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Realization of precision medicine ideas requires significant research effort to be able to spot subtle differences 
in complex diseases at the molecular level to develop personalized therapies. It is especially important in many 
cases of highly heterogeneous cancers. Precision diagnostics and therapeutics of such diseases demands 
interrogation of vast amounts of biological knowledge coupled with novel analytic methodologies. For 
instance, pathway-based approaches can shed light on the way tumorigenesis takes place in individual patient 
cases and pinpoint to novel drug targets. However, comprehensive analysis of hundreds of pathways and 
thousands of genes creates a combinatorial explosion, that is challenging for medical practitioners to handle at 
the point of care.  Here we extend our previous work on mapping clinical omics data to curated Resource 
Description Framework (RDF) knowledge bases to derive influence diagrams of interrelationships of 
biomarker proteins, diseases and signal transduction pathways for personalized theranostics. We present RDF 
Sketch Maps – a computational method to reduce knowledge complexity for precision medicine analytics. The 
method of RDF Sketch Maps is inspired by the way a sketch artist conveys only important visual information 
and discards other unnecessary details. In our case, we compute and retain only so-called RDF Edges – places 
with highly important diagnostic and therapeutic information. To do this we utilize 35 maps of human signal 
transduction pathways by transforming 300 KEGG maps into highly processable RDF knowledge base. We 
have demonstrated potential clinical utility of RDF Sketch Maps in hematopoietic cancers, including analysis 
of pathways associated with Hairy Cell Leukemia (HCL) and Chronic Myeloid Leukemia (CML) where we 
achieved up to 20-fold reduction in the number of biological entities to be analyzed, while retaining most likely 
important entities. In experiments with pathways associated with HCL a generated RDF Sketch Map of the top 
30% paths retained important information about signaling cascades leading to activation of proto-oncogene 
BRAF, which is usually associated with a different cancer, melanoma. Recent reports of successful treatments 
of HCL patients by the BRAF-targeted drug vemurafenib support the validity of the RDF Sketch Maps 
findings. We therefore believe that RDF Sketch Maps will be invaluable for hypothesis generation for precision 
diagnostics and therapeutics as well as drug repurposing studies.  

 
1.  Introduction 

Basic science discoveries coupled with tremendous advances in “omics” technologies have 
triggered a paradigm shift in today’s biomedicine. The idea of precision and personalized medicine 
is viewed by many as a solution to improve patient care by addressing disease complexity and 
heterogeneity [1]. It is especially evident in the direction that modern medical diagnostics and 
therapeutics, jointly coined as theranostics, is progressing. Pathway-based diagnostics is promising 
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to open up a view at internal biological mechanisms of complex interplay of clinical biomarkers, 
diseases, signal transduction and other processes to be able to more precisely describe differences 
in individual patient cases [2]-[10]. Generation of a mechanistic picture of such processes can help 
develop combinatorial therapies utilizing novel drugs, small molecules inhibitors, cytotoxic and 
differentiating agents and other interventional techniques. And, even though, precision theranostic 
approaches have not yielded significant advances yet due to limited drug options, the number of 
successful clinical cases using targeted therapies being reported is increasing [11]-[15]. For instance, 
in some cases deeper analysis of signal transduction pathways revealed an alternative activation of 
carcinogenic mechanisms, which mandated a use of novel combinatorial therapies. In other cases, 
unconventional drugs have been used to treat patient exhibiting no response to conventional 
regimens. For example, a successful unconventional therapy of Hairy Cell Leukemia (HCL) with 
vemuratenib, a drug usually associated with melanoma cancers and targeting BRAF proto-
oncogene, has been reported in several clinical cases [16]-[19].  
 
The great challenge here in our view is the difficulty of conducting a comprehensive precision 
theranostic study due to limitations of individual practitioners’ knowledge of biological processes. 
An inter-expert collaboration, while being able to expand the knowledge space to a certain extent, 
is still not an effective solution. For instance, a number of reported cases indicate that current 
attempts to practice precision and personalized medicine reflect more descriptive rather than 
predictive approaches. Pathologists and oncologists are trying more to describe the successful 
application of unconventional drugs by analyzing biopsies and linking proteomic expression to 
signal transduction and known mutations rather to predict patient-specific disease mechanisms 
based on clinical omics data. We strongly believe that new methods for clinical hypothesis 
generation for precision theranostics are needed to increase the chance of having more successes 
similar to the use of vermuratenib in HCL. 
 
