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1. Introduction 
 

The delivery of personalized healthcare is predicated on the application of the best 
available scientific knowledge to the practice of medicine in order to promote health, 
improve outcomes and enhance patient safety [1-3].  Unfortunately, current approaches to 
basic science research and clinical care are poorly integrated, yielding clinical decision-
making processes that do not take advantage of up-to-date scientific knowledge [2-4].  
Basic scientists investigating the biological basis for a given disease may regularly 
encounter synergistic effects spanning two or more bio-molecular entities or processes 
that can contribute to our understanding of the mechanisms underlying phenomena such 
as the etiologic basis of the targeted disease state or potential response to therapeutic 
agents [5]. However, systematic approaches to the use of that knowledge in order to 
directly inform the selection of targeted molecular therapies for “real world” patients are 
extremely limited [1, 3, 6-9].  There are an increasing number of multi-modelling and in-
silico knowledge synthesis techniques that can provide investigators with the tools to 
quickly generate hypotheses concerning the relationships between entities found in 
heterogeneous collections of scientific data — for example, exploring potential linkages 
among genes, phenotypes and molecularly targeted therapeutic agents, thus enabling the 
“forward engineering” of treatment strategies based on knowledge generated via basic 
science studies [1, 4, 6, 10, 11].  Ultimately, the goal of such methodologies is to 
accelerate the identification of actionable research questions that can make direct 
contributions to clinical practice.  Given increasing concerns over the barriers to the 
timely translation of discoveries from the laboratory to the clinic or broader population 
settings, such high-throughput hypothesis generation and testing is highly desirable [1, 4, 
6, 8, 12].  These needs are particularly critical in numerous disease areas where the 
availability of new therapeutic agents is constrained, thus calling for the re-use and 
repositioning of existing treatments [13, 14]. 
 In response to the challenges and opportunities enumerated above, there exits an 
emerging body of research and development focusing on multi-modeling approaches to 
the discovery of molecularly targeted therapies, including experimental paradigms 
spanning a spectrum from the identification of molecular targets for drugs, to the 
repurposing or repositioning of existing agents that utilize such targets, to the systematic 
identification of novel combination therapy regimens that amplify or enhance the 
effectiveness of their constituent components.  This focus is motivated by recent and 
significant advances in the state of systems biology and medicine that have demonstrated 
that the ability to generate and reason across complex and scalar models is essential to the 
discovery of high-impact biologically and clinically actionable knowledge [1, 4, 12].  
Such approaches are designed to overcome the limitations of reductionist approaches to 
scientific discovery, replacing decomposition-focused problem-solving with integrative 
network-based modeling and analysis techniques [4, 8].  Systems-level analysis of 
complex problem domains ultimately enables the study of critical interactions that 
influence health and wellness across a scale from molecules to populations, and are not 
observable when such systems are broken down into constituent components.  The use of 
systems-level analysis methodologies is well supported by the foundational theory of 
vertical reasoning first proposed by Blois [15].  This theory holds that effective decision-
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making in the biomedical domain is predicated on the vertical integration of multiple, 
scalar levels of reasoning.  This fundamental premise is the basis for a correlative 
framework put forth by Tsafnat and colleagues, which states that the ability to replicate 
expert reasoning relative to complex biomedical problems using computational agents 
(e.g., in-silico knowledge synthesis) requires the replication of such multi-scalar and 
integrative decision-making [16].  In order to achieve such an outcome, Tsafnat posits 
that multi-scalar decision-making in an in-silico context requires both: 1) the generation 
of component decision-making models at multiple scales; and 2) the similar generation of 
interchange layers that define important pair-wise connections between entities situated 
in two or more component models, often referred to as vertical linkages [16].  When such 
component models and interchange layers are combined in a computationally actionable 
format, they yield what can be referred to as a multi-model for a given domain that is able 
to satisfy the premises of Blois’ vertical reasoning axiom, and therefore facilitate the 
replication of expert performance in a high-throughput manner [16].  Of note, this type of 
approach is extremely reliant upon graph-theoretic reasoning and representational 
models, using a network paradigm that allows for the application of logical reasoning 
operations spanning the entities and relationships that make up a multi-model [8].  
Network paradigms have been regularly shown to be the ideal representational model for 
naturally occurring systems, such as the ‘scale-free’ networks encountered in biological 
and clinical phenomena [8].  At the most basic level, network-based multi-modeling 
across scales presents an elegant and computationally tractable approach to understanding 
and evaluating complex biological and clinical systems in order to discover the 
knowledge incumbent to such constructs.  This type of approach benefits from a robust 
set of foundational theories and frameworks that can inform and shape the application of 
multi-modeling techniques to a variety of knowledge discovery use cases.  As such, there 
is a growing body of evidence concerning the application of network-based approaches to 
multi-modeling with an emphasis on therapeutic agent discovery, re-positioning and 
molecular targeting.  Examples of such evidence include reports and perspectives 
published by Hood and Perlmutter [1], Butcher and colleagues [12], and Lussier and 
Chen [13].   
 
