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There is growing use of ontologies for the measurement of cross-species phenotype similarity. Such
similarity measurements contribute to diverse applications, such as identifying genetic models for
human diseases, transferring knowledge among model organisms, and studying the genetic basis of
evolutionary innovations. Two organismal features, whether genes, anatomical parts, or any other
inherited feature, are considered to be homologous when they are evolutionarily derived from a
single feature in a common ancestor. A classic example is the homology between the paired fins
of fishes and vertebrate limbs. Anatomical ontologies that model the structural relations among
parts may fail to include some known anatomical homologies unless they are deliberately added
as separate axioms. The consequences of neglecting known homologies for applications that rely on
such ontologies has not been well studied. Here, we examine how semantic similarity is affected when
external homology knowledge is included. We measure phenotypic similarity between orthologous
and non-orthologous gene pairs between humans and either mouse or zebrafish, and compare the
inclusion of real with faux homology axioms. Semantic similarity was preferentially increased for
orthologs when using real homology axioms, but only in the more divergent of the two species
comparisons (human to zebrafish, not human to mouse), and the relative increase was less than 1% to
non-orthologs. By contrast, inclusion of both real and faux random homology axioms preferentially
increased similarities between genes that were initially more dissimilar in the other comparisons.
Biologically meaningful increases in semantic similarity were seen for a select subset of gene pairs.
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Overall, the effect of including homology axioms on cross-species semantic similarity was modest at
the levels of divergence examined here, but our results hint that it may be greater for more distant
species comparisons.

Keywords: homology; phenotype; semantic similarity; Uberon; EQ annotation

1. Introduction

1.1. Cross-species phenotype matching

Organisms exhibit similarities with each other in their genetic content, anatomical structures,
and other biological features due in large part to common evolutionary descent. This similarity
is what allows non-human organisms to serve as models for human diseases and for biological
knowledge to be transferred from model organisms to related species. In the area of biomedical
informatics, an important recent application is the use of cross-species phenotype matching
algorithms to generate candidate gene lists for rare and undiagnosed diseases.1,2 Given a
phenotypic profile for a human disease (e.g. a list of terms from The Human Phenotype
Ontology,3 cross-species profile matching tools generate a ranked list of candidate genes based
on matches to the phenotypic profiles of orthologous genes in mutant models. This process can
be automated by using phenotype ontologies and semantic similarity methods that quantify
the degree of similarity.4,5 A number of methods make use of the Uberon anatomy ontology to
connect phenotype terms across species.6,7 For example, the human phenotype “Abnormality
of the upper limb” (HP 0002817) is connected to the mouse phenotype “abnormal forelimb
morphology” (MP 0000550) via the Uberon class “forelimb” (UBERON 0002102).

1.2. Homology

Two organismal features, whether genes, anatomical parts, or another inherited feature, are
considered to be homologous when they are evolutionarily derived from a single feature in a
common ancestor. Orthologous genes are a particular class of homologous features, ones that
are found in two different organismal lineages and that split evolutionarily into two genetic lin-
eages during a speciation event. It is a foundational premise for much of comparative genomics
that orthologous genes retain comparable functions even in distantly related organisms.8 For
example, in chick, Tbx5 and Tbx4 genes control early development of wing and hindlimb buds
respectively, and the orthologs of these genes in zebrafish control development of anatomically
homologous structures, the pectoral and pelvic fins9 (Figure 1). Thus, it appears that these
two gene lineages were distinct in the common ancestor of fish and birds and were deployed
similarly in the development of the ancestral fore and hind appendages.

