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We present a feature allocation model to reconstruct tumor subclones based on mutation pairs.
The key innovation lies in the use of a pair of proximal single nucleotide variants (SNVs) for the
subclone reconstruction as opposed to a single SNV. Using the categorical extension of the Indian
buffet process (cIBP) we define the subclones as a vector of categorical matrices corresponding to a
set of mutation pairs. Through Bayesian inference we report posterior probabilities of the number,
genotypes and population frequencies of subclones in one or more tumor sample. We demonstrate
the proposed methods using simulated and real-world data. A free software package is available at
http://www.compgenome.org/pairclone.
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1. Introduction

1.1. Background

With the recent development of next-generation sequencing (NGS) technology, whole-genome
or whole-exome sequencing has been used to interrogate genetic landscape of tumors within
and across different patients. Using single nucleotide variants (SNVs), NGS data can reveal
whether a tumor sample is composed of cell subpopulations, i.e., subclones that contain so-
matic mutations.1–6 In essence, the main problem of subclone reconstruction is to identify
more than two haploid genomes in a tumor sample. Since humans are diploid, a homogeneous
cell population can only harbor two distinct haploid genomes, or else the cell population must
be heterogeneous and contain at least two different subclones with different genomes. In NGS
data, short reads are mapped to each SNV locus. Compared to the reference nucleotide base
on the locus, some short reads may harbor the same reference base while others may bear a
variant base. The latter are called variant reads and the proportion of variant reads among
all the reads mapped to the SNV is called the observed variant allele fraction (VAF). If all
the cells in a tumor sample share the same genome, i.e., they are genetically homogeneous,
the VAFs must be close to 0, 0.5, or 1, reflecting the three possible genotypes at a single
locus – AA, AB, or BB. For example, when all the cells in the tumor bear the heterozygous
AB genotype, roughly half of the reads will harbor A and the other half B. Therefore, the
observed VAF should be close to 0.5. Homozygous alleles should give rise to observed VAFs
close to 0 or 1. When the VAF at the SNV is neither of 0, 0.5, or 1, the cellular genomes might
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be heterogeneous containing distinct gentoypes at the SNV. For example, a sample of 50% of
cells bearing genotype AB and 50% of cells bearing AA results in 75% of A alleles and 25%
B alleles. If the A allele is the reference genome, the VAF is expected to be around 25%, or
0.25, which is not close to 0, 0.5, or 1. Based on this basic logic, many methods7–12 have been
developed to infer subclones using NGS data.

1.2. Main idea

Inference of subclones that hinges on “unusual” VAFs is vulnerable to the noise and artifacts
in the NGS data. In particular, due to the complexity and limitation of the NGS experiment,
the observed VAF at an SNV can deviate from ideal values 0, 0.5, or 1 even when the cell
population is homogeneous. When the population is indeed heterogeneous, noise in the NGS
data can still affect the accuracy of subclone reconstruction. Currently the noise and artifacts
in NGS data cannot be properly modeled and accounted for due to its complexity,13 and
therefore SNV-based subclone callers often require lengthy and ad-hoc noise filters. The effects
of these noise filters on the subclone reconstruction is usually unknown.
To mitigate this problem, we consider a different approach. We assume that paired-end short
reads are used in the NGS experiment. Instead of modeling reads mapped to individual SNVs,
we consider a pair of them, i.e., mutation pairs. We consider proximal mutation pairs that
are close enough to be phased by some of the same short reads. Such mutation pairs can be
retrieved by existing tool14 with high confidence. Since there are two loci in each mutation
pair, the observed data are haplotypes (of two phased SNVs). With four possible nucleotides
at each SNV, there could be up to 16 different haplotypes at each mutation pair (details in
Section 2.2). Observing more than two haplotypes is evidence of tumor heterogeneity, again,
due to diploidy. See Fig. 1 for an example.
We assume a total of T (T ≥ 1) samples are obtained from a single patient, and consider intra-
tumor heterogeneity as the main inference goal. Consider a finite number of K mutation pairs
that are shared across the T samples, and assume that an unknown number of C subclones
are present. We denote a subclone by a set of matrices zkc for mutation pairs k = 1, 2, . . . ,K.

