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Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to 
integrate knowledge from disparate studies to discover connections across domains. Here, we used a 
Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix 
factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise 
information about their interactions. Our approach, applied to matrices derived from the Comparative 
Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene 
networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction 
matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions 
of STRING, an independent, external network of protein-protein interactions. Finally, this approach could 
integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance 
significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using 
only data prior to that date. We conclude that collaborative filtering can integrate information across multiple 
types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing 
hypotheses.   
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1.  Introduction 

At the same time as advances in biomedical research have enabled humanity’s knowledge to grow 
far beyond the limits of any one person, that knowledge is being applied on ever-smaller scales. 
Specialized therapies are benefiting smaller subsets of the population, using all available knowledge 
to design a therapy for a specific case or to repurpose an existing drug for a novel use.  

Online databases that compile this knowledge have become invaluable resources for researchers. 
Massive interaction networks can be powerful sources for hypothesizing novel relationships 
between biological entities. However, most of these networks are either focused on one particular 
type of entity (STRING1 – genes/proteins) or interaction (DrugBank2, ChEMBL3 – drug-gene 
interactions). A full representation of biomedical knowledge would integrate the interactions among 
these physical entities and associate them with more abstract entities, such as pathways (KEGG4, 
REACTOME5,6) and diseases (CTD7). 

Several approaches to data integration have been explored. One approach is to predict how two 
classes of entity interact (e.g., drugs and targets) by integrating multiple types of feature data about 
the entities8–10, or taking this a step farther, propagating this information to a third entity type11. 
These methods utilize information about the entities themselves, so they are specific to certain 
classes of entity. We will show an alternative approach, which can predict interactions among 
chemicals, genes, and diseases utilizing only information about how they connect to one another, 
and which benefits from the integration of disparate forms of information. 

Collaborative filtering (CF) is a computational approach used in online recommendation 
systems, in which large-scale knowledge of how entities interact is used to predict likely 
connections12,13. Non-negative matrix factorization (NMF) is a popular tool for CF that compresses 
a matrix into two smaller factors whose product approximates the original14,15. NMF has long been 
used in biomedical science for clustering and classifying microarray data16, but recent works have 
used NMF, or related algorithms, in CF strategies to predict drug-target17,18 or protein-protein19 
interactions. We hypothesized that this basic approach could be pushed farther, to incorporate more 
than two types of biological entity, improving prediction of novel interactions among them. 

Testing this hypothesis required multiple interaction networks, comprising connections between 
at least three entity types, so we turned to the Comparative Toxicogenomics Database (CTD). CTD 
is a publicly available resource that employs a team of human “biocurators” to comb the literature, 
extracting and annotating Chemical-Gene, Chemical-Disease, and Disease-Gene relationships7. In 
this paper, we will demonstrate that NMF can be used to recover hidden interactions in each of these 
networks individually and that NMF over any two of these networks can predict back the third. To 
show that this is not an artifact of the data source (CTD), we will demonstrate that NMF over the 
combined CTD networks recapitulates experimental protein-protein interactions in the STRING 
database. We will focus in on the CTD Chemical-Gene interaction network, and show that our 
ability to predict missing connections improves when we perform NMF over a network 
incorporating Chemical-Gene, Chemical-Disease, and Disease-Gene interactions from CTD and 
also Protein-Protein interactions from STRING.  
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2.  Methods: 

2.1.  Construction of datasets: 

Tables of interactions from CTD were obtained and processed as follows. Unless otherwise noted, 
all data processing and manipulation was performed in Matlab. Chemical-Gene and Chemical-
Disease interactions were downloaded on April 2, 2014a, each as a single tab-delimited text file. The 
full Chemical-Gene interactions file was imported into Matlab as a table containing 878,594 rows, 
each representing one unique curated relationship between one chemical and one gene, or between 
other relationships. This initial table comprised 10,520 unique chemicals and 32,248 unique genes. 
Relationships containing nested relationships were removed, as were any relationships whose “Gene 
Form” was not given as “protein” (“mRNA,” for example.) The result of this filtering was a table 
of direct relationships involving 8,653 unique chemicals and 8,288 unique genes. A binary 
adjacency matrix was built in which each row and column corresponded to one chemical or gene, 
respectively, with interacting pairs assigned a value of 1, and all other pairings 0. The resulting 
sparse 8,653-by-8,288 matrix contains 82,168 unique, binary Chemical-Gene interactions. 