Recognizing similar phenotypes grows increasingly challenging as the evolutionary dis-
tance increases between species and anatomical features diverge in structure. Comparative
anatomists have given a great deal of attention to identifying homologous anatomical struc-
tures among distantly related species.10 Uberon does not contain explicit homology relation-
ships,11 such as between a hindlimb and a pelvic fin, or between the mammalian adrenal
gland and the zebrafish interrenal gland. Instead, these classes are grouped according to sim-
ilar structure, function or cellular composition. For example, both forelimb and hindlimb are
grouped under the more general class limb based on their shared morphology, and limbs and
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fins are grouped under the general paired appendage (Figure 1). The situation is complicated
by the fact that homology assumptions do necessarily leak into the construction of the on-
tology. The fact that the forelimb and hindlimb are similar morphologically is no accident if
it is accepted that these are anatomical serial homologs. In fact, Uberon includes a grouping
class paired limb/fin (UBERON 0004708) based on homology. Despite the above, homologous
structures may sometimes be placed relatively distant to each other within Uberon when struc-
tural similarities are not as apparent (e.g. as is the case for certain bones in the jaw of fish
that are homologous to the inner ear bones of mammals). Phenotypes affecting anatomical
features that are homologous, but distantly placed within the ontology, will appear artificially
dissimilar to one another.
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Fig. 1. The role of an orthologous gene pair in the
development of different appendages. (a) genes (square
boxes) are expressed in anatomical structures (rounded
boxes), which are organized hierarchically in a subclass
hierarchy (arrows). The two ortholog pairs are anatomi-
cally similar only at the level of “paired appendage”. (b)
Adding anatomical homology (dotted lines) increases
anatomical similarity between orthologous pairs.

We wish to quantify the extent to
which the accuracy of cross-species phe-
notype matching is increased by includ-
ing assertions of homology, such as those
compiled by Bgee,12 into Uberon. We do
this by assessing how measures of semantic
similarity are affected for orthologous rel-
ative to non-orthologous gene pairs. The
underlying assumption is that ortholo-
gous genes are more often expressed in,
and thus contribute to phenotypes in, ho-
mologous anatomical structures than non-
orthologous genes, independently of how
close the anatomical structures are within
Uberon. If this assumption is correct, and
homologies do indeed contribute to ac-
curacy, we would expect to see a rela-
tively greater increase in semantic similar-
ity for orthologous genes relative to non-
orthologous genes when non-trivial ho-
mologies are added to Uberon.

2. Methods

2.1. Phenotype
Annotation Data

Orthologous gene pairs in zebrafish,
mouse, and human were obtained from
PANTHER (06/19/2014 release, v9.0).13,14

Phenotype annotations for these genes
were obtained from the Monarch Initia-
tive v1.0 release (https://github.com/
monarch-initiative/monarch-owlsim-data),
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which aggregates data from the Human
Phenotype Ontology (HPO), Mouse Genome Informatics (MGI), and Zebrafish Information
Network (ZFIN) (see http://monarchinitiative.org for details).

Gene pairs in which one or both genes lacked phenotype annotations were not in-
cluded in the final analysis. We removed 503 mouse genes whose annotations indi-
cate a lack of phenotypic assay (MP 0003012: no phenotypic analysis) and/or the ab-
sence of an abnormal phenotype (MP 0002169: no abnormal phenotype detected). Ze-
brafish and human genes for which no phenotypes are presently annotated were pre-
filtered by the source model organism databases (ZFIN, HPO). Anatomical homol-
ogy axioms for Uberon classes were obtained from the GitHub repository of Bgee
v0.2 (https://github.com/BgeeDB/anatomical-similarity-annotations/blob/master/
release/raw_similarity_annotations.tsv).15 Non-orthologous gene pairs across zebrafish,
mouse, and human were randomly sampled with a uniform distribution from the set of gene
pairs not asserted to be orthologous by PANTHER.

There are a variety of different semantic similarity measures used in the bioinformatics
literature.16 Here, we present results for a commonly used measure, SimIC , which is based
on the concept of Information Content (IC), or the specificity of the match between two
annotations relative to a chosen annotation corpus.17 We also examined another commonly
used measure, Jaccard similarity (SimJ) which measures the ontological graph overlap between
two annotations.18 They differ in that SimIC takes into account the distribution of annotations
among ontology terms while SimJ considers ontology structure independent of annotation
density. These metrics were compared because of their prior use as measures of phenotypic
similarity between orthologous genes.2

We also have a choice in how to summarize the set of pairwise semantic similarities between
two genes, both of which typically have multiple annotations. We refer to the union of the
individual phenotype annotations for all alleles of one gene as a phenotype profile. Here, we
evaluated two summary statistics for semantic similarity between two phenotype profiles, as
detailed below, which we call Best Pairs and All Pairs. We only report full results for one
combination of statistics, SimIC with Best Pairs, based on a test for which combination best
discriminated between orthologs and non-orthologs (see Results).