To this end, we have been investigating advanced inference methods to map clinical biomarkers 
data to biological pathways to recreate interplay of signaling proteomic networks for individual 
patient cases [20]. Our new computational formalism called Resource Description Framework 
(RDF)-induced Influgrams (RIIG) has been shown in a recent proof-of-concept study to exhibit 
qualities sufficient to provide case-specific reasoning for theranostics [10]. RIIG takes advantage of 
vast amounts of publicly available curated biological knowledge represented as the RDF format. 
The importance and utility of use of RDF knowledge bases (KBs) in biomedicine have been 
demonstrated in a number of publications [21]-[24].  
 
The application of RIIG on the set of all pathways involved can dramatically reduce RIIG 
performance and result in reduction of its practical utility in a medical setting. A number of studies 
related to biological pathway data processing have been focused on pathway curation [25], 
visualization [26] and analysis [3], [27], [28]. There have been also some studies to construct a 
skeleton from complex networks by pruning edges [29]. The general idea of maintaining most 
informative nodes by finding shortest path in a directed network has been explored in metabolic 
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engineering [30]-[32]. By searching all possible reactions between compounds, these methods 
output several minimum cost paths by defining different penalties of reaction type, compound type 
and atom mapping. However, simplifying networks in the context of precision medicine has not yet 
been investigated.  
 
Here, we present the RDF Sketch Maps – a new computational method to reduce complexity of 
RDF-formatted knowledge networks to improve theranostic analyses in precision medicine settings. 
The method of RDF Sketch Maps is inspired by the way a sketch artist conveys only important 
visual information, while leaving out other unnecessary details. In our case, we compute and retain 
only so-called RDF Edges – places with highly important diagnostic and therapeutic information. 
To do this the method traverses knowledge networks and scores paths according to an objective 
function that incorporates information about a set of known diagnostic and therapeutic biomarkers 
(e.g. disease-associated genes and drug targets). The paths are then ranked by decreasing values of 
the scores. A set of exploratory genes that could possibly be useful in explaining patient-specific 
disease heterogeneity is used to compute the enrichment score for ranked paths for each version of 
the objective function. The top paths with high enrichment score are selected to form an RDF Sketch 
Map. The resulting maps are used for further analysis by computational methods or visualized for 
human analysis.  
 

2.  Methods 

2.1.  Construction of RDF knowledge base  

For preliminary experiments we have constructed a knowledge base (KB) consisting of 35 signaling 
pathway maps from Kyoto Encyclopedia Genes and Genomes (KEGG), including pathways 
associated with molecular interactions, genetic information processing, environmental information 
processing, cellular processes, organismal systems, human diseases, and drug development [33].  
We preferred KEGG maps over other pathway databases such as Biocarta [34] and Reactome [35] 
because of KEGG’s inclusion of a variety of different types of signal transduction interactions (e.g. 
phosphorylation, methylation, ubiquitination, and glycosylation) that are relevant to cancer 
theranostics (Table 1). 
 
KEGG however was initially designed as a set of manually-drawn pathway maps for human 
consumption. The electronic version of KEGG maps introduced later in the form of XML-like 
KGML files merely represents serialization of graphical artifacts. The high rate of inaccuracies and 
omissions (up to 30% comparing to graphical maps) in some KGML files makes them unacceptable 
for use in precision medicine applications, which requires high levels of accuracy of underlying 
facts and reliable knowledge provenance. We, therefore, set a goal to transform KEGG KGML files 
into highly accurate machine processable KB with inference capabilities. To do that we (i) designed 
a KEGG RDF ontology that models the relationships among biological entities and allows 
description logic inference, (ii) converted KGML files into RDF data set using in-house developed 
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graphical curation tool and a set of scripts, and (iii) added information about biological processes 
from Gene Ontology (GO)[36] and proteomic information from UniProt database [37]. 