2. Overview of Session Contributions 
 
 The utility and impact of multi-modeling approaches to integrative biological and 
clinical analyses, including hypothesis discovery operations such as those related to the 
identification of molecularly targeted therapies as noted above, have been explored in a 
number of instances by the biology, computer science and translational bioinformatics 
communities. At a high level, the exemplary efforts made by authors contributing to this 
session of PSB 2016 provide a broad cross-section of such novel methods, and focus on: 
1) the development of factorization-based models to traverse multiple large-scale 
database comprising types of drug-disease and drug-target relationships (Zitnik et al and 
Regenbogen et al); 2) network-theoretic approaches in a variety of applications 
including: linking environmental risk factors for disease via systematic analysis of 
biological pathways (Darabos et al), the prioritization of gene mutations causing drug 
resistance (Verkhivker), and the facilitation of viable community detection (Yu et al); 
and 3) the incorporation of prior knowledge into in silico methods in order to optimize 
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large-scale regression-based association studies (Verma et al) and to discover 
dependencies between genes differ across disease conditions (Speyer et al).  Brief 
synopses of these reports are provided below: 
 
2.1 Factorization-based Models for Traversing Databases 
 
Zitnik et al describe a novel collective pairwise classification (COPACAR) model for 
analysis of multi-relational data, including clinical manifestations of diseases, molecular 
interactions of diseases, drug-drug and drug-target interactions and drug-drug similarities. 
Their model combines factorization models that are optimized for large relational data 
with classification pairwise ranking loss for classification. Importantly, their model 
incorporates prior knowledge that is also scalable to highly complex, large-scale data. 
The authors address the issue of ranking in their predictions, where relationship are 
ranked according to their relevance, which is ideal for prioritizing large-scale, diverse 
relationships. They distinguish their approach to other widely recognized collective 
relational learning approaches optimized to minimize error rate are not well-suited to 
rank high-confidence relationships integral to applications of precision medicine and drug 
repurposing. The COPACAR method optimizes a ranking metric using pairwise 
classification in order to estimate latent factors of entities, which are use to parameterize 
the model’s predictions about pairwise entity relationships. Another particularly 
significant contribution is the implementation of an application the authors term 
“category-jumping,” which permits the generation of novel hypotheses relating 
heterogeneous biomedical entities that may be unrecognized by other models that rely on 
data of a single relation type. The authors demonstrated a widely observed phenomenon 
that shared clinical manifestations of disease, in particular high-level symptom 
characteristics, indicate shared molecular interactions (e.g. genetic associations and 
protein interactions). Finally, hierarchical clustering of the disease matrix demonstrated 
that diseases with sparse molecular information could be grouped to disease with 
molecular-rich relations based on clinical manifestations, thus resulting in novel 
hypotheses for molecular basis of these diseases.  
 
