (derived from a food questionnaire on foods consumed prior to the interview), 
physical activity, and prescribed pharmaceutical drugs.  

1.2.2.  Construction of an exposome globe of replicated environmental correlations 

Our method is similar to that of the “relevance network” framework to find correlations of 
expressed genes [13]. We computed the non-parametric correlation coefficient between each pair 
of environmental factors (e.g., biomarkers of exposures and self-reported information) for each 
independent survey (e.g., 1999-2000, 2001-2002, 2003-2004, and 2005-2006). These coefficients 
are bi-serial coefficients between pair of binary factors and Spearman correlations for continuous 
factors. There are many ways to compute correlations between variables. We chose a non-
parametric metric as to not make any distributional assumptions regarding the environmental 
factors.  

We computed 37,207 correlations in the 1999-2000 survey (we denote the set of all 
correlations by 𝝆𝟏𝟗𝟗𝟗!𝟐𝟎𝟎𝟎), 59,412 in 2001-2002 (𝝆𝟐𝟎𝟎𝟏!𝟐𝟎𝟎𝟐), 128,715 in 2003-2004 
(𝝆𝟐𝟎𝟎𝟑!𝟐𝟎𝟎𝟒) and 51,340 in 2005-2006 (𝝆𝟐𝟎𝟎𝟓!𝟐𝟎𝟎𝟔). We filtered out correlations that were 
present in only one survey and therefore could not be replicated and those that had sample sizes 
less than 10. After filtering, we were left with 35,835, 56,557, 80,401, 47,203 correlations in each 
of the four surveys respectively.  

These correlations represented interdependencies between 289 unique environmental factors in 
1999-2000, 357 in 2001-2002, 456 in 2003-2004, and 313 in 2005-2006 surveys. A total of 575 
unique factors were observed across all surveys. The sample sizes for computing correlations 



 
 

 

ranged from 11 to 9965 (median 1883) in 1999-2000, 11 to 11,039 (median 2237) in 2001-2002, 
11 to 10122 (median 2271) in 2003-2004, and 33 to 10348 (median 3267) in 2005-2006.  

There were a different number of correlations measured in 2, 3, or 4 surveys. This is because 
the CDC had different sample sizes for different exposures. Specifically, 41,158 correlations were 
ascertained in 2 surveys (e.g., 1999-2000 and 2003-2004), 25,436 in 3 surveys (e.g., 1999-2000, 
2003-2004, and 2005-2006), and 15,343 in all 4 surveys, resulting in a total of 81,937 correlations 
considered. 

We used a permutation-based approach to estimate the two-sided p-value of significance for 
each pair of correlations within each independent survey. Specifically, each environmental factor 
was randomly permuted (sampled without replacement) and the correlations were re-computed to 
create a set of correlations that reflected the null distribution of no correlation. Briefly, given an 
exposure X and Y in one dataset of NHANES, we shuffled values of X to a new array 𝑋and 
computed the correlation between 𝑋 and Y. We repeated this procedure for all pairs of correlations 
for each survey. We denote distribution of correlations derived from the randomly permuted 
datasets as 𝝆𝟏𝟗𝟗𝟗!𝟐𝟎𝟎𝟎, 𝝆𝟐𝟎𝟎𝟏!𝟐𝟎𝟎𝟐, 𝝆𝟐𝟎𝟎𝟑!𝟐𝟎𝟎𝟒, 𝝆𝟐𝟎𝟎𝟓!𝟐𝟎𝟎𝟔for each of the 4 surveys respectively. 
The p-value for an individual correlation from 𝝆 was the fraction of correlations from the 
permuted dataset 𝝆 with greater absolute value. For example, for a correlation 𝜌! from 
𝝆𝟏𝟗𝟗𝟗!𝟐𝟎𝟎𝟎, the p-value equals 𝐼( 𝜌! < |𝜌!!"""!!"""!"#!"

!!! |)/35835 where I is the indicator 
function. 