Each zkc is a 2×2 matrix that codes the two diploid genotypes of mutation pair k for subclone
c. Detail of zkc is given in the upcoming discussion. We also assume that the C subclones are
shared by the T samples, with different population frequencies for each sample, denoted by
wt = (wt0, wt1, . . . , wtC) for sample t, where 0 < wtc < 1 for all c and

∑C
c=0wtc = 1. Using the

NGS data we infer Z and w based on a simple idea that that variant reads can only arise
from subclones with variant genotypes.
Among exiting methods, SciClone, TrAp, Clomial, PhyloSub and PhyloWGS (8–12) are of
relevance to this work. The main difference of our method from all the other existing methods
is that we use mutation pairs as experimental units instead of unpaired SNVs. Also our
model is based on latent feature allocation methods that allow overlapping mutations across
subclones. This is different from cluster-based methods in the literature.
The paper is structured as follows: Sec. 2 and Sec. 3 describes the Bayesian feature allocation
model and posterior inference, respectively. Sec. 4 presents two simulation studies. Sec. 5
reports analysis results for a real-world dataset. Sec. 6 concludes with a final discussion.
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2. Probability Model

2.1. Sampling Model

We start the construction of a sampling model by considering one mutation pair k (see
Fig. 1). Two loci, denoted by r = 1, 2 mark the mutation pair. A set of short reads are
mapped to the genomic region that contain the two loci. Index short reads by d. When
short reads are mapped to the region, we require that at least one of the two loci is cov-
ered, or else the short reads are excluded from our analysis since they do not provide any
information on the mutation pair. Consider short read d mapped to mutation pair k in
sample t. Define s(d)tk =

{
s
(d)
tkr

}
r=1,2

=
(
s
(d)
tk1, s

(d)
tk2

)
, where s

(d)
tkr takes three values of {0, 1,−}

representing that the base on read d mapped to locus r is reference, variant, or miss-
ing, respectively. For example, in Fig. 1 locus r = 1, s(d)tk1 = 0 for read d = 1, s(d)tk1 = 1

for read d = 2, and s
(d)
tk1 = − for read d = 3. Aggregating across two loci, each s

(d)
tk can

take G = 8 possible genotypes, including the reference, variant, and missing genotypes, de-
noted by H = {h1, . . . ,hG} = {(0, 0), (0, 1), (1, 0), (1, 1), (−, 0), (−, 1), (0,−), (1,−)}, where each
hg = {hgr}r=1,2 = (hg1, hg2) denotes the potential genotype at each locus r of a short read.

Let ntkg =
∑

d I
(
s
(d)
tk = hg

)
be the read count representing the number of short reads having

genotype hg. Here I() is the indicator function. The total number of reads that are mapped to
the loci of the mutation pair k in sample t is then Ntk =

∑G
g=1 ntkg. We assume a multinomial

sampling model for ntkg conditional on Ntk, given by

ntk1, . . . , ntkG | Ntk, ptk1, . . . , ptkG
indep.∼ Multinomial (Ntk; ptk1, . . . , ptkG) , (1)

where ptkg = Pr(s
(d)
tk = hg) is the probability that a read bears genotype hg on mutation pair

k in sample t.
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Fig. 1. Illustration of read count data for a mutation pair. There is a total of five reads mapped to the two
loci that mark the mutation pair. The five reads exhibit genotypes (0, 1), (1, 1), (−, 0), (1, 1), (−, 0), which
implies that there could be three haplotypes for the mutation pair in the sample.