The IC of ontology graph node N in an annotation corpus with Z genes is defined as the
negative logarithm of the probability of a gene being annotated to N .

IC(N) = − log(ZN/Z)

where ZN is the number of genes annotated to N . The IC for a pair of annotations, K and L,
is defined as the IC of their most informative common ancestor (MICA), which is their most
specific common subsumer in the ontology. Raw IC scores range from [0, ICmax], with 0 being
the score of the root node of the ontology graph, and ICmax = −log(1/Z) the score of a node
with only one gene annotation in the dataset. To obtain an IC score with a range of [0, 1], the
IC-based similarity measure, SimIC(K,L), is normalized as follows.

SimIC(K,L) = IC(K,L)/− log(1/Z)

The Jaccard similarity for a pair of annotations K,L is defined as the ratio of the number
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of nodes in the intersection of their subsumers in the ontology graph over the number of nodes
in the union of their subsumers.18

SimJ(K,L) = |AK ∩AL|/|AK ∪AL|

where AK and AL are the sets of subsumers of K and L, respectively.

2.1.1. Similarity between phenotype profiles

To compute the Best Pairs score between two phenotype profiles X,Y , for each annotation
in X, the best scoring match in Y is determined, and the median of the |X| values is taken.
Similarly, for each annotation in Y , the best scoring match in X is determined, and the median
of the |Y | values is taken. The Best Pairs score SBP (X,Y ) is the mean of these two medians.

SBP (X,Y ) = (1/2)[Sim(X,Y ) + Sim(Y,X)]

where

SimIC(A,B) = median
{
SimIC(Ai, Bj) | i ∈ {1 . . . |A|}, j = arg max

j=1...|B|
SimIC(Ai, Bj)

}
To compute the All Pairs score, one instead takes the median of of all pairwise phenotype

similarities between X and Y .

SAP (X,Y ) = median
{
Sim(Xi, Yj) | i ∈ {1 . . . |X|}, j ∈ {1 . . . |Y |}

}
For both SBP and SAP , similarity may be measured using either SimIC or SimJ .

2.2. Construction of ontologies

We constructed three ontologies for computing semantic similarity: one without homology
axioms (R), one with valid homology axioms (H) and one with a random set of homology ax-
ioms (H ′). Figure 2 illustrates the process by which these were built. Following the approach
of Kohler et al.,19 R, H and H ′ were seeded with the ontologies used by the gene phenotype
annotations for all three species in the corpus: the mammalian phenotype,20 zebrafish Phe-
notype,19 and human phenotype21 ontologies, as well as the cross-species Uberon anatomy
ontology11 and the phenotypic quality ontology PATO.22

There already exist a number of homology grouping classes in the Uberon ontology that
bundle morphologically or functionally distinct subclasses based entirely on homology. As
we are seeking to determine the effect of anatomical homology on cross-species phenotype
similarity of orthologous genes, we removed a number of homology grouping classes from R,
H, and H ′ (Table 1).

Next, 1, 836 homology axioms from Bgee15 relating homologous anatomical structures were
added to H. For example, “pectoral fin” is asserted as being homologous to “forelimb” and
“pelvic fin” to “hindlimb”. These axioms restored the relations indicated by the excluded
homology grouping classes in Table 1. We generated a set of 1, 836 ‘random’ homology axioms
by sampling anatomy terms from a permuted list of those used in the real homology axioms;
these were then added to H ′.
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Table 1. homology grouping classes in Uberon excluded from R, H, and H ′.