We then estimated the false discovery rate (FDR) q-value for each correlation in each of the 
surveys using the Benjamini-Hochberg step-down approach [14], resulting in a vector of q-values 
for each survey, denoted as 𝒒𝟏𝟗𝟗𝟗!𝟐𝟎𝟎𝟎,  𝒒𝟐𝟎𝟎𝟏!𝟐𝟎𝟎𝟐,𝒒𝟐𝟎𝟎𝟑!𝟐𝟎𝟎𝟒,𝒒𝟐𝟎𝟎𝟓!𝟐𝟎𝟎𝟔.  We deemed a 
correlation to be replicated if its q-value was less than 5% in at least 2 surveys.  

A replicated correlation can exist in 2, 3, or 4 independent dataset surveys. We computed a 
single “overall” correlation that summarized the correlation from multiple surveys with the 
inverse variance weighting method as used in fixed-effect meta-analyses[15]. In summary, we 
computed the overall coefficient as weighted average of the coefficients from each of the survey 
where weights are the standard errors of coefficient. The exposome globe consisted of overall 
summarized correlations in a set of tuples called 𝚸. Each tuple contains the relationship between 
exposures A and B and their correlation coefficient (ρ). Specifically, if a correlation between 
exposure A and B was replicated, its overall correlation is inserted in P as the tuple [(A, B), ρ], 
where (A, B) links A to B and ρ is the summarized correlation coefficient. 

We visualized replicated overall correlations with the Circos visualization toolkit version 0.67 
[16]. Each individual environmental factor is grouped and arranged in a circle. Lines between 
factors on the inside of the circle depict replicated correlations between factors and the thicknesses 
of the lines depict the absolute values of the correlations. Red and blue lines represent positive and 
negative correlations respectively.  

1.2.3.  Environment-wide association findings in type 2 diabetes and all-cause mortality 

Previously, we have conducted EWASs for type 2 diabetes (T2D [4]) and all-cause mortality [5]. 
In T2D, we searched for association between 252 serum and urine biomarkers of exposure with 



 
 

 

serum fasting glucose and validated 10 factors. These 10 factors included nutrients such as 
trans/cis-β-carotene and vitamin C/D and pollutants such as PCB170 and heptachlor epoxide. In 
all-cause mortality, we searched for association between 249 environmental exposures and self-
reported consumption behaviors and validated 7 factors, including urine-measured and serum-
measured cadmium, smoking behaviors (e.g., number of cigarettes smoked per day), and physical 
activity behaviors (e.g., metabolic equivalents). 

We visualized the EWAS findings from these studies in the exposome globe. First, we plotted 
the –log10(p-value) of association between the environmental factor and outcome (e.g.,  T2D, all-
cause mortality) as a scatter plot in the Circos plot (referred to as an “EWAS track” below). Next, 
given a set E of validated factors (e.g. the 10 factors validated in T2D), we filtered and visualized 
correlations of pairs (A, B) from 𝚸 that contained any factor in E (e.g., all pairs (E, B) or (A, E) 
where E is a validated exposure in E). In other words, we visualized all “first-degree neighbors” of 
the validated EWAS findings E from 𝚸.   

2.  Results 

2.1.  Distribution of correlations of the exposome globe 

We considered 81,937 total correlations of the exposome. Correlations among factors of the 
exposome were modest; specifically, the median of the absolute value of all correlations was 
0.025 (interquartile range of 0.010 to 0.06, Figure 1A [red line]).  
Of the 81,937 correlations, 12,385 (15%) had a q-value less than 5% in at least 1 survey dataset. 
Of these, the median absolute value of correlation was 0.122 (interquartile range of 0.071 to 0.282, 
Figure 1A [green line]). 

We define the “exposome globe” as the network of correlations that were replicated (q-value 
less than 5% in at least two independent surveys). Of the 81,937 correlations, 2,656 (3%) were 
replicated and made up the exposome globe. The median absolute value of correlations of the 
exposome globe was markedly higher than the median of all correlations at 0.5  (interquartile 
range of 0.385 to 0.635, Figure 1A [blue line]). Most of the replicated correlations (2,513 of 
2,656) had positive sign (Figure 1B). The median of positive and negative replicated correlations 
was 0.508 and -0.282 respectively (Figure 1B). 