2.2. Subclone Representation using Z

We collect all the zkc’s in a matrix format, denoted as a K ×C matrix Z = [zkc]. Technically,
Z is a matrix of matrices, since each zkc is itself a matrix. See Fig. 2. The total number of
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subclones, denoted by C, is random. The c-th column of Z, zc = (z1c, . . . ,zKc) denotes one
particular subclone. Each element zkc records the two alleles of a particular mutation pair
k for subclone c. Let j = 1, 2 index the two alleles in a subclone and r = 1, 2 represent the
two loci in a mutation pair. We write zkc = {zkcjr} = ((zkc11, zkc12), (zkc21, zkc22)). See Fig. 2
for an example. Note that zkcjr = 1 indicates that r-th locus of j-th allele of zkc bears a
mutation compared to the reference genome. Clearly zkc can take Q = 16 possible values i.e.
zkc ∈ {z(q)}16q=1 = {z(1), . . . ,z(16)} = {((0, 0), (0, 0)), ((0, 0), (0, 1)), . . . , ((1, 1), (1, 1))}. For example,
in Fig. 2 reference genome at the loci of mutation pair 1 is AT , and the corresponding genotype
of subclone 3 is ((G,T ), (G,C)), which translates to zkc = ((1, 0), (1, 1)). However, we can
collapse some z(q) values since we do not distinguish the order of the two alleles for a mutation
pair in a subclone. That is zkc = ((zkc11, zkc12), (zkc21, zkc22)) and zkc = ((zkc21, zkc22), (zkc11, zkc12))

lead to the same probability model. Therefore, the two alleles are coded invariant of their orders
and we reduce the number of possible outcomes of zkc to from 16 to Q = 10 and they are
listed as: z(1) = ((0, 0), (0, 0)), z(2) = ((0, 0), (0, 1)), z(3) = ((0, 0), (1, 0)), z(4) = ((0, 0), (1, 1)), z(5) =

((0, 1), (0, 1)), z(6) = ((0, 1), (1, 0)), z(7) = ((0, 1), (1, 1)), z(8) = ((1, 0), (1, 0)), z(9) = ((1, 0), (1, 1))

and z(10) = ((1, 1), (1, 1)).
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Fig. 2. Illustration of Z (left panel) for subclones in a sample and a particular subclonal genotypes for a
mutation pair (right panel). Each column of Z represents a subclone, with each element representing the
subclonal genotypes for a mutation pair. The genotypes for mutation 1 in subclone 3 is ((1, 0), (1, 1)), which
can be shown as a stylized example in the right panel.

Each sample is potentially an admixture of the subclones (columns of Z), mixed in dif-
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ferent proportions. Given Z, we can denote the proportions of the C subclones by wt =

(wt0, wt1, . . . , wtC) for sample t, where 0 < wtc < 1 for all c and
∑C

c=0wtc = 1. Notice that
the subclones are common for all tissue samples, but the weights wtc vary across samples. A
background subclone, which has no biological meaning and is indexed by c = 0, is included to
account for experimental noise (sequencing errors, mapping errors, etc.).

2.3. Prior model

Prior for ptkg: The prior for the multinomial probabilities ptkg in (1) is based on a simple
idea: a short read harboring a particular haplotype hg can only come from subclones that
also harbor the same haplotype in their genomes. The probability of observing such a short
read depends on the population frequencies wt of such subclones harboring the haplotype.
Therefore, we define

ptkg ∝
C∑
c=1

wtcA(hg, zkc) + wt0 ρg, for g = 1, . . . , 8, (2)

where A(hg, zkc) is the expected proportion of alleles with genotype hg at mutation pair k of
subclone c. Accounting for the potential missing genotype at each of the two loci corresponding
to the mutation pair, there are three ways a short read can cover the mutation pair: (i) the read
maps to both loci; (ii) the read maps to the second locus but does not map to the first (left
missing), and (iii) the read maps to the first locus but not the second locus (right missing).
Therefore, we define

A(hg, zkc) =


∑2

j=1 0.5 × I (hg1 = zkcj1, hg2 = zkcj2) , for g = 1, . . . , 4;∑2
j=1 0.5 × I(hg2 = zkcj2), for g = 5, 6;∑2
j=1 0.5 × I(hg1 = zkcj1), for g = 7, 8.