The Chemical-Disease interactions file was similarly imported into Matlab, but was filtered to 
remove all CTD-inferred relationships by deleting any row for which the “Direct Evidence” column 
was blank. The filtered table was used to build a binary adjacency matrix as described above, which 
in this case comprised 8,226 chemicals, 3,031 diseases, and 80,433 unique, curated interactions. 

The full Disease-Gene interactions file was too large to process in the same way, so CTD’s 
Batch Query toolb was used to retrieve only the curated interactions. On April 18, 2014, the CTD 
Disease Vocabulary file was downloaded, and the Disease IDs were input to the Batch Query tool, 
which was set to export all Curated Gene Associations for each disease. The output tab-delimited 
interactions were then imported into Matlab and, as before, used to build a sparse, binary adjacency 
matrix of 4,907 Diseases by 7,362 Genes, with 23,133 unique interactions.  

For construction of a combined Chemical-Gene-Disease (CGD) interaction matrix, the 
interaction tables used to build the individual matrices were used. A single list of 30,102 unique 
entities was obtained from the union of the three individual matrices’ unique entity lists, comprising 
12,119 Chemicals, 6,333 Diseases, and 11,650 Genes. Each of the three interaction tables was then 
used to populate a matrix in which each of the 30,102 entities was represented as both a row and a 
column. Thus, for each row in the three tables, the interacting entities’ positions in the combined 
entity list defined two symmetrical pairs of indices in the 30,102-by-30,102 matrix at which to 
represent the interaction. 

For later experiments, we used the STRING network of human protein-protein interactionsc, 
which we mapped to the CTD CGD matrix. When comparing our predictions to STRING, we 
focused on 7,604 genes whose IDs we could map between databases, and used the confidence scores 

                                                
a from http://ctdbase.org/downloads - dates noted because CTD updates monthly; previous versions are unavailable 
b http://ctdbase.org/tools/batchQuery.go 
c STRING v9.1, now archived at http://string91.embl.de/newstring_cgi/show_download_page.pl  
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assigned by STRING (ranging from 0 to 999) to define the positive class at various thresholds. To 
construct a CTD+STRING CGD matrix, we added protein-protein interactions from this STRINGd 
network to the Gene-Gene diagonal block of the CTD CGD matrix. Interactions among the 7,604 
genes also in CTD were dropped directly into the corresponding cells in the CGD matrix 
symmetrically. The matrix was extended by 6,699 rows and columns, corresponding to the genes 
that were not matched to CTD. The final matrix contains 254,929 nonzero Gene-Gene interactions, 
66,685 with values of 0.5 or greater, and 1,405 with the maximum value of 0.999. 

2.2.  Non-negative Matrix Factorization (NMF): 

 NMF describes several closely related algorithms that, given a non-negative matrix A with size m×n 
and a positive integer k≪min(m,n),	attempt	to	find	m×k matrix W and k×n matrix H such that W 
and H are non-negative, and such that A≈WH. This is done by solving the optimization problem 

 min
/,012

𝑓 𝐖,𝐇 = 7
8
𝐀 −𝐖𝐇 ;

8 (1) 

Throughout this work, NMF was run using the nnmf() function of Matlab’s Statistics Toolbox with 
all input arguments (other than A and k) left at default settings. Consequently, the optimization 
method used was Alternating Least Squares (ALS), in which initial W and H matrices are randomly 
generated, and then alternatingly solved for in the following matrix equations, until the minimization 
function converges or until the maximum number of iterations has been reached: 

 Solve for H: 𝐖<𝐖𝐇 = 𝐖<𝐀 (2.1) 

 Solve for W: 𝐇𝐇<𝐖< = 𝐇𝐀< (2.2) 

In our applications of NMF to datasets of various sizes, we tested multiple k values for each, to find 
a value that would give optimal performance without overfitting.  

NMF is known to converge at solutions that are local, rather than global, minima of the 
optimization problem, meaning the product WH is not unique. We found that calculating the 
average of WH across multiple replicate factorizations increased performance in our experiments; 
all results we discuss below were obtained by averaging the output of 4 NMF replicatese. 