Table 1. Modeled KEGG interactions. 

KEGG RDF ontology specifies the type and 
constraints of interactions among biological entities 
as well as their class/sub-class hierarchical 
relationships. For instance, we decided to preserve 
specific paths of propagation of signal transduction 
in individual maps through the notion of a “gene 
instance”. The underlying reason behind it is that 
certain reactions (e.g. phosphorylation) occur under 
specific circumstances (e.g. presence of specific 
enzymes or involving specific protein domains). 
However, since gene instances coming from 
different maps are modeled as sub-classes of an 
“abstract gene”, we can combine individual maps 
into an integrated semantic “mash-up” KB. This 
allows one to potentially recreate a systems view of 
signal transduction in individual patient cases. A 
similar approach is utilized while modeling gene 
groups, which represents protein complexes at the 
proteomic level.  The constructed KEGG RDF KB 
was loaded into AllegroGraph RDF store [38] for 
querying and processing. To optimize performance 
of running RDF Sketch Maps algorithm we use 
AllegroGraph’s internal SNA RDF graph processing 
only to resolve aliases and run description logic 
inference. The RDF Sketch algorithm is run on 
“static” graph serialization derived from the 
AllegroGraph KEGG RDF KB. 
 

2.2.  Computation of RDF Sketch Maps 

The essential goal of RDF Sketch Maps method is to reduce knowledge complexity for theranostic 
analysis. In the case with the integrated RDF KEGG KB we have a “hairball” of myriad of molecular 
interactions that needs to be simplified. To do that we first define a model of a particular biological 
phenomenon. For our experiments in personalized theranostics we define a cancer model that 
reflects propagation of biological signal transduction from intercellular space through surface 
proteomic receptors all the way into the nuclear space where specific activated protein complexes 
regulate gene expression. In our cancer model we identify Start and End genes, with Start genes 
being surface receptors, proto-oncogenes and tumor suppressor genes and End genes being genes 

RDF predicate 
name 

Modeling purpose 

activates Molecular interaction 
binds_associates Molecular interaction 
changes_state Molecular interaction 
dephosphorylates Molecular interaction 
dissociates Molecular interaction 
expresses Molecular interaction 
glycosylates Molecular interaction 
indirectly_affects Molecular interaction 
inhibits Molecular interaction 
methylates Molecular interaction 
misses_interaction Molecular interaction 
phosphorylates Molecular interaction 
represses Molecular interaction 
ubiquitinates Molecular interaction 
deubiquitinates Molecular interaction 
phosphorylates_activates Molecular interaction 
phosphorylates_inhibits Molecular interaction 
dephosphorylates_activates Molecular interaction 
dephosphorylates_inhibits Molecular interaction 
ubiquitinates_activates Molecular interaction 
ubiquitinates_inhibits Molecular interaction 
deubiquitinates_activates Molecular interaction 
deubiquitinates_inhibits Molecular interaction 
methylates_activates Molecular interaction 
methylates_inhibits Molecular interaction 
glycosylates_activates Molecular interaction 
glycosylates_inhibits Molecular interaction 
indirectly_affects_activates Molecular interaction 
involved_in Inference  
is_part_of Inference  
contains Inference  
crosstalks_with Inference  
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associated with biological processes involved in carcinogenesis (Table 2). An example of such 
model is shown in Figure 1. 
 

 
Figure 1. An example of cancer model. 

We represent genes and their relationships in our KEGG RDF KB as a directed graph G = (V, E), 
where V is a set of vertices representing KEGG genes and E as a set of edges representing gene-
gene interactions. Adjacency matrix A(i, j) describes whether there is a directed edge between 
vertices vi and vj.  For the sake of simplicity, A(i, j) ∈{0,1}.  We define the Start Gene set as SG = 
{v1, …, vm}, where m is the total number of start genes. The End Gene set is defined as EG = {v1, 
…, vn}, where n is the total number of end genes. We also define a set of genes used as diagnostic, 
prognostic, and therapeutic biomarkers for specific cancer phenotypes. This gene set is called the 
Confidence Gene set CG. For each vertex v ∈V, binary operator confidence()={0,1} indicates 
membership of v in CG, i.e. v ∈V, if confidence(v)=1. 