(3)

In (3), the three equations correspond to the three coverage cases (i) – (iii) mentioned above.
The factor 0.5 is used to reflect that any short read comes from one of the two alleles in the
genome with equal probability. Quantifying the expected proportion of alleles in the genome,
A(hg, zkc) can only take three values 0, 0.5 or 1. According to (3) and assuming no sequencing
error, a read that covers both loci (g = 1, 2, 3, 4) and bears genotype hg must be generated
from a subclone having the same hg genotype in at least one allele. When the read only covers
one of the two loci, the requirement is to match the sequence on the covered locus only, and
hence the equations in (3) for cases g = 5, 6, 7, 8.

In (2) we also include a background subclone denoted by c = 0 with proportion of wt0 to
account for experimental noise. The background subclone does not exist and is only used as
a mathematical device to account for noise and artifacts in the NGS data. See Ref. [15] for
details.

Prior for Z: We develop a latent-feature-allocation prior for the latent matrix Z, the ele-
ments of which take categorical values. The prior p(Z | C) is constructed under fixed C. Let
πc = (πc1, πc2, . . . , πcQ) where p(zkc = z(q)) = πcq and

∑Q
q=1 πcq = 1. We use the beta-Dirichlet

distribution16 as the prior for πc. Conditional on C, p(zkc = z(1)) = πc1 follows a beta distribu-
tion with parameters 1 and α/C, and (π̃c2, . . . , π̃cQ), where π̃cq = πcq/(1−πc1) with q = 2, . . . , Q,
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follows a Dirichlet distribution with parameters (γ2, . . . , γQ). Here z(1) is special because it
refers to the reference genome. We write

πc ∼ Beta-Dirichlet(α/C, 1, γ2, . . . , γQ).

As shown in Ref. [17], the marginal limiting distribution of Z follows a categorical Indian
buffet process (cIBP) as C →∞.

Prior for w: Next, we introduce a prior distribution for wt as

wt | C iid∼ Dirichlet(d0, d, . . . , d),

for t = 1, . . . , T . For all practical purpose, we set d0 < d to imply that the hypothetical
background subclone has a small population frequency.

Prior for ρ and C: Then we construct the prior for ρ, where ρg is the conditional probability
of observing a read with a genotype hg due to experimental noise. We assume Dirichlet priors
on ρg’s,

ρg1 ∼ Dirichlet(d1, . . . , d1); ρg2 ∼ Dirichlet(2d1, 2d1); ρg3 ∼ Dirichlet(2d1, 2d1) (4)

where g1 = {1, 2, 3, 4}, g2 = {5, 6} and g3 = {7, 8}.
Finally, we put a geometric distribution prior on number of subclones i.e. C ∼ Geom(r), and
hence E(C) = 1/r a priori.

3. Posterior Inference

3.1. Posterior computation:

Markov chain Monte Carlo (MCMC) simulation18 is used to draw samples from the posterior
of the unknown parameters. Let x = (Z,π,w,ρ) denote all the parameters except C. With
fixed C, sampling x from the respective posterior distribution is straightforward. Gibbs sam-
pling transition probabilities are used to update Z and π, and Metropolis-Hastings transition
probabilities are used to update w and ρ.
Updating the value of C is more challenging, since it involves change of dimension of parameter
space. We use an approach similar to Ref. [19], which is a reversible jump20 style algorithm,
with a model comparison approach using modified fractional Bayes factor.21,22 The basic idea
is to consider a finite number of possible C, denoted by {Cmin, . . . , Cmax}, split the data into a
training set n′ = bn and a test set n′′ = (1−b)n (where 0 < b < 1), and do a model comparison
among those possible C. Details are given in [19].

