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Current automated computational methods to assign functional labels to unstudied genes often
involve transferring annotation from orthologous or paralogous genes, however such genes can evolve
divergent functions, making such transfer inappropriate. We consider the problem of determining
when it is correct to make such an assignment between paralogs. We construct a benchmark dataset
of two types of similar paralogous pairs of genes in the well-studied model organism S. cerevisiae: one
set of pairs where single deletion mutants have very similar phenotypes (implying similar functions),
and another set of pairs where single deletion mutants have very divergent phenotypes (implying
different functions). State of the art methods for this problem will determine the evolutionary history
of the paralogs with references to multiple related species. Here, we ask a first and simpler question:
we explore to what extent any computational method with access only to data from a single species
can solve this problem.

We consider divergence data (at both the amino acid and nucleotide levels), and network data
(based on the yeast protein-protein interaction network, as captured in BioGRID), and ask if we can
extract features from these data that can distinguish between these sets of paralogous gene pairs.
We find that the best features come from measures of sequence divergence, however, simple network
measures based on degree or centrality or shortest path or diffusion state distance (DSD), or shared
neighborhood in the yeast protein-protein interaction (PPI) network also contain some signal. One
should, in general, not transfer function if sequence divergence is too high. Further improvements
in classification will need to come from more computationally expensive but much more powerful
evolutionary methods that incorporate ancestral states and measure evolutionary divergence over
multiple species based on evolutionary trees.
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1. Introduction

When new genes are sequenced and deposited into databases, a variety of manual and au-
tomated curation is involved in associating functional annotation to these genes. One of the
most common practices is to transfer functions based on some threshold of sequence similar-
ity.1 However, when this sequence similarity threshold results in automatically transferring
functional annotation between all pairs of orthologous and paralogous genes, this is deeply
problematic because there are cases when the functions of the genes have diverged.2

In this paper, we consider the question of transfer of functional annotation solely for paralo-
gous genes. It was widely believed that paralogs were more likely to acquire divergent functions
than orthologs (the so-called ortholog conjecture),3,4 but in recent years, this assumption has
been the subject of spirited debate.3–6 The present study requires neither a positive nor neg-
ative resolution of the ortholog conjecture, nor does it directly shed light on the conjecture
itself, since it focuses only on a practical problem in the field of automatic function prediction
artificially restricted to a single species: we ask whether any computational method with access
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to information based only on the single species in which the paralogs reside, can distinguish
the pairs whose functional roles are similar from those where functional roles are diverged.

We construct a benchmark dataset of two types of paralogous pairs of genes in the well-
studied model organism S. cerevisiae: one set of pairs where single deletion mutants have very
similar phenotypes (implying similar function), and another set of pairs where single deletion
mutants have very divergent phenotypes (implying different function). We are fortunate in
that there exist data in S. cerevisiae where the similarity of phenotypes of deletion mutants
has been categorized: in particular, the extensive phenotype data from Hillenmeyer et al.7

who look at the phenotypes of homozygous single gene deletion knockouts under 418 different
conditions such as depletion of certain amino acids or nutrients.

The Hillenmeyer et al data7 allows us to construct a gold-standard benchmark dataset of
paralogous yeast gene pairs, some with highly similar and some with highly dissimilar func-
tions, as follows. We consider two different datasets of paralogous gene pairs in S. cerevisiae.
The first dataset we construct from scratch by taking pairs of yeast genes with high sequence
similarity. The second dataset is derived from the study of the putative whole genome du-
plication event for S. cerevisiae by Kellis et al.8 who identify 450 paralogous gene pairs. For
each of the paralog pairs in the two datasets we compute a co-fitness score7 to represent to
what extent the two gene deletion knockouts have similar phenotypes. We choose a subset of
these paralogs with very high co-fitness score and a subset of these paralogs with very low
co-fitness score. The subset with the high co-fitness score are our same or conserved function
paralogs, and the subset with the low co-fitness score are our divergent function paralogs.
Note that Hillenmeyer et al.7 has already shown that when genes are clustered using such a
co-fitness score, they find clusters that are consistent with shared Gene Ontology annotations
for biological process and molecular functions. Gu et al.9 also uses fitness effect data to study
functional compensation among gene duplicates.