2.1.1.  Concordance of replicated correlations 

We observed that correlations were concordant between surveys. The concordance of the exposure 
correlations between the different surveys was greater than 0.8 (assessed via Pearson ρ, Table 1). 
For example, the concordance between all correlations in the 2001-2002 and the 2003-2004 survey 
was 0.82 (Table 1). All correlations were highly significant (p<10-10). As expected, when only 
considering replicated correlations (relationships of the exposome globe), the concordance was 
greater (e.g., concordance between 2001-2002 and 2003-2004 survey was 0.90). Therefore, while 
correlations were modest/small (Figures 1AB) they were reproducible across cohorts. 



 
 

 

2.1.2.  The exposome globe reflects correlations within and between categories of factors 

While the globe was dense (2,656 of all possible 81,937 correlations were replicated) we observed 
interpretable broad patterns in the exposome globe (Figure 2). First, we observed positive 
correlations within each exposure category (“intra-category” correlations), such as between serum 
nutrients, nutrients ascertained from food recall questionnaires, volatile organic compounds, 
hydrocarbons, polychlorinated biphenyls (PCBs), dioxins, phthalates, bacteria (co-infection), and 
pesticides. We observed positive correlations between categories of exposures, such as between 
phthalates and hydrocarbons, PCBs and dioxins, dioxins and furans, furans and PCBs, pesticides 
and PCBs. Of note, there were positive correlations between some nutrients and pollutants, such as 
PCBs, dioxins, and furans. Briefly, PCBs, dioxins, hydrocarbons, and furans are “persistent 
pollutants”. Persistent pollutants are lipophilic (accrue in fatty tissue) and accumulate in the food 
chain. PCBs had been used for manufacturing materials whose use has been banned during the 
1970s. Dioxins, furans and hydrocarbons are by-products of industrial processes such as pesticide 
manufacturing and combustion. Demographic factors, including age, sex, and race/ethnicity were 
also correlated with multiple groups of exposures. 

2.1.3.  Describing EWAS-identified factors with the exposome globe 

We used the exposome globe to describe the first-degree correlations of factors validated in 
previous EWAS investigations of T2D and all-cause mortality. We only selected correlation links 
in the exposome globe that were between validated EWAS exposures and other exposures. We 
observed qualitatively different globes for EWAS factors found in T2D and mortality (Figure 3). 

In all-cause mortality, we observed clusters of correlated exposures putatively related to 
smoking but little related to healthy behaviors, such as physical activity or diet (Figure 3A). 
Specifically, we observed that the self-reported variables of current and past smoking, which had 
been identified via EWAS as risk factors for death (red points in the EWAS track, Figure 3A), 
were correlated with hydrocarbons (e.g., napthols) and volatile organic compounds (e.g., toluene). 
Further still, urine and serum cadmium, both also positively associated with death (red points on 
the EWAS track), were also correlated with smoking status and a biomarker of nicotine (cotinine). 
There were relatively fewer correlates for factors that were associated with protection from death, 
such as trans lycopene and physical activity. 

In T2D, we observed that serum measures of PCB170 and heptachlor epoxide, two types of 
banned and polychlorinated compounds used in materials manufacturing and pesticides 
respectively, and positively associated with T2D (red point in EWAS track [Figure 3B]), 
correlated with other exposures of the same category, such as other polychlorinated biphenyls and 
pesticides. Therefore, PCB170 and heptachlor epoxide could be a marker of correlated chlorinated 
exposures, all which may play a role in T2D. Cumulative role of groups of persistant pollutants is 
indeed one hypothesis for T2D [17]. Serum levels of Vitamin A (e.g., retinol, retinyl stearate, and 
retinyl palmitate), were positively correlated with heptachlor epoxide. Further, serum-measures of 
γ-tocopherol, a type of vitamin E (positive association with T2D, red point in EWAS track, Figure 
3B), was negatively correlated with serum-measured folate (blue correlation line, Figure 3B); 
individuals with high levels of γ-tocopherol had lower levels of folate.  



