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The utility of multi-cohort two-class meta-analysis to identify robust differentially expressed gene

signatures has been well established. However, many biomedical applications, such as gene signatures

of disease progression, require one-class analysis. Here we describe an R package, MetaCorrelator,

that can identify a reproducible transcriptional signature that is correlated with a continuous disease

phenotype across multiple datasets. We successfully applied this framework to extract a pattern of

gene expression that can predict lung function in patients with chronic obstructive pulmonary disease

(COPD) in both peripheral blood mononuclear cells (PBMCs) and tissue. Our results point to a

disregulation in the oxidation state of the lungs of patients with COPD, as well as underscore the

classically recognized inflammatory state that underlies this disease.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive, debilitating lung disease that
affects one in 20 people across the globe.1 It is characterized by declining lung function, as
measured by Forced Expiratory Volume (FEV) or Global Initiative for Chronic Obstructive
Lung Disease (GOLD) stage.2,3 FEV is the amount of air that a COPD patient can expel in one
second, and decreases as the disease progresses. GOLD scoring is the result of a global effort
to reach an agreement on spirometric thresholds for COPD diagnosis and is considered the
gold standard of COPD severity.2,3 An increasing GOLD stage reflects declining lung function,
where GOLD stage of 0 represents at-risk patients, while a stage of 4 identifies patients with
predicted FEV <30%.3 The rate of COPD progression varies widely from patient to patient,
and there are no current treatment options that effectively halt the disease.4 There is an urgent,
critical unmet need to identify pathways that are robustly and reproducibly associated with
COPD severity in order to identify novel targets for therapy.

We have previously described a multi-cohort analysis framework for integrated analysis
of heterogeneous datasets, and repeatedly demonstrated its successful application across di-
verse set of diseases including organ transplant, cancer, and infectious diseases for identifying
diagnostic, prognostic, and therapeutic signatures.5–10 At its core, our multi-cohort analy-
sis framework uses random effects inverse variance meta-analysis to identify differentially
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expressed genes between two groups of samples (e.g., cases vs controls). However, despite its
demonstrated utility, its application is limited to two-class comparisons. One of the drawbacks
of this framework is that it does not take into account the stage of disease of the patients.11,12

Further, many biomedical applications, such as those looking to identify signatures of disease
progression, require one-class analysis. Such analyses are indispensible for identifying higher
risk patients for more personalized care, and to discover pathways associated with disease
progression,12 which in turn could improve our understanding of the disease.

We have implemented an R package, MetaCorrelator, that addresses this challenge and
extends the utility of our multi-cohort analysis framework to analyze continuous phenotypes
across multiple datasets (Figure 1). MetaCorrelator follows principles of our framework to
identify robust signatures for continuous phenotypes. It provides flexibility to use with different
continuous phenotypes and widely heterogenous data.

2. Methods

2.1. Integration of correlation coefficients across independent datasets

MetaCorrelator starts by computing a correlation coefficient between a designated continuous
phenotype and every gene measured in a given discovery dataset. The correlation coefficients
can be computed as Pearson’s r, Spearman’s ρ, or Kendall’s τ . Because Spearman’s ρ is defined
as the Pearson’s r calculated on the ranks,13 it can used directly as r for the rest of the analysis.
Kendall’s τ need to be converted into r14 according to

r = sin(π ∗ 0.5 ∗ τ) (1)

Then, each correlation coefficient r is converted into a Fisher’s Z effect size, defined as:

Z =
1

2
ln

1 + r

1− r
(2)

with variance, Vz, and standard error, SEz, defined as

Vz =
1

n− 3
(3)

and

SEz =
√
Vz (4)

where n is the total number of samples used for correlation. Next, we combine Fisher’s z
for every gene across all discovery datasets into a summary effect size using a random-effects
inverse variance model,15 which assumes that the true effect sizes across each study are not
identical but rather sampled from a distribution of true effects. The summary effect size is
calculated as

Zs =

∑n
i WiZi∑n
i Wi

(5)

and the corresponding summary standard error was computed as
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SEs =

√
1∑n
i Wi

(6)

where zi is the Fisher’s Z for a given dataset i and Wi is a weight defined as

Wi =
1

Vi + T 2
(7)

where Vi is the variance of the Fisher’s Z effect size for a given gene within dataset i and T 2

indicates the in-between-dataset variation. Finally, every gene is assigned a p-value calculated
using a two-tailed test defined as

p = 2[1− 2(φ(| Zs

SEs
|)] (8)

The p-value is then corrected for multiple hypothesis testing using Benjamini-Hochberg.
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Fig. 1. Schematic Overview of MetaCorrelator. Each dataset is correlated with a continuous phenotype to compute correlation
coefficients (example: Pearson’s correlation coefficients). These coefficents are then combined into a summary Fisher’s Z effect

size. A significance threshold is determined to produce the final list of differentially expressed genes.