We note that a recent study of Plata and Vitkup10 also considered the genetic robustness
and functional evolution of gene duplicates in yeast, based on the same gene deletion knockout
set of Hillenmeyer et al. However, they considered a measure that is different than our co-fitness
score over the collection of gene deletion mutants. In particular, under the assumption that
paralogs with similar function could mutually compensate for each other whereas paralogs with
divergent function could not, they considered the average number of “sensitive” conditions (i.e.
conditions where a growth defect was observed with a P value cutoff of 0.01) between paralog
pairs. Paralogs with a small average number of conditions where there was a growth defect
(also alternatively, with a small average fraction of conditions where there was data, to deal
with missing data), they assumed meant that the paralogs were mutually able to compensate
for one another in the deletion mutant. We discuss how well this measure correlates with our
“similar function” co-fitness score below.

In addition to nucleotide and amino acid sequence similarity, we sought to investigate
whether simple features of the PPI network would also help distinguish same function from
divergent function paralogs. Mika and Rost11 showed that PPI interactions were better con-
served within species than across species: a sort of anti-ortholog conjecture for interlogs. Thus
it is reasonable to think that the interaction partners of a gene will be more similar for genes
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with similar functions; the problem is of course complicated by the fact that existing PPI data
is both noisy and also extremely incomplete. We consider some simple well-studied parameters
of this network, namely degree, shortest path distance, shared neighborhood, as well as our
diffusion-based DSD measure,12,13 which has been shown to be especially robust to noise and
missing data,14 to find out to what extent these are informative features for our problem.

2. Related work

The most related paper to the current one is the previously mentioned work of Plata and
Vitkup.10 In addition, there have been some previous studies that have tried to place paralo-
gous gene pairs into different functional categories based on a variety of information sources,
including the recent SIFTER2 which performed quite well in the past two Critical Assessment
of protein Functional Annotation algorithm (CAFA) experiments15 for automated function
prediction. Unlike the present study, SIFTER assumes access to information from ancestral
states, not just the species in which the paralogous gene pairs themselves reside, so they are
able to leverage the power of evolutionary information. Other work16–19 has used gene expres-
sion levels, the number of shared interacting partners, and shared Gene Ontology annotations,
in order to predict or assess which pairs are instances of conserved function, subfunctional-
ization, and neofunctionalization. In each of these papers, ground truth for the predictions
are assessed in different ways. Zeng and Hannenhalli16 compare tissue specific gene expression
levels from an ancestral gene (a single-copy gene from a closely related species) and the du-
plicated genes, where in the neofunctionalization case, for example, they assume the ancestral
gene’s expression level should be lower than that of both duplicates. In addition to this being a
somewhat controversial assumption, noise in measuring expression levels can impact their con-
clusions. Nakhleh’s group17 uses the yeast PPI network to study the problem of categorizing
different evolutionary fates of duplicate genes, but in their case, instead of using the structure
of the PPI network to assist in predicting the categories, they used the network to define their
ground truth gold standard for the categories. In particular, they define gene pairs as similar
and divergent in function based on comparing the number of known interacting partners of
the ancestral gene and the duplicated genes, a measure that will be very sensitive to noise
and incomplete data even in the relatively well-studied yeast interactome.20

Our method of determining ground truth for same and divergent functions is less noise
sensitive than either of these two other methods, but it is much more restrictive than the
methods of previous studies. First, it presents only two categories of functional similarity and
divergence. More importantly, it makes use of extensive phenotype data from single deletion
mutants: a dataset available for yeast but unavailable for most other species at this time.
Thus these other measures may be the only ones available in other species; conversely, if one
accepts that the single deletion phenotype data is the best measure of ground truth when
available for this problem, then the subject of this paper, namely, determining which other
more easily obtainable sequence and network measures best correlate with this standard,
might be the most important application to studying computational transfer of functional
annotation standards in other organisms of interest.

Finally, the most common way in the field to determine if paralogs share the same function
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is simply to look up the curated functional annotations in a database based on a human-created
ontology structure such as MIPS21 and GO22 to see if they are annotated with the same
functional labels. However, we note that in many databases, paralogs with nearly identical or
identical sequence are often annotated with the same functional labels, even if that annotation
comes from experiments with only one of the paralogs.