Name UBERON ID Name UBERON ID
adrenal/interrenal gland 0006858 paired limb/fin bud 0004357
limb/fin segment 0010538 paired limb/fin cartilage 0007389
paired limb/fin skeleton 0011582 pelvic appendage 0004709
paired limb/fin 0004708 pectoral appendage 0004710
paired limb/fin field 0005732 bone of free limb or fin 0004375

We then created grouping classes to subsume annotations based on different ontology class
properties. These grouping classes are classified by an OWL reasoner into the pre-existing
phenotype class hierarchy by virtue of subsumption reasoning and equivalence axioms. These
axioms follow the standard Entity–Quality (EQ) template.7,19 In their simplest form, EQ
expressions describe a phenotype in terms of a quality (Q) and an entity (E) that is the
bearer of the quality. These EQ expressions are represented in OWL as “Q and ‘inheres
in’ some E”.7,23 The following three EQ expressions were created to serve as templates for
equivalence axioms of grouping classes.

• EQ1: Q and ‘inheres in’ some E
• EQ2: Q and ‘inheres in’ some (‘homologous to’ some E )
• EQ3: Q and ‘inheres in’ some (E or ‘homologous to’ some E )

In the above expressions, Q is the root of the PATO ontology and E can be any entity
from the Uberon ontology. One class of the form EQ1 was created for each entity class (E) in
Uberon. These classes were added to R, H, and H ′.

Ontology R

Base ontologies

Uberon

HPOZPMP
equivalence 
axiomsPATO

Ontology HAnatomical homology axioms

Grouping classes

Q and ‘inheres in’ some E

Q and ‘inheres in’ some (‘homologous to’ some E)

Q and ‘inheres in’ some (E or ‘homologous to’ some E)

Fig. 2. Construction of ontologies for computing semantic similarity without or with supplemented knowledge
of anatomical homology. First, ontology R is created by adding building block phenotype ontologies and
equivalence axioms. H (and H ′) are created by adding anatomical homology axioms to R. Finally, one set of
grouping classes is added to R and three sets of grouping classes are added to H (and H ′).
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The templates EQ2 and EQ3 generate classes that group annotations whose anatomical
structures are related via homology. For each entity class (E) in Uberon, we added to ontologies
H and H ′ one class of form EQ2 and one of form EQ3. It is the presence of these grouping
classes that control whether anatomical homology axioms are or are not used to infer common
subsumers for phenotype annotations. Figure 3 illustrates the difference between ontologies
for which the EQ2 and EQ3 classes are or are not included. When using R, which has EQ1-
template grouping classes only, fin and limb phenotypes are grouped at the high level of paired
appendage. When using H, the phenotypes are grouped by an EQ2-template grouping class
for a more specific and thus more informative class defined by anatomical homology.
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paired appendage
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(a) Portion of ontology R
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Fig. 3. An example of subsumption hierarchies without and with anatomical homology. Least common sub-
sumers for annotations of the pectoral fin and forelimb (dashed boxes) can be seen to differ for the R ontology,
without homology (a) and the H ontology, with homology (b). Arrows denote subsumption relationships. It
can be seen here that knowledge of homology enables the inference of more informative common subsumers
for annotations with homologous anatomical structures.

2.3. Assessing the impact of homology

Our overall goal is to assess how the semantic similarity between the phenotypic profiles of two
genes is affected by the addition of explicit homology statements in H lacking in R. Specifically,
we hypothesized that there would be a greater increase in the similarity score for orthologous
than non-orthologous genes when real homologies were included, and no differential increase
when random homology assertions were included. We tested this hypothesis for two species
pairs: mouse-human and zebrafish-human, with the expectation that the effect of homology
on semantic similarity scores would be greater for the more distant evolutionary comparison.

To carry out this test, we measured the difference in similarity using R versus using either
H or H ′. We performed unpaired, one-sided t-tests for the null hypothesis that the distribu-
tion of differences was identically distributed for orthologs and non-orthologs. The alternate
hypothesis is that the difference would be greater for orthologs. We performed four such tests,
for both the zebrafish-human and mouse-human comparisons and for both H and H ′.
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3. Results

We obtained 1,253 orthologous gene pairs between zebrafish and mouse, 640 between zebrafish
and human, and 2,034 between mouse and human, from PANTHER. Equal numbers of non-
orthologous gene pairs were obtained for each species pair by sampling from permuted lists
of the genes included in the orthologous pairs and requiring that the sampled pair not be
included in the PANTHER orthology list. 10,055 grouping classes were added to ontology R

and 30,165 to ontologies H and H ′. As noted above, 1,836 anatomical homology axioms were
obtained from Bgee for inclusion in H; they come from a wide variety of sources (Table 2).
The same number of random homology axioms were added to H ′.