2.3.  10-fold Cross-validation Experiments: 

In N-fold cross-validation experiments, each point in a dataset is randomly assigned to one of N 
subsets. Then, one at a time, every subset is removed, and the remaining N-1 subsets are used as 
training data for the algorithm to be tested. In the end, the algorithm’s predicted values for each 
dropped subset form a test set covering all of the original data. An algorithm’s ability to successfully 
recover data in cross-validation depends not only on the algorithm itself, but also on the internal 
consistency of the dataset. Entities with only 1 known interaction were not considered, because 
NMF would have no way to recover that interaction. 
 

                                                
d inserted as the confidence score divided by 1000 to match the range of the rest of the CGD matrix, which is binary. 
e Data not shown. We chose 4 replicates to balance diminishing returns in improvements v. computational cost.  
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2.4.  Performance evaluation for NMF predictions 

The performance of NMF in each experiment was evaluated by calculating the Receiver Operator 
Characteristic (ROC) curve, comparing predicted scores to an input positive class, and computing 
the number of correct predictions at varying score thresholds. An ROC curve can be understood as 
sorting the list of predictions by score and, beginning at the origin, moving up on the y-axis for each 
true prediction and moving right on the x-axis for each false prediction. The area under an ROC 
curve (AUC) can serve as a broad measure of performance, representing the probability that a 
randomly chosen positive (known) interaction will have been assigned a higher score by NMF than 
a randomly chosen negative (not known) interaction. 

3.  Results and Discussion 

3.1.  10-fold cross-validation for NMF of individual CTD matrices. 

In order to determine whether a CF approach can integrate interactions between multiple classes of 
biological entity, we first made certain that NMF can be used to recover unknown pairwise 
interactions among Chemicals, Diseases, and Genes from incomplete interaction data. 10-fold cross-
validation was performed on three adjacency matrices constructed from CTD’s Chemical-Disease 
(CD), Chemical-Gene (CG), and Disease-Gene (DG) networks, respectively.  

 
Figure 1 shows NMF performs much better than random guessing in 10-fold cross-validation 

for the three CTD networks, with performance plotted as Receiver Operator Characteristic (ROC) 
curves, with k varying over a range to find values that optimize AUC. The best results were AUC 
of 0.94 (CD), 0.92 (CG), and 0.82 (DG). The results in Figure 1 show these three networks are 
internally consistent enough to recover missing interactions using NMF, and that the interactions 
involving Chemicals (CD and CG) are particularly well-suited to prediction by NMF. 

Fig. 1. Receiver Operator Characteristic (ROC) curves of NMF at varying k values in 10-fold cross-validation 
experiments over individual CTD interaction networks. (a) Chemical-Disease, (b) Chemical-Gene, (c) Disease-Gene 

(a) (b) (c) 
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3.2.  CTD Chemical-Gene-Disease matrix and leave-one-matrix-out experiments 

 Once we verified that the three networks from CTD were, 
individually, amenable to prediction of missing interactions via 
NMF, we considered how to utilize this multifaceted data more 
effectively. The data encompassed three classes – Chemicals, 
Diseases, and Genes – of biological entity, with information 
about each category spread across two matrices. When it 
factorizes an interaction matrix, NMF represents each entity 
(row/column vector) as a compressed vector that approximates 
all available information. Therefore, we reasoned that simply 
combining the asymmetric CD, CG, and DG matrices into one 
symmetric “all-vs-all” Chemical-Gene-Disease (CGD) matrix 
would allow NMF access to more information about the 
relationships between Chemicals, Diseases, and Genes, and thus 
improve our ability to predict missing ones. 

 In order to test the ability of our CF approach to integrate 
different types of interaction, we devised a “leave-one-matrix-
out” experiment (Fig. 3a-c). From the combined CGD matrix in 
Figure 2, we removed all interactions of one class (CD, CG, or DG) at a time, and attempted to 
predict them from only the other two interaction classes. We performed this test, using NMF with 
various k values, for each of the three interaction types and calculated ROC curves. Fig. 3d shows 
the AUC for each k value used to predict the missing matrices.  