Table 2. Modeled biological processes. 

We then identify directed paths from the Start 
Genes to End Genes in the graph guided by 
the Confidence Gene set CG. In order to solve 
the problem, we formulate the problem as an 
M-N problem, i.e., finding the optimum paths 
from M Start Genes to N End Genes. To 
divide and conquer, we also define the sub-
problem of the M-N problem as 1-1 problem, 
which aims to find K best paths from one 
source gene to one sink gene in the graph, 
K>=1. In contrast to finding only one optimal 

path, defining K optimal paths in the 1-1 problem could provide much more depth in each single 
path, and these alternative paths could illustrate much more information incorporating all these paths 

Cell 
membrane

Cell proliferationAngiogenesis Apoptosis

EGFR
Grb2 SOS Ras RAF

PI3K

Akt

mTor

MEK

ERK

c-Myc

VEGF

CyclinD1

End node with 
biological 

process of interest

Cell membrane

Proto-oncogene

Nucleus

Path 1

Path 2

GO ID GO Definition 
GO:0001525 Angiogenesis 
GO:0006915 Apoptotic process 
GO:0008150 Biological process 
GO:0008283 Cell proliferation 
GO:0008284 Positive regulation of cell proliferation 
GO:0008285 Negative regulation of cell proliferation 
GO:0016525 Negative regulation of angiogenesis 
GO:0042127 Regulation of cell proliferation 
GO:0042981 Regulation of apoptotic process 
GO:0043065 Positive regulation of apoptotic process 
GO:0043066 Negative regulation of apoptotic process 
GO:0045765 Regulation of angiogenesis 
GO:0045766 Positive regulation of angiogenesis 
GO:0048518 Positive regulation of biological process 
GO:0048519 Negative regulation of biological process 
GO:0050789 Regulation of biological process 

Pacific Symposium on Biocomputing 2016

421



 
 

 

 

together in the M-N problem. In the 1-1 problem, comparing with the classical path finding problem 
in graph theory, which aims to find the shortest path defined by the adjacent matrix, the involvement 
of the Confidence Genes affects the path finding. The optimum paths we intend to find should be 
shortest and involve as many of Confidence Gene as possible. We could define a path with length l 
from a Start Gene path(1) to an End Gene path(l), path(i)∈V(i=1…l). In the classical shortest path 
finding problem, the objective function of the optimum path in the graph can be written as: 

                                                                                                                                                   
(1) 

which only considers the topological distance. So, the problem is to find a path having min f(path). 
By including Confidence Genes, we could redefine the objective function of the optimum path as: 

 

(2) 

From Eq. (2), the path with the shortest distance and more Confidence Genes involved should be 
our optimum path, and the problem is redefined to find a path having max f(path). Hence, the 1-1 
problem is changed to the well-known k-shortest path problem with modified objective function. In 
our case, as the KEGG pathway graph contains many cycles, and since genes in such cycles might 
be important, we do not make the acyclic restriction. We implement Eppstein’s algorithm [39] with 
a replaced objective function to solve the 1-1 problem in polynomial time, which requires only 
computational complexity of O(|E| + |V|log|V|+K). The M-N problem could be treated as an 
exhaustive combination of all possible 1-1 problems with defined K in the graph. For each gene in 
the Start Genes and each gene in the End Genes, we obtain the K optimum paths on each pair of 
Start and End Genes. In total, we have M times N of 1-1 combinations, which are M x N x K paths. 
We then map these paths to the graph, and merge them together. We use Procedure 1 to solve the 
M-N problem, as described below. In all of these paths, the importance of each path is evaluated 
using the objective function f(path). Hence, the importance of each node in the graph is calculated 
by sum of the paths going through the node. The total computational complexity of the M-N problem 
is O(MN(|E| + |V|log|V|+K)).  
 