3. Materials and Methods

3.1. Physical interaction network

We download all the 141,327 physical interactions compiled from 7601 publications by
BioGRID, version 3.3.122 (date March 3rd, 2015), each interaction of which is experi-
mentally verified and associated with one of the following experimental evidence codes:
“Affinity Capture-Luminescence”, “Affinity Capture-MS”, “Affinity Capture-RNA”, “Affin-
ity Capture-Western”, “Biochemical Activity”, “Co-crystal Structure”, “Co-fractionation”,
“Co-localization”, “Co-purification”, “Far Western”, “FRET”, “PCA”, “Protein-peptide”,
“Protein-RNA”, “Proximity Label-MS”, “Reconstituted Complex”, “Two-hybrid”. While col-
lecting these physical interactions, we adopt the scoring scheme from Cao et al.13 and assign
real value confidence scores in (0, 1) as weights to interactions, where the scoring scheme
weights interactions as higher confidence when they are verified by experiments from multiple
publications, plus low-throughput experiments are deemed more reliable than high-throughput
experiments. Since we only consider interactions associated for genes in the list of 5091 veri-
fied ORFs (open reading frames) from the Saccharomyces Genome Database (download date:
April 11th, 2014), we exclude the interactions that are associated with non-verified ORFs.
Using the data above, we build an undirected weighted graph where a node is a protein, a
weighted edge between two nodes exists if and only if there is a physical interaction between
the two nodes and the weight on each edge is calculated as the confidence score. As a result,
we obtain a connected simple graph, involving 5043 nodes and 79594 edges, with diameter 5.

3.2. Duplicated gene pairs

We collect two sets of duplicated gene pairs in two ways. We construct the first set that we call
the “SequenceCover” or “SC” set based on sequence similarity using the following process:
We first collect the result from all against all BLAST searches over the 5043 proteins and
then build a sequence similarity graph where a node is a protein and an edge between two
proteins exists if and only if the sequence identity is at least 80% and the BLAST E-value is
below 10−5. We then find the maximal independent edge set using a naive heuristic algorithm
from the graph which satisfies two conditions: (1) if an edge (a, b) is chosen, none of a or b’s
neighbors will be chosen; (2) no more edges can be added to the set without violating (1).
Because these conditions together with the sequence similarity threshold settings are so strict,
we will generate edges for protein pairs that have very high sequence similarity and any two
of them in the set will not share a common node. Note that in order to analyze the gene pairs
using their fitness data, we exclude from the edge set the edges that are incident to nodes that
do not have fitness data available from Hillenmeyer et al.;7 as a result, we are restricted to
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the 3732 genes out of 5043 genes have fitness data available. However, we may find different
maximal independent edge sets if we choose different random seeds.

We randomly pick one of these independent maximal edge sets, which then defines our
first duplicated gene pair set. For the second set of duplicated gene pairs, we download all 450
WGD gene pairs from Kellis et al.8 The Kellis et al8’s gene pair set consists of gene pairs that
are believed to be paralogs derived from the whole genome wide duplication event, inferred
by both sequence mapping and gene locus. This data set has also been widely used by many
other groups studying function of paralogous genes.16–19,23 Again we restrict ourselves to the
subset of the WGD gene pair set where both nodes have fitness data from Hillenmeyer et al.7

Note that by restricting the SC set to gene pairs with a relatively high degree of sequence
similarity, it will miss some pairs of distant paralogs. However, since our focus is not on
the behavior of the landscape of all paralogs, but rather on the scenario where one might
computationally decide to transfer functional annotation based on sequence similarity, this is
a reasonable threshold.

3.3. Fitness profile

We download all the 1,982,156 fitness defect log ratio scores (where 188,642 scores are missing)
derived from the homozygous gene deletion experiments from Hillenmeyer et al.7 Each log ratio
score indicates the fitness defect for one of the 4769 homozygous gene deletion strains involving
4742 genes under one of the 418 different testing environments such as depletion of amino acids
or nutrients. With respect to a strain for one gene, Hillenmeyer et al.7 defines a fitness profile
as the 418-dimensional vector where each entry is the log ratio score corresponding to each
testing environment. Using the fitness profile, we then follow Hillenmeyer et al’s7 analysis and
calculate a co-fitness score for each pair of genes that captures the phenotype similarity based
on the growth defect under different testing environments. As a preprocessing step accounting
for the missing entries, we impute the missing value as follows: 1) when only one gene has
fitness values missing for a given environment, we use the same fitness value for both. 2) when
both genes have their fitness values missing for a given environment, we use the mean value
over all strains under that environment for both. We calculate the co-fitness scores between any
two genes as the cosine distance between the fitness profile vectors as defined in Hillenmeyer
et al.7 In total, we obtain co-fitness scores for 4769× (4769− 1)/2 = 11, 369, 296 unique pairs.