Table 1. Amount of data dropped and re-predicted in Leave-One-Matrix-Out Experiments, 
followed by AUC when NMF was performed over the remaining two interaction matrices. 
Column headings indicate which interaction matrix was left out. 

Dropped Matrix Chemical-Disease Chemical-Gene Gene-Disease 
Size 4760x1605 4760x3940 3940x1605 

# Interactions 59,766 60,831 15,522 
AUC k=100 0.801 0.833 0.802 
AUC k=200 0.810 0.840 0.801 
AUC k=300 0.813 0.837 0.802 
AUC k=500 0.817 0.832 0.795 

 

These results show that NMF is able to predict the interactions contained in each of the matrices 
created from CTD’s datasets, given only information contained in the other two matrices, despite 
the distinctly different biological connections they represent. Put another way, this demonstrates 
that combining these binary interaction matrices can unlock new layers of information that was not 
accessible from the individual matrices. Because all three networks share an origin in CTD’s manual 
curation process, however, we need to determine that the latent information tapped by NMF for 
these predictions provides a meaningful insight to the workings of biology, and not just an insight 
into the CTD curation pipeline.  

C
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Genes

Fig. 2. Illustration of the combined, 
symmetric CGD matrix. The CTD 
CD, CG, and DG matrices are orange, 
purple, and green, respectively. The 
diagonal blocks are empty before 
factorization.  

Pacific Symposium on Biocomputing 2016

26



 
 

 

 

3.3.  Prediction of Gene-Gene associations from CTD Chemical-Gene-Disease matrix 

The diagonal blocks of the combined matrix, which would correspond to Chemical-Chemical, 
Disease-Disease, and Gene-Gene associations, contain no data initially from CTD, but are also filled 
in when we use NMF. We sought to compare predictions in these regions to an external data source, 
in order to find out if the values predicted by NMF represent real biological relationships. 

Although it is unclear what the disease-disease network might represent, comparing the gene-
gene block to existing protein interaction databases was a natural next step. We compared the values 
from NMF to known protein-protein interactions from the STRING database. 7,604 genes were 
present in both the combined CTD matrix and the STRING experimental network. Among these 
7,604 genes, STRING contained 67,763 experimentally supported protein-protein interactions, of 
which 38,424 have been assigned confidence scores by 
STRING of at least 500, and 902 have been assigned the 
highest confidence score of 999.  

As shown in Fig. 4., the values produced by NMF over 
the CTD CGD matrix predicted these interactions with an 
ROC AUC of 0.69, which increased to AUC=0.73 for 
interactions ≥500 confidence score, and to AUC=0.75 when 
only the highest-confidence STRING interactions (999) were 
considered. 

These results show that the Gene-Gene associations filled 
into the Chemical-Gene-Disease matrix by NMF correspond 
to real, experimentally known protein-protein interactions. 
This result is important because, unlike the Leave-One-
Matrix-Out experiments, these predicted edges were never 
part of CTD, reducing the chance that positive results are due 
to some inherent bias in the CTD curation process. This also 

Fig. 4. ROC curves for the prediction of 
STRING protein-protein interactions 
using NMF (k=300) on CTD CGD. 

Fig. 3. Visualization of Leave-One-Matrix-Out experiments. Blocks of data 
containing Chemical-Disease (a), Chemical-Gene (b), or Gene-Disease (c) 
interactions were removed from the CGD matrix. Diagonal blocks remain 
empty. As seen in (d) and in Table 1, NMF recovered each network from 
the remaining two. 

(a) (b) (c) 

(d) 
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suggests that the predictions in the Chemical-Chemical and Disease-Disease blocks may be 
biologically meaningful, potentially representing drug interactions and disease co-morbidity, for 
example. At the same time, these results suggest that some of the information contained within the 
STRING network was not found by NMF in the combined CGD matrix. We created a second 
Chemical-Gene-Disease matrix containing all the same interactions from CTD, but with protein-
protein interactions from STRING added to the Gene-Gene block of the diagonal. 