Regenbogen et al address an important problem of extrapolating knowledge across 
diverse, large-scale sources for small-scale, high-resolution problems in personalized 
medicine, including individual patient drug prediction and drug repositioning. The 
authors employed a technique called collaborative filtering (CF), which is extensively 
used in online recommendation systems. Specifically, non-negative matrix factorization 
(NMF) was used to analyze knowledge of connections, rather than entity features, in 
order predict interactions among chemicals, genes, and diseases contained within the 
Comparative Toxicogenomics Database (CTD). Although NMF has been widely used in 
the analysis of genomics data and for predicting protein-protein and drug-target 
interactions, a particular novel contribution of this work is the authors’ integration across 
multiple entity types. One benefit of this framework is that it can be easily extended to 
new entity classes without extensive pre-processing or abstraction, unlike other methods 
highly specific to entity attributes; however, it is limited to predict interactions among 
entities without details regarding how entities interact (e.g. directionality, causality, etc.). 
Their method was able to accurately predict protein-protein interactions in an 
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independent database and successfully predict CTD entity relationships between 
successive versions of the database. Furthermore, integrating data across these two 
independent databases increased the performance of the CF method. Importantly and 
similar to Zitnik et al, the authors confirmed a high degree of precision in their results in 
addition to a high sensitivity, which is crucial to precision medicine and drug repurposing 
initiatives that focus on pursuing a small number of hypotheses relative to the total 
interaction space. 
 
2.2 Network-theoretic Analyses 
 
Darabos et al presents a methodology for determining the effect of environmental factors 
in complex diseases. This is an important problem to address since it is often difficult to 
distinguish environmental causality in disease development. The authors utilize a 
tripartite network linking diseases, environmental chemicals and biological pathways in 
order to identify potential biological effects of environmental chemicals relating to 
disease. This tripartite network allows for the connecting environmental factors with 
disease through shared biological processes. The utility of this model is demonstrated in 
one instance through the linkage of arsenic to multiple diseases through its role in 
disrupting signal transduction pathways. Overall, this work supports the use of multi-
modeling network approaches to elucidate the effects of environmental exposure related 
to disease states. The authors also show how linking disparate datasets together can help 
answer large-scale questions through creation of a hypothesis generating system that can 
help fuel future research areas such as population health and epigenetics. 
 
Verkhivker investigates mechanisms of resistance to lapatinib caused by EGFR 
mutations. Using genetic and structural data, they are able to prioritize mutations by their 
ability to affect a residue interaction network, computed using molecular dynamics 
simulations. The centrality of the residue in the network predicts its ability to disturb the 
effect of EGFR inhibition. Their results provide a framework for understanding the 
spectrum of resistance causing mutations, with the added benefit of implying causality of 
the associated mutations. They suggest that a wide range of mutations within the EGFR 
protein could cause resistance to lapatinib therapy. Their simulations also recover known 
resistance mutations, further validating the success of their method. 
 
Yu et al propose innovative extensions on the Markov clustering methodology for 
community detection in networks. While viable community detection has implications in 
a variety of fields, the authors propose an integrative methodology that is especially apt 
for garnering a holistic picture in biological networks. They propose two subsequent 
extensions to the well-known Markov Clustering and regularized Markov Clustering 
algorithms in order to, firstly, focus on information or influence flow in a non-exclusive 
manner (inverse regularized Markov Clustering – irMCL) and subsequently integrating 
network structure with node attributes of biological significance such as phenotype, gene 
expression or demographic information (attribute inverse regularized Markov Clustering- 
airMCL). The authors have ideated a method which allows for node attributes to be 
incorporated in the community detection paradigm, utilizing and weighing attributes with 
respect to their effect on inter and intra community information flow. They have modeled 

Pacific Symposium on Biocomputing 2016

5



the connections between node attributes and network structure in way that is malleable 
with statistical classification approaches. They prove the validity and robustness of this 
method by employing it on a simulated as well as real world dataset, utilizing the 
requisite statistical models and measures for rigor. Their results showcase that the 
methodology was immune to weak attributes whereas attribute similarity that predicted 
the structure was highlighted. This eliminates the need for a user-based selection of 
attribute importance. In the real world Breast Cancer dataset, the algorithm was able to 
isolate a variety of pathways, including, but not limited to the cell cycle pathway, signal 
transduction pathway and ribosome biogenesis. Also, the modules isolated showed 
significant association with time to survival. The authors have aimed to examine and 
stratify attribute impact by its connection to network structure. This is a novel ideology 
that promotes multi-modal data integration without succumbing to formation of overly 
complex models. Finally, with the inclusion and use of classification methodologies in 
community detection, the authors plan to utilize the inherent classification properties to 
better select models and features for future work.	
 