M-N problem: 
Input: Start Genes set SG, End Gene set EG, Confidence Genes set CG, directed adjacency matrix 
A(i, j) 
Output: List of ranked paths by their decreasing objective function f(path) values 
 

Procedure 1: 
1: For all vi ∈SG do 
2:                  For all vj ∈EG do 
3:                           Compute path(i,  j) by solving 1-1 problem for (vi, vj, K)  
4:                    End for 
5:   End for 
6:     Rank paths by f(path) values  
7: Output of top specified percentage of paths as RDF Sketch Map 

 

f (path) = A(path(i), path(i +1))
i=1

l−1

∑ ,

f (path) =
confidence(path(i))

i=1

l

∑

A(path(i), path(i +1))
i=1

l−1

∑
,
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According to the definition of the problem, the choice of objective function plays critical role in 
finding optimum paths. In practical usage, Eq. (2) may have limitations in favoring path with shorter 
length and having larger values of objective function. For instance, in a hypothetical case with a 
path of length 1 having a Start Gene to be a Confidence Gene, the value of objective function f(path) 
will be maximal (i.e. 1). Such a path will be given preference over other, perhaps larger but more 
biologically important paths that can have many more Confidence Genes. To overcome this bias, 
we also define several other objective functions f(path) as Eqs. (3-5). 

 

(3) 

Comparing with Eq. (2), Eq. (3) adds a penalty term of the current path length divided by the 
maximum path length. γ is the estimated maximum path length, a predefined non-negative value.  δ 
is a non-negative predefined value to guarantee f(path)>0. In our case δ=1. 

 

(4) 

To enforce the impact of confidence genes and reduce the redundancy of the multiple usage of path 
length in Eq. (3), Eq. (4) introduces the fraction of confidence genes included in the path in the left 
term at the right side of the equation. The path length information occurs only in the right term as 
in Eq. (3). 

 

(5) 

Like Eq.(4), the left term at the right side of Eq.(5) also describes how many confidence genes are 
included in the path. α is a small non-negative predefined value, such that 0<α<1/|V|. α is defined 
to make sure the left term’s values are within the interval [0,1]. The right term at the right side of 
Eq. (5) defines the influences of path length. Logarithm is used to favor large changes in short path 
length. The beneficial property of the objective function defined by Eq. (5) is normalization of the 
objective function values to the interval [0,1]. Even in the absence of any Confidence Genes, the 
algorithm can still be operational and compute the shortest paths. 

3.  Results and Discussion 

Our preliminary experiments with RDF Sketch Maps method were performed on two sets of KEGG 
maps associated with signal transduction pathways related to leukemic cancers such as HCL and 
CML. 

f (path) =
confidence(path(i))

i=1

l

∑

A(path(i), path(i +1))
i=1

l−1

∑
−

A(path(i), path(i +1))
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∑
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+ d,
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Table 3. Reduction of 7 KEGG maps of 1,597 nodes. 
 Obj. function Eq. (3) Obj. function Eq. (4) Obj. function Eq. (5) 

Uncollapsed Collapsed Uncollapsed Collapsed Uncollapsed Collapsed 

Top 10% 74 17 167 72 182 79 

Top 30% 119 39 177 75 227 105 

 
For each set we ran RDF Sketch Maps algorithm for three versions of the objective function f(path), 
described by the Eqs. (3), (4), and (5). We then counted the number of nodes in the resulting graphs 
involving gene instances as well as in the transformed graphs where gene instances were collapsed 
and represented by their respective abstract genes. The number of nodes of RDF Sketch Maps 
representing the 7 KEGG maps’ experiment consisting of 1,597 nodes is shown in Table 3 and the 
resulting graphs of top 10% of paths are shown in Figure 2. The number of nodes of RDF Sketch 
Maps representing the extended set of 18 KEGG maps consisting of 2,873 nodes is shown in                                             
Table 4 and the resulting graphs of top 30% paths are shown in Figure 3. 

                                            

Table 4. Reduction of 18 KEGG maps of 2,873 nodes. 