 
 

 

 
 
 
 
Table 1. Pearson ρ of exposure correlations between each independent 
NHANES dataset. Number of correlations compared are in parentheses. 

 
1999-2000 2001-2002 2003-2004 2005-2006 

1999-2000 1.00 0.84 (33191)  0.84 (34337) 0.92 (16955) 
2001-2002 

 
1.00 0.82 (55025) 0.93 (22931) 

2003-2004 
  

1.00 0.94 (47070) 
2005-2006 

   
1.00 

 

 
Fig 1. A.) Cumulative distribution of absolute value of correlations. The red line denotes the summarized 

correlation coefficients for all pairs of exposures possible. The green line denotes correlations that achieved q-value 
less than 5%. The blue line denotes correlations that were replicated (and part of the exposome globe), or had q-value 

less than 5% in at least 2 surveys. B.) Histogram of all replicated correlations of the exposome globe. Vertical 
black line denotes 0 correlation. 
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Fig 3 (above). A.) Exposome Correlation Globes for EWAS in All-Cause Mortality and B.) T2D. Association p-
values from EWAS are shown as a separate track (“EWAS track”) above each exposure (red points denote EWAS 
validated associations with positive effect size [indicating risk] blue points indicate an EWAS validated negative 

effect size [indicating protective]). Validated EWAS associations for T2D and all-cause mortality are offset in labeled 
in red or blue text. Only “first-degree” correlations (correlations for validated EWAS findings) are displayed in the 

globes and displayed in black text. Acryl.=acrylamide; Mel=Melamine; VoC=volatile organic compounds; 
PCBs=polychlorinated biphenyls; PFCs=polyfluorinated compounds 

3.  Discussion 

3.1.1.  Summary of findings 

By relating all possible exposures with one another by comprehensively computing correlations 
and replicating these correlations across multiple independent survey datasets, we were able to 
produce a first exposome correlation globe. We observed that this globe contains many 
reproducible correlations between exposures of the same environmental health category or group, 
but also between these groupings. The correlations of these exposures may be indicative of ways 
human populations are exposed (“routes of exposure”), such as behaviors and/or shared metabolic 
fate of biomarkers of exposure. Relatedly and importantly, by selecting correlations that are 
related to a disease outcome and identified by EWAS (via the EWAS track), we can create 
hypotheses regarding disease-related exposures, such as smoking correlates in mortality and 
persistent pollutants in T2D.  

3.1.2.  Strengths of exposome globes 

There are several advantages of the proposed exposome globes. First, exposome globes allow the 
presentation and visualization of the clusters of co-existing exposures, or mixtures, in humans. 
These mixtures may be a result of common routes of exposure or behaviors (e.g., foods are 
mixtures of nutrients or smoking behavior can result in a mixture of hydrocarbons and heavy 
metals).  These systematic correlations may also help identify shared characteristics of exposures; 
for example, chlorinated persistent pollutants were all densely correlated with one another perhaps 
due to shared routes of exposure, but also because they happen to be lipophilic and have similar 
metabolic fates.  

Secondly, knowing how exposures are correlated with one another may aid inference in 
disease association studies, such as EWAS or gene-environment (GxE) interaction studies. For 
example, displaying EWAS identified factors with correlation globes may enable investigators to 
pin down behaviors that underlie the correlations. For example, we observed that many of the 
exposures found in an EWAS in all-cause mortality, such as smoking, were strongly correlated 
with hydrocarbons and volatile organic compounds. These compounds may be indicative of the 
complex chemical matrix of cigarette smoke (e.g., metals, hydrocarbons, and volatile compounds 
may be found in cigarette smoke). Such a visualization is analogous to a “manhattan plot” in 
GWAS, where the correlation (LD) between genetic variants and their p-value of association is 
visualized jointly to enable assessment of independence of associations between genotype and 
disease [18].  