3.2. Estimate of Z:

The point estimates for the parameters are determined as follows. We use the posterior mode
C∗ as a point estimate of C. Conditional on C∗, we follow Ref. [19] to find a point estimate of Z.
For any two K×C∗ matrices Z and Z ′, 1 ≤ c, c′ ≤ C∗, let Dcc′(Z,Z

′) =
∑K

k=1 ‖zkc−z′kc′‖1. Here
we take the vectorized form of zkc and z′kc′ to compute L1 distance between them. The distance
between Z and Z ′ is then defined as d(Z,Z ′) = minσ

∑C∗

c=1Dc,σc
(Z,Z ′), where σ = (σ1, . . . , σC∗)
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is a permutation of {1, . . . , C∗} and the minimum is over all possible permutations. A posterior
point estimate for Z is defined as

Z∗ = arg min
Z′∈{Z(l),l=1,...,L}

1

L

L∑
l=1

d(Z(l),Z ′),

where {Z(l), l = 1, . . . , L} are posterior Monte Carlo samples of Z. Finally, we report posterior
point estimates w∗ and ρ∗ conditional on C∗ and Z∗ and calculate posterior point estimates
p∗ in order to check goodness of fit of the model.

4. Simulation

4.1. Simulation 1

We carry out two simulation studies to validate our proposed model. In the first simulation, we
consider K = 100 mutation pairs for T = 1 sample. We assume the number of latent subclones
is CTRUE = 3, and set the subclone proportions as wTRUE = (1 × 10−7, 0.65, 0.28, 0.07) (note
that 1× 10−7 refers to the proportion of the background subclone). The latent ZTRUE matrix
is shown in Fig. 3(a) in the form of a heatmap. For example, subclone 3 has genotype z(q)

with different q values. Specifically, q = 10 for mutation pairs 1-20, q = 9 for mutation pairs
21-40, q = 6 for mutation pairs 41-60, q = 1 for mutation pairs 61-80, and q = 5 for mutation
pairs 81-100. Fig. 3(b) shows a possible lineage structure among subclones. We generate ρTRUE

from its prior given in Eq. (4) with hyperparameter d1 = 1. Next, we calculate multinomial
probabilities pTRUE

tkg shown in Eq. (2) and (3) from the simulated Z, w and ρ. We generate
random numbers ranging from 400 to 600 as total read counts Ntk, and finally we generate
read counts ntkg from the multinomial distribution given Ntk as shown in Eq. (1).
We fit the model with hyperparameters as α = 4, γ2 = · · · = γQ = 0.5, d = 0.5, d0 = 0.1, d1 = 1,
and r = 0.4. We set Cmin = 1 and Cmax = 10 as the range of C. The choice of b needs to be
calibrated. We choose b such that the test sample size (1− b)∑T

t=1

∑K
k=1Ntk is approximately

equal to 250/
√
T . This choice leads to better posterior inference in our calibration process.

We run MCMC simulation for 50, 000 iterations, discarding the first 20, 000 iterations as initial
burn-in, and keep one sample every 10 iterations. The initial values are randomly generated
from the prior.
The posterior mode C∗ = 3 recovers the truth. Fig. 3(c) shows the point estimate of ZTRUE,
given by Z∗, which is very close to the truth. Fig. 3(d) shows the difference between (p∗tkg −
pTRUE
tkg ), which can be considered as the residual of model fitting. The histogram is centered

at zero with a small variance that indicates a good model fit. The estimated subclone weights
are w∗ = (1.20× 10−168, 0.650, 0.277, 0.073), which is also close to the truth. Typically in a real
scenario, the number of available samples are quite low. In fact, in most of the cases data for
only one sample can be obtained. We perform this simulation example in order to show that
our model performs quite well even with a single sample.
We compare the performance of our model against BayClone15 which is an SNV-based sub-
clone caller. It chooses the model based on log pseudo marginal likelihood (LPML). Ac-
cording to LPML, the estimated number of subclones under BayClone is C∗ = 5, which
does not recover the truth. Fig. 3(e) shows the true subclone matrix in the form of Bay-
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Fig. 3. (a-d) Heatmap of the true subclone matrix ZTRUE, lineage structure and results from posterior
inference. (e-f) Heatmap of the true and estimated subclone matrix using BayClone.