2.2. Datasets

We identified publicly available gene expression datasets from the NCBI GEO that provided
lung function in COPD patients using GOLD stage or FEV. In total, we identified six datasets
with 642 samples. All six had expression data that was pre-normalized. We used three datasets
for discovery and three as validation (Tables 1 and 2). The datasets were highly heterogeneous;
five were from lung biopsies and two from PBMCs, spanning collection over seven years and
three countries. All probes were matched to Gene IDs based on the platform information
available on GEO. Three of the datasets did not have a control group as all of the samples
originated from patients with COPD.
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2.3. Selection and validation of COPD signature

We used FDR < 5% to identify genes significantly correlated with COPD severity as defined
by GOLD stage or FEV. We performed Gene Ontology enrichment analysis using iPath-
wayGuide (http://www.advaitabio.com). All other statistical analyses were performed using
the statistical programming language R.

2.4. Availability

Source code is available at http://khatrilab.stanford.edu/metacorrelator. The Khatri lab will
provide full results upon request.

Table 1. Datasets Used in Discovery of Lung Function Signa-

ture

GEO ID Tissue Phenotype Cases

GSE47460 Lung Biopsy GOLD Stage and FEV 75

GSE69818 Lung Biopsy GOLD Stage 70

GSE76705 PBMCs FEV 229

3 Datasets 2 Tissues 324

Table 2. Datasets Used to Validate Lung Function

Signature

GEO ID Tissue Phenotype Cases

GSE42057 PBMCs FEV 136
GSE38974 Lung Biopsy GOLD Stage 32

GSE11906 Lung Biopsy GOLD Stage 150

3 Datasets 2 Tissues 318

3. Results

3.1. Functional Analysis of Differentially Expressed Genes Identified by
MetaCorrelator

We identified six independent datasets of 692 lung biopsies or PBMC samples from COPD
patients that also provided either GOLD stage or FEV for each patient. The samples included
in these datasets came from patients across all stages of COPD and covered all the lobes in the
lung. We selected three datasets composed of 374 PBMC samples or lung biopsies as discovery
datasets (Table 1), and the rest as validation datasets (Table 2). We choose three discovery
datasets such that they increased heterogeneity in the discovery. Two datasets were from lung
tissue, and had annotation describing the GOLD stage of the samples. Of the two lung tissue
datasets, GSE698181 had COPD patients with and without emphysema. Although GSE47460
had both GOLD stage and FEV annotation, only GOLD stage was used for discovery of the
gene signature.

MetaCorrelator identified 108 genes (FDR < 25%) that are consistently correlated with
COPD severity as measured by GOLD stage or FEV in the three discovery datasets. We
performed Gene Ontology enrichment analysis (Figure 2) to explore the functions of the

Pacific Symposium on Biocomputing 2017

269



identified genes. Our enrichment analysis highlighted the role of oxidative stress in COPD
progression. We identified the disulfide oxidoreductase activity pathway as a highly significant
in COPD progression. This is consistent with previous literature that has identified oxidative
stress as a sign of COPD progression.16
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Fig. 2. Functional categories enriched in genes identified by MetaCorrelator

3.2. Identification and Analysis of a 25-Gene Signature Correlates with
COPD Progression

It is difficult to translate 108-gene signature into a clinical practice. Therefore, to reduce the
number of genes, we increased the stringency of our selection criteria by reducing the FDR
to 5e-5. We identified 25 genes (7 over-expressed, 18 under-expressed) that are significantly
correlated with the COPD severity in the discovery datasets. Enrichment analysis using Gene
Ontology of the 25 genes identified matrix remodeling and inflammation as pathways asso-
ciated with the progression of COPD. Specifically, a subset of the 25 genes, including UDP-
Glucuronate Decarboxylase 1 (UXS1 ) and Tetraspanin 13 (TSPAN13 ) are underexpressed
genes known to be involved in ECM production and cell adhesion. Importantly, a double
tetraspanin knockout mouse (Tetraspanin 28 and 29) has been shown to develop a COPD-like
phenotype, underscoring the importance of this protein family to healthy lung function.18 In-
flammatory mediators such as TLR2 and FKBP5 are over-expressed in the gene signature,
reflecting the inflammatory state of COPD. Previous literature has shown that TLR2 is over-
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expressed on Lung CD8+ and CD4+ T-cells as well as CD8+NK T-cells, demonstrating that
our results reflect validated biology.19 Two differentially expressed genes, TNIK and PTPRK
are involved in both ECM and inflammation. Taken together, our results align with previ-
ously published literature, which describes COPD as a disregulation of the immune system
and subsequent breakdown of the ECM.20–22

Next, we defined Lung Function Score (LFS) for a sample as the geometric mean of the
expression value of the 25 genes as previously described.5–7 We observed strong significant
correlation between our signature score and FEV in GSE76705 (r = -0.50; p-value = 5.81e-14)
(Figure 3). In datasets where GOLD staging was available, we observed a significant score
increase in concordance with increasing GOLD stage (JT test; GSE47460: p-value = 9.4e-10;
GSE69818: p-value = 5e-4). Interestingly, although only the GOLD stages in GSE47460 were
used in the discovery, the LFS strongly correlated with FEV score in GSE47460 (r = -0.57;
p-value = 6.23e-4).

