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Mouse brain transcriptomic studies are important in the understanding of the structural heterogeneity in the brain. 
However, it is not well understood how cell types in the mouse brain relate to human brain cell types on a cellular 
level. We propose that it is possible with single cell granularity to find concordant genes between mouse and human 
and that these genes can be used to separate cell types across species. We show that a set of concordant genes can be 
algorithmically derived from a combination of human and mouse single cell sequencing data. Using this gene set, we 
show that similar cell types shared between mouse and human cluster together. Furthermore we find that previously 
unclassified human cells can be mapped to the glial/vascular cell type by integrating mouse cell type expression 
profiles. 

                                                             
* This work is partially supported by RGP0053 of the Human Frontier Science Program 
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1.  Introduction 

Mouse models are an important part of biomedical research and are routinely used as a stepping-
stone towards treatments for humans – gleaning knowledge from high-throughput low risk 
experiments. Translating this knowledge requires a firm understanding of similarities between 
these two species [1-2]. Homologous genes exist between these species and these genes often play 
similar roles in the brain [3]. However, the biochemical pathways within each species have subtle 
to extreme differences leading to subsets of homologous genes without exact mechanistic overlap 
in the brain [4]. To address the issue of identifying functionally similar homologous genes we 
propose the concept of concordant genes defined as gene homologs that mechanistically behave 
similarly between two species [5]. Specifically, we hypothesize that concordant genes between 
mouse and human exist and that those genes can be algorithmically derived from combined 
mouse-human data. We also hypothesize that based off of these concordant genes we can 
determine cell type matching between mouse and human. Specifically in this study we focus on 
the comparison of brain cell gene expression profiles between mouse and human to identify 
concordant gene expression patterns in the brain tissue associated with different cell types taking 
advantages of recent development in single cell transcriptomics for brain cells. We hope that the 
single cell granularity of these comparisons will augment the tissue level comparisons of the 
human and mouse brain transcriptome [6]. 
 
RNA sequencing (RNA-Seq) in the past has been used to study brain structure, development, and 
disease [7]. Recently RNA-Seq has become more granular in the form of single cell RNA 
sequencing (scRNA-Seq) which is an important tool in the study of tissue heterogeneity due to its 
unique ability to characterize transcriptomes at the cellular level [8]. Recent advances in single 
cell transcriptomics in the brain have provided researchers with an influx of new data spanning 
different brain regions, diseases, and species [9]. Specifically, the Linnarsson group amassed a 
large single cell dataset from the mouse cortex and hippocampus which was clustered into 
multiple cell types based expression profiles [10]. Subsequent to the mouse single cell 
transcriptomic study, the Zhang group created a large human brain scRNA-Seq dataset from 
postmortem brain tissue and clustered the cells into unique cell types based on expression profiles 
[11]. Because of the availability of both datasets we believe that in-depth comparative analyses of 
these two datasets is fundamental to our understanding of neuronal cell types, the distribution of 
these cell types, and the evolution of brain anatomy in these two species. Furthermore a clear 
understanding of concordant genes in both human and mouse provides valuable information on 
how mouse studies can be translated to human research. We provide a methodology and gene set 
that can be used for these comparative studies and hopefully for future translational research. We 
demonstrate the method by not only identifying concordant cell types between mouse and human 
brains with the same set of concordant feature genes, but also matching un-categorized cells in the 
human brain to a salient cell type based on mouse brain information. 
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2.  Methods 

2.1.  Data normalization and cleaning 

The mouse scRNA-Seq unique molecular identifier (UMI) counts [12] were downloaded from the 
Data section of the Linnarsson lab website (http://linnarssonlab.org/) and human scRNA-Seq 
transcripts per million (TPM) data was downloaded from the Links section of the SCAP-T website 
(scap-t.org). Since these data files contain various numbers of genes with different order, we 
preprocessed the files by scanning matching gene symbols between files then sorting the gene 
symbols so that the orders were consistent. While this process may not be able to identify all 
homologous genes, it provides a large list for us to extract concordant genes. The shared gene 
symbols in the human and mouse datasets were retained for further study (Figure 1). Within the 
human dataset there were genes that were originally left out of analysis by the original authors due 
to low expression, resulting in some cells with low number of expressed genes. Because of this, 
such human cells as well as human cells without annotation in the metadata were also removed 
from further analysis, resulting in 3,086 human cells each containing 13,355 genes. The mouse 
dataset resulted in 3,005 cells each containing expression values from 13,355 genes. Both human 
and mouse data then were transformed into comparable units. Each dataset was log2 transformed 
and the expression values converted into the within cell z-scores. 
 