3.4.  10-fold cross-validation of Chemical-Gene edges within combined CGD matrix 

In order to determine if additional data can improve upon the prediction of Chemical-Gene 
interactions observed in Fig. 1b, we performed an experiment similar to 10-fold cross-validation, 
which only removed Chemical-Gene edges from the larger matrix. We performed this experiment 
using the CTD CGD matrix, and also using the CTD+STRING CGD matrix, both with k=200. We 
also repeated the 10-fold cross-validation using the CG matrix alone, using the best-performing k 
value, k=50. For this comparison, a single set of randomized cross-validation classes was generated 
first, and then was used for all three input matrices, to ensure that the only differences in available 
information were those we were testing. 

Table 2. Comparison of NMF performance in 10-fold cross-validation of Chemical-Gene 
edges without added data, with the addition of CD and DG information from CTD, or 
with that plus GG information from STRING 

Matrix k ROC AUCf p-valuef vs CTDCG p-valuef vs CTDCGD 
CTDCG 50 0.920 – – 
CTDCGD 200 0.927 4.6x10-109 – 
CTDCGD+SGG 200 0.932 4.9x10-244 5.8x10-117 

 
As shown in Table 2 and Figure 5a, the Chemical-Gene cross-validation performance after the 

addition of Chemical-Disease and Disease-Gene interactions yielded AUC=0.927, an increase over 
the highest-performing k value with Chemical-Gene interactions only (AUC=0.920 at k=50). 
Moreover, when Gene-Gene interactions from STRING were added to the CGD matrix, 
performance further improved to AUC=0.932. To measure this improved performance, we used the 
StAR method20, which implements an approach based on Mann-Whitney U-statistics21, to determine 
if the ROC curves were significantly different. Although the increases in AUC appear small, so 
many data points were used to calculate the ROC curves that they were found to be highly 
significant.  

AUC of the ROC curve provides an overall indicator of how well a method recovers true 
interactions. However, practical applications (e.g., drug repurposing,) are likely to focus on 
relatively few predictions compared to the total interaction space. For this reason, it is often more 
important that the top predictions have high precision (i.e., few false positives). To be sure the CGD 
matrices were not only increasing AUC by improving recall of the low-confidence interactions, we 
calculated precision-recall curves for the cross-validation (Figure 5b). As the inset shows, the 

                                                
f Output by StAR tool, standalone version20, rounded for table 
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precision of the highest-scoring 10% of interactionsg is high for all three test cases, with the 
CTD+STRING Chemical-Gene-Disease matrix showing precision improvements across the range. 

These results show that we can improve the ability of NMF to predict missing Chemical-Gene 
relationships by incorporating information about how those Chemicals and Genes interact with 
Diseases, and, further, how those Genes interact with one another. 

3.5.  Retrospective prediction of new Chemical-Gene 
interactions 

Finally, to corroborate these results in a more realistic context, 
we retrospectively predicted Chemical-Gene interactions that 
had been added to CTD over one year. Following the same 
process described in Section 2.1, we downloaded the CTD 
Chemical-Gene network on April 5, 2015, and again built a 
binary matrix of direct interactions. We mapped this to the 
2014 CTD CGD matrix, removing entities that were not 
present in both versions, resulting in a 2015 matrix of 8,706 
Chemicals by 8,304 Genes with 5,879 new interactions. 

We calculated an ROC curve (shown in Figure 6) 
comparing these new interactions to the predictions for the 
same 8,706 Chemicals and 8,304 Genes that were obtained 
from NMF (k=200) on our CTD+STRING CGD matrix. The 

                                                
g The positive class comprised 75,804 interactions, so the inset shows precision for over 7500.  

Fig. 6a. ROC curves showing NMF performance 
for 10-fold cross-validation of Chemical-Gene 
interactions, improving with more data. AUCs 
with statistical comparison are in Table 2 above. 

Fig. 6b. Plot of Precision vs. Recall for the same 
experiments shows precision approaches 1.0 for 
the top recovered interactions. Focusing on top 
10% (inset) shows improvement with more data. 

Fig. 6. Retrospective prediction of new 
CTD Chemical-Gene interactions (added 
between 4/2014 and 4/2015), using NMF 
(k=200) on CTD+STRING CGD matrix. 
AUC=0.930. 
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resulting curve, with AUC=0.93, indicates that our approach was able to correctly anticipate missing 
or undiscovered interactions.  
 