Clone’s notation, denoted by ZTRUE
BC , and Fig. 3(f) shows the estimated matrix Z∗BC, where

zkc = 0, zkc = 0.5 and zkc = 1 refer to homozygous wild-type, heterozygous variant and
homozygous variant at SNV locus k, respectively. The estimated subclone proportions are
w∗BC = (0.004, 0.364, 0.349, 0.171, 0.057, 0.054). From the BayClone’s output, we can notice three
problems. Firstly, BayClone could not recover the true number of subclones. Secondly, since
BayClone infers the subclone structure by VAF of an SNV, the connection between adjacent
SNVs is not modeled, and thus BayClone could not recover the Z matrix and cellular fractions
accurately. For example, BayClone could not distinguish the difference between zkc = z(4) and
zkc = z(6) in our model. Lastly, because of the noise in the data, BayClone includes a rela-
tively larger proportion for the background subclone (w0 = 0.004 in this example) which is
significantly reduced for mutation pair data.

4.2. Simulation 2

In the second simulation study, we generate hypothetical reads data for K = 100 mutation
pairs and T = 5 samples. We assume CTRUE = 4. The subclone matrix ZTRUE is shown in
Fig. 4(a) and a possible lineage structure is given in Fig. 4(c). For each sample t, we generate
the subclone proportions wTRUE

t from Dirichlet(0.01, σ(20, 14, 10, 4)), where σ(20, 14, 10, 4) is a
random permutation of (20, 14, 10, 4). The proportions wTRUE which is now a matrix shown
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by a heatmap in Fig. 4(b). In the heatmap for w, darker color indicates high abundance of a
subclone in a sample, and light grey color represents low abundance. The parameters ρTRUE

and Ntk are generated using the same approach as before. Finally, we calculate pTRUE
tkg and

generate read counts ntkg from Eq. (1) similar to previous simulation.
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Fig. 4. Heatmap of the true subclone matrix, lineage structure and the results from posterior inference.

We fit the model with the same hyperparameters and same MCMC setting, except here we
use Cmax = 8 in order to accelerate MCMC sampling. Also here due to the presence of multiple
samples, we use a smaller (compared to simulation 1) test sample size. The posterior mode
C∗ = 4 recovers the truth. Fig. 4(d) shows the heatmap of Z∗, and Fig. 4(e) shows the heatmap
of w∗. Comparing those two figures with Fig. 4(a) and 4(b), we can see that the truth is nicely
recovered. Some mismatches are due to the relatively complex subclone structure. Fig. 4(f)
shows the histogram of (p∗tkg − pTRUE

tkg ) which indicates a good model fit.
We also compare our results with BayClone for this simulation. BayClone chooses the model
with 5 subclones, which does not recover the truth.

5. Head and Neck Cancer Dataset

Whole exome data of 30 pairs of matched tumor (head and neck cancer) and normal samples
are downloaded from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra).23

We map the pair-end reads from the FASTQ format files to the human genome (version HG19)
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using BWA to generate BAM files for each individual sample. GATK’s UnifiedGenotyper is
used to call variants and to generate a single VCF file for all of them. Next task is to find
mutation pair positions, their genotypes and number of reads supporting them. It is done by
a bioinformatics tool LocHap14 which searches for multiple single nucleotide variants (SNVs)
that are scaffolded by the same reads. The scaffolded SNVs are referred to as local haplotypes.
When a local haplotype exhibits more than two genotypes, LocHap calls it a local haplotype
variant (LHV). Using the individual BAM file and the combined VCF file, LocHap generates
HCF format output file.14 HCF files contain LHV with two or three SNV locations. This whole
process runs very fast as LocHap is an ultra-fast tool that can process an WES sample with
about 30X coverage under a minute.14 On an average we find a few hundreds LHVs with high
quality in a WES sample. We select LHVs with two SNV locations as we are interested in
mutation pairs only. Among those LHVs, we first remove the LHVs where the loci of two
SNVs are very close to each other (within, say 50 bps) or close to other types of structural
variants such as indels. We remove the LHVs where most reads were aligned to any of the
SNVs at a base near the end of the reads. Also we filter out those LHVs where any of the
SNVs are mapped by most reads with strand bias. At first, we find the intersection of mutation
pair loci between normal and tumor samples and then we select randomly around 100 loci for
each sample and record the read data from HCF files. In order to compare the underlying
subclonal structure of normal and tumor samples we run our model on both separately. We
run MCMC for 50, 000 iterations and discard the first 20, 000 iterations as initial burn-in. We
use thinning count equals to 10. Hyperparameter settings are exactly same as the simulation
1 (Section 4.1).
Fig. 5 shows the number of subclones of a tumor sample and its matched normal for all 30