 

 
Figure 1. Workflow of data normalization (i) and three step feature selection method (1-3). 

2.2.  Feature selection 

We developed a three-step approach to find concordant genes between mouse and human based on 
gene expression profiles (Figure 1). This feature selection was performed to identify genes that 
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were informative at separating cell type but uninformative at separating mouse from human cells. 
Genes that meet this criterion would be more useful at identifying similar cell types across species.  
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Figure 2. Number of retained features as a function of p-value cutoffs. 
 
First, the human and mouse data matrices were concatenated such that the first 3086 columns 
consisted of human cells and the last 3005 columns consisted of mouse cells. For each gene in the 
data matrix, a one-way ANOVA was performed grouped by species to detect genes with 
significantly different expression level between human and mouse. Only genes with p-values 
larger than 0.1 were kept. This was done to remove genes that would separate cells by species. 
Because we are removing the significant genes from our gene set in Step 1, a greater threshold 
makes our criterion for retaining genes more strict than using a standard significance level. 
Second, the human and mouse matrices were separated and in each separate matrix a one-way 
ANOVA was performed on the remaining genes grouped by cell type label and using a threshold 
p-value of 0.01 – any genes found with a p-value of 0.01 or less were retained. The 0.01 threshold 
was used to provide stricter criteria for retained genes that were informative about cell type. The 
0.1 and 0.01 p-value cutoffs used in the feature selection method are near the inflection point of 
retained features as a function of cutoff p-value (Figure 2). Third, the intersection of retained 
genes from human and mouse were retained in the final dataset such that genes that existed in both 
human and mouse gene sets after Step 2 were retained in the final combined mouse-human gene 
set. 
To compare the differences between cell types and in concordance with previous single cell 
studies [13], principal component analysis (PCA) was applied to the human and mouse datasets 
prior to feature selection. The first 2 principal components were then plotted to visually show the 
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differences in cell types and species (Figure 3). After feature selection, principal cross-species 
cell-type clusters can be viewed in the PCA of the first two principal components colored by 
species (left) and cell type (right) (Figure 4). 

2.3.  Functional annotation of retained concordant genes 

When selecting features, it is important to study the relation of these feature/gene sets to the 
functional, anatomic, and phenotypic relationships that are being selected for. If there are 
functional relationships related to a phenotype, then the feature selection method targeting that 
phenotype is likely more robust. The retained genes from the feature selection step were used as 
input for the DAVID functional annotation software [13-14]. The functional annotation clusters 
were reviewed for over represented terms that can be attributed to neural pathways and cell types. 
We display the three most highly enriched terms within the three most highly enriched clusters 
from the DAVID functional annotation clustering (Table 1). 

2.4.  Clustering cells using Gaussian mixture models 

Gaussian mixture models are effective in clustering microarray expression profiles [16]. We apply 
Gaussian mixed models (GMMs) in the mouse and human scRNA-Seq data to cluster the cells 
into principal cell types and to compare the relative proportions of human and mouse cells within 
each cluster. To perform the GMM we used the first two principal components, the same 
components used in the PCA plot of cell types. Four GMMs were fit to the data with two, three, 
four and five components respectively. The cells were clustered into three major cluster using the 
three component GMM fit in concordance with the three major cell types present in the human 
dataset. The remaining GMM fits were used in comparison against the three-component GMM fit. 
 