3.6.  Example: prediction of Chemical-Disease interactions for Pancreatic Neoplasms 

One potential application of our approach is to identify unknown or overlooked drugs with 
connections to a particular disease. In Table 3, we present an example of this involving pancreatic 
cancer, a disease with high lethality and few effective treatments22. Following NMF (k=200) over 
the CTD+STRING CGD matrix, we inspected the highesth values corresponding to new  interactions 
(that is, interactions that have not been curated by CTD at this time) between Chemicals and the 
disease entity “Pancreatic Neoplasms.” Examples were chosen in which the Chemical is a drugi; as 
the primary focus of CTD is toxicology, much of the information therein concerns environmental 
toxins and disease-causing interactions. As Table 3 shows, literature searches found evidence 
supporting a connection to pancreatic cancer for 14 of the top 15 drug predictions, over half of which 
were studied in clinical trials. This shows that, at minimum, our approach generated hypotheses 
worth testing clinically.  

Table 3. Toph 15 drugsi predicted to interact with Pancreatic Neoplasms by NMF using 
the CTD+STRING CGD matrix. These interactions were not present in the CTD CD 
matrix, but 14 are supported by papers or clinical trials in associated PubMed ID (PMID).  

Drug Name Support for Connection to Pancreatic Cancer Reference 
Indomethacin Pre-clinical cell line study PMID: 1890839 
Carboplatin Phase II clinical trial PMID: 15802284  
Mitoxantrone Phase II clinical trial PMID: 16334117 
Simvastatin Phase II clinical trial PMID: 24162380  
Cytarabine Phase III clinical trial PMID: 1833042 
Topotecan Phase II clinical trial PMID: 11218186 
Sorafenib Phase II clinical trial PMID: 24574334 
Rosiglitazone Pre-clinical mouse study PMID: 22864396  
Melphalan Pre-clinical rat study PMID: 4075299 
Methamphetamine - - 
Thiotepa Use in other cancers PMID: 4183076 
Thalidomide Phase I clinical trial PMID: 15753541 
Caffeine Phase III clinical trial PMID: 1833042  
Sirolimus Patient Case Report PMID: 19581741 
Gefitinib Phase II clinical trial PMID: 19258727 

 
 

                                                
h Values above a threshold of 0.425. To provide context for this choice of threshold, the inset in Figure 5b shows 

cross-validation performance as precision versus recall at varying thresholds; 0.1 Recall in that graph corresponds to 
a threshold value of 0.425. Thus, we chose predictions whose precision should be at least 0.7. 

i Approved by the FDA, according to http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm  
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At the same time, this example highlights key pitfalls. Because we created binary interaction 
matrices from CTD, we can not say these drugs are predicted to treat pancreatic cancer or to cause 
it, only that they interact in some way. Indeed, the clinical trial we reference for simvastatin found 
no significant effect, but suggested further study in specific circumstances that could benefit from 
it23. Incorporating more detail from the interactions in CTD into our CGD matrix will, we believe, 
help resolve some of the ambiguity in our current predictions. For truly personalized treatments, we 
foresee a use case in which therapy suggestions are derived from a subset of predicted drug-gene 
interactions. That subset would be determined by a patient’s unique situation; for example, the 
somatic mutations driving a tumor, or the germ line mutations linked to a disease phenotype (the 
latter being a possible application for our approach’s gene-disease predictions). 

4.  Conclusions 

Taken as a whole, our results show that Collaborative Filtering can integrate biological interaction 
networks in order to reveal missing connections between diverse entities. This approach depends 
only on knowledge of connections, so it can be extended to new classes of entity with minimal 
customization, unlike more specialized methods. Consequentially, our approach is limited to 
predicting that entities interact, rather than how. Matrix tri-factorization, which has been used to 
classify entities by fusing interaction networks with entity feature data24,25, may enable more 
detailed predictions. Ultimately, however, we see this as an initial component in a pipeline that will 
harness the ever-expanding universe of knowledge and focus it on a small point, illuminating a 
patient’s unique situation or highlighting a new use for a drug. This will need to be done rapidly, 
affordably, and accessibly. Importantly, implementations of NMF have been developed that can 
efficiently handle matrices with millions of times more entities than we have so far attempted13,26. 
Ultimately, this work may offer a step towards computing therapy. 
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