samples. Note that in almost all the samples the number of subclones in tumor is higher than
the matched normal. In Fig. 6, we put subclone matrix (Z) from six tumor and matched
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Fig. 5. Inferred number of subclones (C∗) for tumor (in red) and matched normal (in blue)

normal samples side by side. As one can notice, in tumor sample the corresponding subclonal
structure is somewhat preserved with an addition of a new subclone. This indicates that tumor
sample is more heterogeneous than the corresponding matching normal sample. We show the
proportion of each subclone below each column of Z and columns of Z is reordered according
to decreasing order of weights of the subclones.
We also run BayClone on those samples. The results look different. Due to space limitation,
we omit the details since BayClone results are less reliable according to simulation studies.
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Analysis of real data provides valuable clinical information. For example, one could seek
potential biomarker mutation pairs for targeted therapy. These results could also be used as
future diagnosis reference.

Sample 9 Sample 11

Normal (C = 2)
w1 = 0.9129 w2 = 0.0871

Tumor (C= 3)
w1 = 0.6703 w2 = 0.2972 w3 = 0.0229

Normal (C = 2)
w1 = 0.7844 w2 = 0.2151

Tumor (C= 3)
w1 = 0.5852 w2 = 0.3741 w3 = 0.0317

Sample 12 Sample 15

Normal (C = 3)
w1 = 0.4763 w2 = 0.4467 w3 = 0.077

Tumor (C= 4)
w1 = 0.3825 w2 = 0.343 w3 = 0.2483 w4 = 0.0186

Normal (C = 2)
w1 = 0.8713 w2 = 0.1287

Tumor (C= 3)
w1 = 0.7175 w2 = 0.2482 w3 = 0.0343

Sample 23 Sample 29

Normal (C = 2)
w1 = 0.7938 w2 = 0.2062

Tumor (C= 3)
w1 = 0.6082 w2 = 0.3632 w3 = 0.0287

Normal (C = 2)
w1 = 0.786 w2 = 0.214

Tumor (C= 3)
w1 = 0.8321 w2 = 0.135 w3 = 0.0329

Color key

1 2 3 4 5 6 7 8 9 10

Fig. 6. Heatmap of subclone matrix Z from selected 6 samples (ordered according to age).

6. Discussion and future work

With the proposed model we infer subclonal structure and their proportions using muta-
tion pairs data. The methods describe tumor heterogeneity in a principled manner based
on a feature allocation model. It explicitly models overlapping mutation pairs across sub-
clones. Through simulations, we show that mutation pair-based inference is more powerful
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than SNV-based subclone calling. This is not surprising since mutation pairs naturally pro-
vide heterogeneity of tumor samples through poly-genotypic short reads. In other words, direct
evidence of having more than two haplotypes from short reads can be used to infer subclones
in a tumor sample rather than indirect modeling on unusual VAFs for SNVs.
Our approach can be extended to model more than two SNVs. In order to accommodate more
number of SNVs we only need to increase the number of categorical values that the Z matrix
can take. Also, we are working on extensions that explicitly take into account potential phy-
logenetic relationship of subclones, which requires modeling the dependence among columns
of the Z matrix.
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