Principal cell types of the mouse and human labels were compared in the PCA space to determine 
the most similar cell types between both species. To quantitate the mouse-human overlap the 
mouse and human data were split into three groups from the three major cell types in the original 
publications. Human cells were split into 3 major groups from their original labels [11]. All “Int” 
labeled cells were considered Interneuron. All “Ex” labeled cells were considered pyramidal. All 
“NoN” (No Nomenclature) labeled cells from a C1 Fluidigm chip with reduced mapping rates 
were without a biologically derived label but were considered a singular group. Similarly, mouse 
cells were also split based on cell type label mapping to GMM clusters [10]. All cells labeled 
Interneurons were still considered Interneurons. All S1 Pyramidal and CA1 Pyramidal were 
considered Pyramidal. All Oligodendrocytes, Microglia, Endothelial, Astrocytes, Ependymal and 
Mural were considered Glial/Vascular cells. All human and mouse cells that were contained 
within each GMM cluster were compared by the their original cell type labels to the labels of the 
GMM cluster. For each cluster a fisher exact test was conducted to calculate the odds ratios and 
confidence intervals between published cell type labels and GMM predicted cell types. 
 
The VennX package in MATLAB was used to convert the cell type labels into Venn Diagrams to 
show overlap with both three component GMM predicted cell types and original mouse/human 
cell type labels from their original publications. 
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3.  Results 

3.1.  Feature selection 

Prior to feature selection the human and mouse cells created two clusters separated by species. The 
mouse cells formed sub-clusters within the major mouse clustering of cells. The human cells 
formed one main cluster with little differentiation (Figure 3). 

 
Figure 3. PCA of all human and mouse cells after normalization/cleaning. Left is colored by species, mouse (yellow) 
and human (red). Right is colored by cell type (36 cell types). 
 
After feature selection, 358 concordant genes were retained, which are informative in terms of 
distinguishing cell types and uninformative in terms of separating species. As a result, human and 
mouse cells were no longer completely separate from each other. The mouse cell types still have 
more variability than the human cell types in the PCA space but cells from both species are 
contained within the same major clusters of cells (Figure 4). 
 

 
Figure 4. PCA of all human and mouse cells after normalization/cleaning and feature selection. Left is colored by 
species, mouse (yellow) and human (red). Right is colored by cell type (36 cell types). 
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3.2.  Functional annotation of concordant genes 

Functional annotation analysis of the concordant gene set revealed GO terms related to binding, 
ion transport and neural cells. The third most highly enriched annotation cluster was that of the 
GO terms axon, cell projection and neuron projection with an enrichment score of 1.57 (Table 1). 
Cluster 7 (not displayed) also contained many neuron related ontology terms. 
 
Table 1. Functional annotation clustering using DAVID. Shown below are the three most highly enriched clusters and 
three most highly enriched terms within each cluster.  
Category Term PValue Fold Enrichment Bonferroni 

Annotation Cluster 1 Enrichment Score: 1.670  

SP_PIR_KEYWORDS atp-binding 0.008 1.573 0.939 

SP_PIR_KEYWORDS nucleotide-binding 0.010 1.478 0.969 

GOTERM_MF_FAT GO:0032559~adenyl ribonucleotide binding 0.012 1.463 0.997 

Annotation Cluster 2 Enrichment Score: 1.594  

GOTERM_BP_FAT GO:0006826~iron ion transport 0.002 8.868 0.979 

SP_PIR_KEYWORDS iron transport 0.007 10.076 0.919 

GOTERM_BP_FAT GO:0000041~transition metal ion transport 0.012 4.347 1.000 

Annotation Cluster 3 Enrichment Score: 1.568  

GOTERM_CC_FAT GO:0030424~axon 0.010 3.027 0.946 

GOTERM_CC_FAT GO:0042995~cell projection 0.036 1.611 1.000 

GOTERM_CC_FAT GO:0043005~neuron projection 0.056 1.877 1.000 

3.3.  Clustering cells using gaussian mixture models 

Gaussian mixture models showed major patterns within the cell profiles. Interneurons from both 
human and mouse (red and yellow respectively)(Figure 5) clustered in the same GMM. Whereas 
human pyramidal/projection neurons clustered (green) clustered with the remaining 2 cell types in 
mouse (S1 pyramidal, CA1 pyramidal). It is also worth consideration that the non-biologically 
labeled “NoN” human cell types in purple are mapped to a third cluster that begins to appear at 3 
GMM components that contains the remaining 6 mouse cell types (mural, endothelial, microglia, 
ependymal, astrocytes, oligodendrocytes) (Figure 5). 
 