In order to provide statistical analysis on the co-fitness scores for our targeted duplicated
gene pairs, we define a z-score zcfs as a normalized co-fitness score: zcfs = cij−µ

σ , where cij is
the co-fitness score between gene i and gene j, µ is the mean co-fitness score over all pairs
and σ is the standard deviation over all co-fitness scores. Therefore our empirical p − value
is computed as the probability that we will see a result at the normalized co-fitness score
using the t−distribution with n− 1 degrees of freedom where n is the number of distinct pairs
of strains, namely 11,369,296. We report for each of our targeted duplicated gene pairs the
co-fitness score and their p−values, of which a higher value will indicate that the pair of genes
is less likely to share phenotype similarity and thus less likely to carry out the same biological
function. Since the problem we are trying to solve is to distinguish between paralogous gene
pairs with divergent functions and that with shared functions, we need to have two separate
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Fig. 1. Defining gene pairs with diverged functions and that with shared functions for the SC and WGD sets
using the co-fitness scores.

sets of gene pairs, one set that with high confidence includes gene pairs with divergent functions
and the other that with high confidence includes gene pairs with shared functions. We set the
thresholds {0.00, 0.50} to define the gene pairs as with divergent functions if the co-fitness
score is below 0.00 and the pairs to be with shared functions if the co-fitness score is above
0.50 as shown in Figure 1. Among the SC set where all genes in the 100 gene pairs have the
fitness data available, we define 12 gene pairs with diverged functions and 42 gene pairs with
shared functions; among the 450 WGD gene pairs where only 337 gene pairs have both genes’
fitness data available, we define 74 gene pairs with diverged functions and 45 gene pairs with
shared functions. The remaining unclassified gene pairs with co-fitness scores in the middle
range, we decline to classify as “shared” or “divergent”. Among the 54 classified gene pairs in
the SC set, 78% pairs are considered as shared function pairs, while among the 119 classified
gene pairs in the WGD set, only 38% pairs are considered as sharing function– this is not
surprising as the WGD set includes gene pairs whose duplication event was in the very far
past with a lot of evolutionary time to evolve mutations that could affect function.

Finally, we note that among the 119 pairs of paralogs that make up our WGD set, a total
of 7 pairs lie on the same yeast chromosome. Among the 54 pairs of paralogs that make up
our SC set, also a total of 7 pairs lie on the same yeast chromosome.

3.4. Sequence similarity

To measure amino acid similarity, for each of the classified gene pairs, we collect the BLAST
bit-score, BLAST alignment length and the percentage identity as the protein sequence simi-
larity measurements.

For nucleotide sequence similarity, for each of the classified gene pairs, we estimate the
Ka score, the non-synonymous substitution rate, and the Ks score, synonymous substitution
rate, as the nucleotide sequence divergence measurements.24 More specifically, we compute
the pairwise alignment for each gene pair using clustalw2,25 then we translate the protein
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alignment to a codon alignment and estimate Ka and Ks scores using the KaKs Calculator of
Zhang et al.26 with default parameters. In addition, we also compute the Ka/Ks ratio, which
is commonly considered as an indicator of selective pressure acting on a protein-coding gene.
We note that for the more distant pairs, these statistics do not give reliable indications of
expected evolutionary divergence, however, we can still calculate the values: we just need to
assume their correlation with true evolutionary divergence is weaker.

3.5. PPI network based measures

For each of the classified gene pairs, we compute a set of network based similarities (or dis-
tances): the number of shared interacting neighbors, the normalized shared neighborhood size,
the normalized degree difference, the normalized betweenness-centrality score difference, the
shortest-path distance and the diffusion state distance (as defined by Cao et al.13). In the
case of the normalized shared neighborhood size, degree difference and betweenness-centrality
score difference, we simply divide by the maximum of the quantities for each paralog to nor-
malize: i.e. to compute the normalized degree difference of paralogs A and B, we simply take
|deg(A)− deg(B)|/max(deg(A), deg(B)).

3.6. Problem formulation

For each of the measures defined above, we can rank the paralogous gene pairs according to
each measure. However, in order to appropriately set a cutoff for each measure, beyond which
we predict “conserved function” or “divergent function,” we need a training set of labeled
examples. First we report the predictive power of each measure described above using a leave-
one-out cross validation paradigm. Namely, we learn the optimal cutoffs for classifying pairs
as conserved or divergent based on all the data except the held out pair, and then classify the
held-out pair according to those thresholds, and report percentage accuracy.