 
 

 

Relatedly, in GxE investigations, exposome globes may present alternative scenarios for 
interaction between the environment and genetic variants. Because of power and sample size 
constraints, GxE investigations test a few environmental factors at a time [19].  For example, we 
recently documented an interaction between serum levels of trans-β-carotene and a GWAS-
identified SNP, rs13266634 in the SLC30A8 gene in T2D [20]. However, evidence of statistical 
interaction is not evidence of biological interaction. But, other exposures correlated with trans-β-
carotene (e.g., Figure 3B) may provide clues to other possible alternative molecular pathways that 
are centered on the SLC30A8 gene.  

Third, correlated exposures may enable investigators to identify biases, such as confounders in 
association studies, including EWAS or GxE interaction studies. Confounded exposures are those 
that are not causal, but associated with the disease of interest (e.g., diabetes or mortality) and the 
causal exposure (similar to genetic loci in linkage as discussed above). Once correlated exposures 
are identified through the globe, investigators can attempt to “control” and condition for them in 
their statistical models to observe how they influence the strength of association between 
exposures and the disease. Conditioning by correlated exposures also enables investigators to 
assess independence of associations between exposure and disease or even find other exposures 
associated with the disease [21], such as in GWAS [22]. Further, as we have claimed before, 
exposome globes may also enable investigators to compare effect sizes for disease associations 
among different categories of correlated exposures appropriately [9].  

Fourth, exposome globes enable coordination, collaboration, and communication between 
individual investigators. For example, because of heterogeneous nature of exposures (such as 
measurement modality), single investigators may have expertise on but a few of these exposures 
(e.g., phenols, heavy metals, infectious agents). The exposome globe presents a way to relate 
exposures to another and across domains of expertise (e.g., between chemical exposure to 
infectious agents). Exposure globes may also help organize broad follow-up efforts, across 
exposures of different categories and correlated exposures. 

3.1.3.  Future directions 

With the exposome globe in place, other analyses can follow. First, one could quantitatively 
identify highly correlated subsets of the exposome, analogous to “haplotypes” in the genome using 
methods such as weighted network analyses [11]. Haplotype blocks are contiguous regions of the 
genome that contain genetic variants that are correlated because they are inherited together, a 
phenomenon known as linkage disequilibrium. There are several benefits of explicitly identifying 
clusters of the exposome, including assessing only a subset of exposures that are correlated with 
one another in future EWAS. This is likely to be a more cost effective measurement of the 
exposome. By analogy, in GWAS, a comprehensive view of common frequency genetic 
associations is achieved by measuring only a subset (“tagging” variants) of all possible common 
genetic variants. Tag variants are in linkage disequilibrium and correlated with unmeasured 
variants. While providing “tag” exposures that are proxies of others, exposome haplotypes 
themselves will allow derivation of new categories of exposure that reflect the mixtures present in 



 
 

 

humans. Further, we may begin to hypothesize how interventions on few exposures may modulate 
many others and even how seemingly distinct pathologies may share a common etiology.  

We emphasize that the exposome globe is descriptive does not capture independent 
relationships, causal, and/or time-dependent relationships between exposures. Extending globes to 
partial correlation networks (e.g., [23, 24]) may be informative regarding independent 
relationships, but an outstanding challenge is adapting these methods to missing exposure 
information and assessing exposures over time (both issues with NHANES, a cross-sectional 
survey). Understanding the directionality of relationships between exposures will require 
longitudinal exposure data on individuals coupled with multivariate computational methods to 
model time-dependent changes of entire correlation globes. Exposures are highly time-dependent, 
and it would be worthwhile to test whether and how exposome globes differ between an individual 
from child to adulthood. 
       Our method could be expanded to incorporate geospatial and/or clinical data. Exposures 
reflect where individuals live and work; for example, the correlation globe for individuals in urban 
settings will likely be very different than those living in a rural place. Last, we plan to move 
beyond just T2D and mortality and consider relationships between the exposome globe and other 
clinical and physiological variables. In doing so, we hope to get a broader glimpse of the complex 
role of the exposome in disease. 
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