 Obj. function Eq. (3) Obj. function Eq. (4) Obj. function Eq. (5) 

Uncollapsed Collapsed Uncollapsed Collapsed Uncollapsed Collapsed 

Top 10% 666 220 596 188 669 224 

Top 30% 778 298 661 220 791   283 

   
It might be readily seen from the results that the overall reduction of nodes can reach 20 folds as in 
case with 7 KEGG maps’ experiment and top 10% of collapsed gene instances using objective 
function of Eq. (3) (Table 3 and Figure 2). However, the practical utility of the RDF Sketch Maps 
is not defined by a mere reduction of the number of biological entities to be analyzed but by its 
retention of important entities that can explain subtle variations in patient-specific disease 

Figure 2. Reducing complexity of 7 integrated KEGG maps of 1,597 nodes. Top 10%. 
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mechanisms. The objective function f(path) is biased toward inclusion of Confidence Genes in the 
resulting graphs. However, the Confidence Genes, as we noted before, are disease-associated 
biomarker genes that are already known to be related to specific disease for which analysis is 
performed. To uncover new, possibly unknown mechanisms, specific to individual patient cases, 
the resulting graphs should retain other important biological entities not previously associated with 
the disease in question.  

To assess this quality of the RDF Sketch Maps method we define a set of Exploratory Genes – genes 
that are not directly implicated with disease in question but could possibly be useful in explaining 
its patient-specific disease heterogeneity (e.g. melanoma associated BRAF biomarker chosen as 
exploratory gene in an HCL case). We then estimate the inclusion of Exploratory Genes in the 
resulting maps.  

In our preliminary 
experiments with 
leukemias the 
assessment procedure is 
done in the following 
way. A set of 
Exploratory Genes EG 
is defined as a set of 
genes implicated in 
other types of cancers. 
We then compute an 
enrichment score of EG 
genes in the resulting 
RDF Sketch Maps. Figure 4. Extension of GSEA for RDF Sketch Maps. 

Figure 3. Reducing complexity of 18 integrated KEGG maps of 2,873 nodes. Top 30%. 
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To do that we extend Gene Set Enrichment Analysis (GSEA) [40]. First, we transform a ranked 
paths’ list (see Procedure 1) into a ranked gene list according to their cumulative objective function 
f(path) values (Figure 4). Then we compute a running-sum while walking down the ranked gene 
list in the fashion similar to the original GSEA, adding f(path) value when current gene G is present 
in the Exploratory Gene set EG. The maximum deviation from zero is exported as an Enrichment 
Score for a specific RDF Sketch Map and Exploratory Gene set EG. The computed GSEA plot for 
objective function defined in Eq. (5) is shown in Figure 5.The non-normalized enrichment score is 
0.728.  The resulting RDF Sketch Map retained significant number of Exploratory Genes in top 
10% of RDF Sketch Map paths.  

Another example of the 
exploratory power of RDF 
Sketch Maps is the fact 
that RDF Sketch Map of 
top 30% paths retained 
important information 
about signaling cascades 
leading to activation of 
proto-oncogene BRAF, 
which is usually 

associated with a different cancer – melanoma being the prototype. An increased number of 
successful treatments of HCL patients by BRAF-targeted drug vemurafenib were recently reported. 
The mechanisms of the involvement of BRAF in leukemias and other tumors are now being studied. 
We argue here that similar hypotheses to the BRAF drug-repurposing case could be generated by 
using our method. 

4.  Conclusions and Future Directions 

Our preliminary experiments have demonstrated that RDF Sketch Maps can be invaluable for 
hypothesis generation in precision diagnostics and therapeutics as well as for drug repurposing 
studies. However, we identified several directions for RDF Sketch Maps improvement. Other 
disease models need to be explored.  Initial pruning of RDF KB networks might help to increase 
performance of the algorithm. Many diverse types of Exploratory Genes need to be investigated, 
such as potential drug targets. And finally, new variations of objective function need to be studied.  

Figure 5. RDF Sketch Maps Exploratory Gene Set Enrichment Plot. 
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