Then we look at the power of some standard machine learning methods when given access
to all the features. In particular, we consider: decision trees, naive Bayes, support vector ma-
chines (with linear kernel), K-nearest-neighbor (with K=1), logistic regression, random forest,
multilayer perceptron, one rule method, and AdaBoost with decision tree, all implemented
in WEKA,27 and see their power on the task of distinguishing the same-function from the
divergent-function pairs also in leave-one-out cross validation.

4. Results

4.1. Classification using each individual similarity measurement

We assess the predictive power of each individual similarity/divergence measurement using
the leave-one-out cross validation paradigm. Specifically, per each measurement, for each par-
alogous gene pair, we learn a classification threshold based on all the other gene pairs where
we will classify pairs above (or below, as appropriate) the threshold as “similar function” and
below the threshold (or above) as “diverged function”. We then count the percent of pairs that
we classify correctly. This list is somewhat deceptive in measuring true performance because
of the unbalanced class sizes: but we find the nucleotide sequence-based scores uniformly more
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informative than the protein sequence-based scores that we measure. Moreover the Ka and Ks
scores remain good classifiers even if the thresholds are trained across the two datasets (see
Table 2): for example when the Ks threshold for best classification is trained on WGD and
tested on SC, and when the Ks threshold for best classification is trained on SC and tested
on WGD, the percent accuracies become 88.89% and 80.67%, respectively. Figure 2 presents
the scatter plot of the Ks score versus our co-fitness score.

None of the network measures perform as well as the sequence similarity measures, but
the best performing network measures were related to shared neighborhood size.

Table 1. Accuracies for individual measurements

Performance for leave-one-out-cross-validation (% Accuracy) SC WGD

Protein sequence measurements

AA percent identity 74.07% 78.99%
AA BLAST alignment length 87.04% 69.75%
AA BLAST bit-score 81.48% 63.03%
AA ClustalW length 83.33% 76.47%

Sequence measurements
Ka 90.74% 76.47%
Ks 88.89% 79.83%
Ka/Ks 79.63% 71.43%

Network measurements

degree-difference (normalized) 70.37% 61.34%
bc-difference (normalized) 72.22% 63.03%
shared neighborhood size (SNH) 75.93% 73.11%
normalized SNH 87.04% 72.27%
shortest path distance 81.48% 62.18%
DSD 74.07% 69.75%

Table 2. Cross-training performance accuracy

TrainOnWGDTestOnSC trainOnSCTestOnWGD

Ka/Ks 64.81% 57.98%

Ka 87.04% 79.83%

Ks 88.89% 80.67%

4.2. Common supervised learning methods for using all measurements

Motivated by the observation above, we place all the 13 measurements into one feature vector
for each gene pair and then try several common supervised learning methods. However, as
shown in Table 3, none of the learning algorithms obtain better performance than the best
performing individual measurement. Thus it remains an open question how to develop better
algorithms that can separate the same-function from divergent function yeast paralogs in our
set.

We also wondered whether our method of filling in missing data from the Hillenmeyer
et al.7 experiments contributed to the misclassification rates we saw. Recall that when data
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Fig. 2. Scatter plot of Ks score v.s. co-fitness scores for paralog gene pairs

Table 3. Accuracies for different learning algorithms

Performance for leave-one-out-cross-validation (% Accuracy) SC WGD

Decision Tree 79.63% 78.15%

Näıve Bayes 90.74% 73.95%

Support Vector Machine (linear kernel) 83.33% 78.15%

k-nearest-neighbor 90.74% 68.07%

Logistic regression 85.19% 75.63%

Random forest 87.04% 78.15%

Multilayer perceptron 87.04% 68.91%

One-Rule 83.33% 75.63%

AdaBoost + Decision Tree 85.19% 70.59%

was missing from a phenotype experiment, we filled in artificial fitness values: if the value
was missing in only one of the paralogs, we matched the other paralog; if it was missing for
both paralogs, we utilized the mean fitness value over all the deletion experiments for that
phenotype for both paralogs. This would make yeast paralogs that are in fact divergent be
more likely to have co-fitness scores that would result in our classification as “same function”,
if at least one had many missing values.