The GMM clustering using three components (BIC = -9.08×104) split the cells into three groups 
that can be roughly defined as Interneurons (red), Pyramidal cells (green) and Glial/Vascular cell 
types (blue) (Figure 6: Top left). After identifying these three groups and comparing the mouse 
and human labels the GMM labels it was found that these three groups, Interneurons, Pryamidal 
cells, and Glial/Vascular cells are very closely mapped between both mouse and human. Also the 
“NoN” cell type cluster found in the human scRNA-Seq paper were clearly and uniquely clustered 
with the mouse Glial/Vascular cells (Figure 6 bottom right) with no significant difference between 
Glial/Vascular mouse cells and “NoN” human cells on PC 1 p-value = 0.41. 
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Figure 5. Gaussian mixture model clustering of human and mouse cell types where top left: two components, top 
right: three components, bottom left: four components and bottom right: five components. 
 
The cell types predicted by the three component GMM were representative of the original cell 
type labels. The interneuron GMM had an odds ratio of 2.00×103 and confidence interval of 
(1.16×103,3.46×103), the pyramidal GMM had an odds ratio of 9.93×102 and a confidence interval 
of (6.84×102, 1.44×103), and the glial/vascular GMM had an odds ratio of 1.15×102 and a 
confidence interval of (91.34, 1.44×102) (Figure 6). The GMM cluster for glial/vascular cells had 
a higher false negative rate than the other GMM clusters due to incorrect clustering of 
glial/vascular labeled mouse cells. 
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Figure 6. Comparing GMM clustering of human and mouse cells versus reported cell types. A) SVD components 
colored by GMM predicted clusters red (interneurons), green (pyramidal) and blue (mural/vascular). B-D are Venn 
diagrams comparing reported human and mouse cell types with GMM predicted cell types. The following superscripts 
represent if the point was included + or excluded – from species and GMM cluster. The colors from left to right 
consist of Human+-GMM- (blue), Human+-GMM+ (green), Human--Mouse--GMM+ (blue), Null set (yellow), Mouse+-
GMM+ (orange), Mouse+-GMM- (green). B) GMM Interneurons cluster (red in panel A) with mouse and human 
interneuron labeled cells. C) GMM Pyramidal (green in panel A) with mouse and human pyramidal labeled cells 
(“CA1, S1” and “Ex” respectively). D) GMM Glial/Vascular (blue in panel A) with mouse glial/vascular labeled cells 
and human “NoN” labeled cells. 

4.  Discussion 

4.1.  Insights 

In this study we found that through feature selection it is possible to find informative gene sets that 
can be used across species. This feature selection of “concordant gene sets” is an important 
application of single cell data that has multiple downstream applications in relation to cross 
species modeling, especially in translation of preclinical studies. It is important to note that the 
data used to find the concordant genes cannot be paired by sample which makes correlation 
matrices impossible to generate. Without correlation matrices to discover concordant genes, the 
gene sets must be derived from ulterior methods such as minimizing redundant gene sets through 
machine learning [17] or grouped statistical tests like ANOVA. 
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4.1.1.  Scalability 

The feature selection method is based on ANOVA which is calculated across multiple groups. 
Unlike t-tests, this facet of ANOVA makes the feature selection method scalable in relation to 
number of species and cell types being studied. Because of this, finding concordant gene sets 
between many organisms and cell types simultaneously is possible and should be pursued. 