Table 2. Sources of Bgee homology axioms classified by Evidence Code.24

Evidence Code No. axioms Evidence Code No. axioms
Used in automatic assertion 709 Morphological similarity 66
Curator inference 361 Traceable author statement 55
Developmental similarity 213 Positional similarity 36
Phylogenetic distribution 197 Gene expression similarity 32
Non-traceable author statement 137 Compositional similarity 30

One of three confidence codes, “high confidence” (34.13% of axioms), “medium confi-
dence” (61.72%), or “low confidence” (4.15%) was associated with each homology axiom by
Bgee. 1,680 of the axioms assert a class to be a homolog of itself, while only 156 of the homol-
ogy axioms, belonging to 12 taxonomic groups, assert homology between pairs of anatomical
structures (Table 3). Thus, only a fraction of the homology axioms would be relevant for the
taxonomic comparisons being made here; for example, there are only 10 non-self homology
axioms that would affect comparisons between mammals.

Table 3. Distribution of Bgee homology axioms among taxa, exclud-
ing self-homologies.

Taxon name No. axioms Taxon name No. axioms
Vertebrata 38 Mammalia 10
Tetrapoda 28 Metazoa 6
Bilateria 16 Sarcopterygii 8
Chordata 14 Eumetazoa 6
Amniota 10 Gnathostomata 8
Euteleostomi 10 Dipnotetrapodomorpha 2

We calculated phenotype semantic similarity for each orthologous and non-orthologous
gene pair using the four combinations of semantic similarity measures described in the Meth-
ods above and for each of the three different ontologies, R, H, and H ′. In order to select
one semantic similarity measure for subsequent analyses, we determined which one best dis-
tinguished orthologous from non-orthologous gene pairs, reasoning that this would be an
informative indicator of biological accuracy. We calculated the difference in median rank be-
tween orthologs and non-orthologs for the zebrafish-human comparison using H. We found
that the combination of SimIC and SBP gave the greatest discrimination between orthologous
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and non-orthologous gene pairs and so report results for that statistic in what follows. Full
results for all four statistics, together with analysis scripts used in this study, are available
from Zenodo (doi:/10.5281/zenodo.31833).

Our hypothesis that orthologs would experience a disproportionate increase in similarity
when real homology axioms were used was supported by the t-tests in the case of the zebrafish-
human comparison (Table 4). A one-tailed unpaired t-test found a significantly greater differ-
ence for orthologs than non-orthologs with real homology axioms but no significant difference
with random axioms. However, this pattern was not seen in the mouse-human comparison,
where orthologs were not significantly different than non-orthologs for H. In fact, the reverse
trend was seen in all other comparisons; the mean similarity was preferentially increased for
non-orthologs in the zebrafish-human H ′, mouse-human H, and mouse-human H ′ comparisons
(Table 4). The underlying profile similarity values can be seen in Figure 4.

Table 4. Differences in similarity between orthologs and non-orthologs upon
adding either real or random homology axioms to R. t: one-tailed, unpaired
t-statistic; df: degrees of freedom; ns: not significant; δO, δNO: mean percent
increase ± 2 standard errors relative to R for orthologs and non-orthologs, re-
spectively.

species pair real homology (H) random homology (H ′)
zebrafish-human t, df=1278 t = 2.36, p = 0.009 t = 1.46, ns

δO 5.81± 0.70 4.85± 0.98
δNO 4.88± 0.72 7.99± 3.11

mouse-human t, df=4066 t = −3.17, ns t = −2.16, ns
δO 2.44± 0.27 3.22± 0.61
δNO 4.39± 0.53 5.83± 0.81

4. Discussion

We wished to measure the extent to which addition of homology axioms to an anatomy on-
tology affects the semantic similarity of phenotypes between distantly related species. The
pattern whereby orthologs between distantly related species (zebrafish and human) show a
greater increase in similarity than non-orthologs when real homology axioms are added pro-
vides evidence that the inclusion of homology improves biological accuracy. However, there
are three caveats. One, the relative difference in score between orthologs and non-orthologs,
while significant, is less then < 1%. Two, there was, unexpectedly, a larger increase in the sim-
ilarity score for non-orthologs in the mouse-human comparison using real homology axioms.
Third, non-orthologs had a greater increase in similarity for both species pairs when random
homology axioms were added.