This did, in fact, seem to underlie some of the bad classification results for the WGD
dataset in particular. For example, for the SC dataset, among the 48/54 pairs for which the
Ks feature results in the correct classification, the average missing ratio is .41, whereas among
the 6/54 pairs where the Ks feature results in incorrect classification, the average missing
ratio is .37, whereas, for the WGD dataset, among the 95/119 examples where the Ks feature
is correct, the average missing ratio is .12, whereas for the 24/119 examples where the Ks

feature is wrong, the average missing ratio is .45. Removing all examples with missing data
will result in too small a benchmark set; it thus remains an open question to find better ways
to deal with missing values in construction of the benchmark datasets.
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5. Some example paralog pairs

We looked in more detail at some of the pairs we classified as paralogs with divergent function.
Because S. cerevisiae is so well-studied, we thought that some of the paralog pairs that we
classified as divergent function, might have support from functional annotations in the SGD
database, or in the literature. We found the situation quite heterogeneous– for some of the
pairs we found support for functional divergence in the literature, for others, there seems to be
no annotation indicating that anyone has noted any functional divergence in the two paralogs.

For example, GPP1 and GPP2 are an example of a paralog pair where some functional
divergence is known. In particular, GPP1 and GPP2 seem to behave very similarly under
aerobic conditions but very differently under anerobic conditions.28 Another paralog pair where
functional divergence is documented is OAF1 and PIP2. Both genes are involved in fatty acid
induction of the peroxisomal β-oxidation machinery involving regulation by the oleate response
element, and form a heterodimer. But OAF1 binds fatty acids and PIP2 does not.29 GDH1
and GDH3 are both involved in glutamate biosynthesis, but their regulation indicates that
they are utilized under different growth conditions: expression of GDH3 is induced by ethanol
and repressed by glucose, whereas GDH1 expression is high in either carbon source.30 TPK1
and TPK3, together with a third gene, TPK2, are functionally redundant for cell viability, but
they have differing protein targets, and also recognize and affect the transcription of different
sets of gene targets.31 In each of these cases, manual inspection implies that functional labels,
at least at the top levels of MIPS or GO, would correctly transfer between paralogs, despite
these pairs having documented different roles within these broad functional categories.

On the other hand, the majority of the paralog pairs which we mark as “functionally
divergent” have no indication in the literature or SGD database that any functional diver-
gence between the paralogs is yet documented. ALK1 and ALK2 is a typical case. Despite a
low co-fitness score, this gene pair is currently annotated in a fashion very similar to “same
function” pairs: the summary description of ALK2 reads: Protein kinase; along with its para-

log, ALK1, required for proper spindle positioning and nuclear segregation following mitotic arrest,

proper organization of cell polarity factors in mitosis, proper localization of formins and polarity

factors, and survival in cells that activate spindle assembly checkpoint; phosphorylated in response to

DNA damage; ALK2 has a paralog, ALK1, that arose from the whole genome duplication; similar to

mammalian haspins. The description for ALK1 is identical except with the names interchanged.

6. Discussion

The problem of predicting when functional annotation terms should transfer between sequence
homologs and paralogs is a difficult but urgent one in the field of automatic prediction of pro-
tein function. Here, we have done a very simple study in a single, well-studied species without
leveraging the wealth of evolutionary information that is available in sequences. Clearly any
reasonable solution will have to leverage this evolutionary information in order to make more
accurate predictions.

One clue as to the difficulty of the task might come from the alternative definitions of
Plata and Vitkup.10 We sought to measure how our co-fitness score correlated with the genetic
robustness measures of Plata and Vitkup:10 for each duplicate pair, following their paper, the
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Fig. 3. Scatter plot of average number of sensitive conditions v.s. co-fitness scores for paralog gene pairs.

number of “sensitive” conditions is measured for each deletion mutant, where a “sensitive”
condition is defined as a growth defect with p < 0.01. We report the number of sensitive
conditions, averaged over the two paralogs in the pair, and plot its correlation with our co-
fitness score. We find a negative correlation of -0.2046 (P < 1.49E−04) (WGD pairs) and a
negative correlation of -0.5484 (P < 2.74E−09) (SC pairs). A scatter plot appears in Figure 3.

We notice that in both datasets, there are small but distinct set of pairs with both a very
low number of average sensitive conditions, and a very high co-fitness score. For these pairs,
it is hard to tell if the paralogs are similar function, or if no phenotype is frequently observed
because there are third or fourth copy duplicate genes that can buffer both deletion mutants.
Thus full understanding of both our co-fitness and their sensitive condition scores may require
the consideration of higher order duplicates.

The SC and WGD benchmark datasets are available at bcb.cs.tufts.edu/paralogs
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