4.1.2.  Functional relevance 

The annotated concordant gene set had a clear relationship to the brain through gene ontology 
which is an important control due to the tissue origin [18]. It is important to note that gene sets 
with no functional overlap to the phenotype being selected for could potentially be selecting for 
unknown associated phenotypes. The functional ontology analyses of this concordant gene set 
shows that there is selection of genes with direct relation to neuronal phenotypes. Because of the 
enrichment of phenotypically similar ontology terms, a case can be made that seemingly 
phenotypically dissimilar ontology terms are more likely to have an unknown but direct 
relationship to our concordant gene set. 

4.1.3.  Evolutionary potential 

Concordant gene sets also contain unique evolutionary information. Gene homologs which 
express differently between two species (Discordant genes) potentially do not share exactly the 
same functionality. Discordant genes may have the same down-stream effects but the biological 
mechanism may have changed [6] such that the same quantity of mRNA is not produced across 
species. Concordant genes are informative because they could represent pathways that are 
relatively conserved between through the evolution of species. 

4.1.4.  Medical and research potential 

In the medical realm concordant gene sets could be of use in translational research. Much of 
research is conducted in model organisms and using concordant gene sets gives the user an ability 
to distinguish between transcriptional changes that likely cause similar phenotypes or likely do not 
between the model and human. Though we do not immediately condone the clinical use of 
concordant genes at the present these concordant gene sets could help to quickly and efficiently 
integrate cross-species knowledge to improve translational research. 

4.1.5.  Future work 

The scalability of cell type and species number should be tested upon the arrival of comparable 
data in other species. Aside from the direct feature selection of concordant genes multiple 
comparisons could be carried out to create hierarchical concordant gene sets for higher granularity. 
Another option to improve granularity would be to test models that include interaction variables 
between species, brain location, and cell type. With the generation of concordant gene sets cross-
species deconvolution could become more accurate than with more heuristic approaches. Also 
concordant gene sets can be used in classification of cell types across species. With further 
refinement of the procedure human cell types could be classified using mouse expression profiles 
which would require refinement of feature selection and of classification algorithms and validation 
of such methods on another dataset. 
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4.1.6.  Importance of single cell granularity 

Single cell technologies in the form of fluorescence-activated cell sorting (FACS) and flow 
cytometry have been effectively used to model cell heterogeneity [19] before the advent of single 
cell transcriptomics. Through FACS sorting [20] and flow cytometry [21] deriving the 
transcriptome of a single cell is much higher throughput than original methodologies that required 
manual isolation of single cells [22]. Without the single cell granularity of these techniques, it 
would be impossible to study concordant genes effectively at the cellular level and acquire the 
sample sizes large enough to properly study concordant gene sets, especially when many species 
and phenotypes are involved. Only through these recent advances in scRNA-Seq is it possible to 
properly glean enough information about cell types to model across species. 

4.2.  Limitations 

There are some limitations to this study, which included the use of zscores as the measurement of 
expression. This measurement makes the assumption that the data has a normal distribution. 
Because of the nature of scRNA-Seq data the distribution is negative binomial. It was important to 
use zscores because other normalization techniques would not be effective. Quantile normalization 
introduced artificats in the data that made it unrepresentative. Conversion of UMI counts to TPM 
alos posed a problem because TPM is based on aligned reads opposed to tag counts from UMIs. 
Aside from normalization, the diversity of cell types in each dataset also potentially introduced 
bias. The human dataset consisted of fewer major cell types than the mouse dataset. The mouse 
dataset contained more glial cell types while the human dataset had higher granularity within 
interneurons and pyramidal cells. 

5.  Conclusion 

We were able to find a concordant gene set between mouse and human brain cells that had direct 
functional ontology relationships to the brain. The concordant gene set allowed us to reduce the 
distance between cell types of different species allowing separation of cell type regardless of each 
cell’s species. Through the study of these aggregate cell types the biologically unresolved human 
cell type “NoN” (No Nomenclature) was able to be categorized as Glial/Vascular. Furthermore we 
show that our methodology is scalable to multiple species and cell types to find concordant gene 
sets between multiple species and these concordant genes sets are important stepping stones 
toward evolutionary and translational research goals. 
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