2.3 Incorporation of Prior Knowledge into in silico Methods 
 
Verma et al describe a system of discovering associations utilizing a novel method called 
Phenome-wide interaction study (PheWIS), which builds on the authors’ previous work 
with phenome-wide association studies (PheWAS). This work seeks to address the 
problem of discovering associations between single nucleotide polymorphisms (SNPs) 
and phenotypes on a large scale. The authors approach this problem of large-scale 
association assessment by modeling the variance of the SNPs. They identified genetic 
variants that are associated with multiple phenotypes by prioritizing previously published 
results from both genome-wide and phenome-wide association studies using the AIDS 
Clinical Trials Group (ACTG) and the Roadmap Epigenome project. They discovered 
that by filtering out variance from low functional regions of the genome they could 
conduct a pair-wise search using linear regression analysis to identify associations. With 
their system the authors were able to identify 50,798 statistically significant associations 
related to 26 different phenotypes. This work helps to demonstrate not only the 
importance of modeling genotypic and phenotypic information together but also shows 
the strength of utilizing previously published information to help inform novel hypothesis 
driven systems.  
 
Speyer et al investigate the effect of injecting biological knowledge into a previously 
developed method, Evaluation of Differential Dependency (EDDY). Their method seeks 
to answer the question, how do dependencies between genes differ across conditions? 
They apply their method to the TCGA glioblastoma multiforme data, to find differential 
dependencies between proneural and nonproneural, and mesenchymal and non-
mesenchymal tumors. The result is a list of gene sets whose dependencies most differ 
between two cancer subgroups. Specifically, they find that the mesenchymal subset is 
defined by changes to metabolic processes and the proneural subset is defined by changes 
to AKT-ERK signaling. These pathways are strongly implicated in cancer, which shows 
the power of this method to find cancer-related results. They compare their results to 
knowledge-fused differential dependency network (KDDN) and find that the EDDY 

Pacific Symposium on Biocomputing 2016

6



method appears to be more sensitive to differential dependencies, although there is 
substantial overlap for a subset of pathways. 
 
3. Discussion and Conclusions 
 
 The goal of PSB 2016 is to demonstrate advances relative to “work in databases, 
algorithms, interfaces, natural language processing, modeling and other computational 
methods, as applied to biological problems, with emphasis on applications in data-rich 
areas of molecular biology.”  Further “a major goal of PSB is to create productive 
interaction among the rather different research cultures of computer science and 
biology.”  The body of work represented by this session, focusing on the development 
and application of methods for the discovery of molecularly targeted therapies, is 
emblematic of the vigorous and highly productive exchange of knowledge and ideas 
surrounding the aforementioned foci.   Further, the work summarized herein serves to 
emphasize: 
 
1) The state-of-the-art in terms of in-silico knowledge synthesis methods that can be 

used to identify, aggregate and instantiate component-level models and that can be 
used to construct application-specific multi-models for therapeutic targeting (e.g., 
having a specified disease or biological context); 

2) Ongoing challenges and opportunities surrounding the creation of “interchange 
layers” and the execution of “vertical reasoning” tasks across and between scalar 
multi-models in order to generate hypotheses linking synergistic bio-molecular 
entities or processes of interest and correlative molecularly targeted therapeutic 
agents; and 

3) Exemplary instances where the preceding theories and methods have been applied to 
create an “end to end solution” in which multi-modeling approaches have been used 
to generate scalar multi-models, identify hypotheses concerning molecularly targeted 
therapeutics informed by such multi-models, and ultimately evaluate those hypotheses 
using some combination of in-silico, laboratory, animal or human study paradigms. 

 
As such, these report amplify the highly promising future for the molecular targeting of 
therapeutics in a variety of disease states, all in support of what are ultimately envisioned 
as precision medicine paradigms with the ensuing benefits relative to the quality, safety, 
outcomes, and costs of such data-driven and adaptive healthcare. 
. 
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