These results may be due to a combination of the hypothesized biological trend and a
countervailing methodological artifact. First, the significant result for zebrafish-human with
real homology axioms is consistent with the idea that the strength of the effect of including
real homology axioms is in proportion to the evolutionary distance between the species pair.
Second, the greater response of non-orthologs than orthologs in the three other comparisons,
may stem from both real and faux homology axioms having a greater effect on semantic
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Fig. 4. SIC,BP for orthologs (blue) and non-orthologs (yellow) for the zebrafish-human (a,b) and mouse-
human (c,d) species comparisons. The x-axis shows the scores without homology axioms (R) and the y-axis
shows the scores for real (H) homology axioms (a and c) or random axioms (b and d).

similarity when phenotypes are dissimilar, as can be seen in Figure 4. When the species are
closely related and orthologs are already highly similar, or when the axioms are random,
then non-orthologs, which are less similar to begin with, preferentially experience the gain in
similarity.

Despite the noisiness of the trends overall, we can see examples of individual gene pairs for
which homology axioms have a large effect that makes biological sense. One such pair is the hu-
man gene TFAP2A (NCBI:gene:7020), which is annotated to “Fusion of middle ear ossicles”,
and the zebrafish gene tfap2a (ZFIN:ZDB-GENE-011212-6), annotated to “abnormal(ly) de-
creased length quadrate”. The homology between the quadrate, part of the jawbone of basal
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vertebrates, and the incus, a middle ear ossicle in mammals, is a textbook example of verte-
brate evolution.25 When homology was excluded, “abnormal(ly) decreased length quadrate”
was matched to “Micrognathia” and grouped under the relatively uninformative grouping
class “Q and ‘inheres in’ some bone of jaw” with an SimIC score of 0.32. When homology
assertions were included, these annotations were subsumed under the grouping class “Q and
‘inheres in’ some (‘homologous to’ some auditory ossicle)” with an SimIC score of 0.56.

Despite examples such as this, the modest effect of homology overall was unexpected.
One explanation could be that so much anatomical homology is already implicit within the
Uberon ontology that homology axioms are only needed in rare cases. In practice, it is difficult
to extricate groupings in the ontology that are based on characteristics such as morphology,
function, and shared development from those based on homology, potentially rendering some
homology axioms redundant. Another explanation for the modest effect of homology is the
relatively low number of homology assertions added to H that are not self-homologies, and
the fact that only a subset of those assertions are relevant to the taxonomic groups compared
here. It is not clear to what extent the results might be affected by homologies known in the
literature that have yet to be curated by Bgee.

Our analysis focused on humans and two vertebrate model organisms for which abundant
mutant phenotype data and a convenient set of anatomical homology statements are available.
Given that the effect of homology seemed to be more pronounced in the zebrafish-human com-
parison than that of mouse, it would be of interest to examine species pairs with even more
divergent body plans. Unfortunately, there are relatively few anatomical homology axioms
linking vertebrates with model organisms outside the vertebrates, such as fruitflies and nema-
todes. Nonetheless, these results suggest that it would be worthwhile to explore the impact
of “deeper” homology statements, either those sourced from the literature, or those derived
computationally, such as by the phenolog approach.26 In future work, we intend to explore
the impact of homology reasoning on measurement of semantic similarity for phenotypes that
vary naturally among vertebrate lineages, such as those in the Phenoscape Knowledgebase.27

Independent of the use of homology axioms, some of the semantic similarity statistics that we
examined showed relatively poor discrimination between orthologs and non-orthologs, suggest-
ing the need to take a critical look at the biological accuracy of different phenotype semantic
similarity measures.
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