3.3. Validation of the Gene Signature in Three Independent Cohorts

We validated the 25-gene LFS in three independent cohorts of 318 lung biopsy and PBMC
samples from COPD patients (Table 2, Figure 4). Across all three validation cohorts, the LFS
was significantly correlated with lung function in the COPD patients (summary effect size
= 0.46, p = 3.98e-3). In individual datasets, we observed a significant negative correlation
between FEV and LFS in GSE42057 (r = -0.41; p-value = 5.03e-7) and a positive significant
correlation with GOLD stages in our remaining two independent cohorts (GSE38974; p-value
= 5.539e-6; GSE11906; p-value = 0.02514).

3.4. Differential Expression in Current vs Never Smokers

To explore the broader implications of our results, we examined whether any of our 25 iden-
tified genes were also significantly expressed in smokers compared to healthy controls. We
downloaded seven publicly available datasets from NCBI GEO for a total of 200 samples
from smokers and 158 from never smokers (GSE11952, GSE17913, GSE19667, GSE3320,
GSE5056, GSE5057, GSE5059). Using the 25-gene LFS derived from MetaCorrelator, two
genes, TSPAN13 and NR3C2, were found to be differentially expressed in smokers compared
to non-smokers with p value < 0.01. The tetraspanin family has been shown to be critical to
normal lung function, and NR3C2 has been implicated in lung morphogenesis.23 These results
demonstrate the flexibilty of MetaCorrelator to highlight patterns of biological relevance in
conjunction with two-class analysis.

4. Discussion

Availability of large amounts of heterogeneous molecular data has necessitated the develop-
ment of new frameworks to identify patterns and extract new information from these data. We
have repeatedly shown the effectiveness of our multi-cohort analysis framework for diagnostic
and therapeutic applications across a broad spectrum of human diseases.5–10 However, this
framework is limited to analysis of case-control experiments, and is not suitable for analysis
of one-class quantitative phenotypes. Here, we extend our previously established framework
to include analysis of gene expression with quantitative quantitative.

Correlation analysis has been a powerful tool for decades, but at this time there does
not exist a single framework that can take a collection of datasets and different quantitative
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Fig. 3. Lung Function Scores in training cohorts: (A) Violin plots of Lung Function Scores (LFS) in patients distinguished by

progressively increasing GOLD stage from GSE47460. (B) Same as (A) but for dataset GSE69818. (C) Correlation plot between
LFS and FEV scores in individual patients from GSE47460. (D) Same as (C) but for dataset GSE76705.

phenotypes as input and produce a correlated gene expression signature. There are currently
available packages in R, such as metacor, that can compute Fisher’s Z values from correlation
coefficients; however, MetaCorrelator is uniquely positioned to take multiple datasets as input
and correlate gene expression with heterogeneous phenotypes. This is especially relevant in
the realm of human disease; methods that are able to integrate different but related organ
function phenotypes, such as FEV and GOLD stage, would allow for more powerful analysis
that could identify new markers for disease progression.

Our method enables the identification of a gene signature across tissues, thus highlight-
ing the globally relevant differentially expressed genes. By integrating PBMC and lung tissue
data, we were able to distill out a gene signature that represents the global differential gene ex-
pression of COPD progression. These results emphasize the advantage of integrating multiple
tissues. The genes in our signature suggest the importance of inflammation (TLR2, FKBP5 )
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Fig. 4. Lung Function Scores in validation cohorts: (A) Violin plots of Lung Function Scores (LFS) in patients distinguished

by progressively increasing GOLD stage from GSE38974. (B) Same as (A) but for dataset GSE11906. (C) Correlation plot
between LFS and FEV scores in individual patients from GSE42057. (D) Forest plot representing Fisher’s Z values for each of the

validation datasets. Squares indicate individual dataset Fisher’s Z, with square-size proportional to sample size and horizontal
lines indicating individual standard errors (GSE42507 was reverted in sign because of the inverse relationship between GOLD
score and FEV). Rhombus indicates summary Fisher’s Z with width corresponding to summary standard error.

as well as cell adhesion (TSPAN13, UXS1 ), which demonstrates that our framework is able
to recapitulate known biology. By integrating the MetaCorrelator framework with established
two-class analysis, we can select genes of particular interest. For instance, after identifying
differentially expressed genes between smokers and non-smokers, we could further focus on
two genes that MetaCorrelator had identified as correlating with COPD progression. Meta-
Correlator can be used to correlate any continuous disease phenotype with disease progression.
For example, one could identify a gene signature that correlates with prostate specific antigen,
a marker of prostate cancer progression. Alternatively, one could correlate a gene signature
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with ejection fraction of the heart. In summary, MetaCorrelator provides a framework that
can correlate whole genome transcriptome across multiple independent datasets with a quan-
titative phenotype, which in turn can be further explored in case-control studies using the
multi-cohort analysis framework.

5. Conclusion

In this study we developed a meta-analysis framework that can integrate multiple gene ex-
pression datasets to identify gene signatures that correlate with quantitative phenotypes. Im-
portantly, this method uses the inherent heterogeneity present in multiple cohorts to identify
consistently correlated genes and is applicable to datasets that have a single class of sample.
Our method can be used in conjunction with other methods that separate samples by class, for
example, in order to further differentiate a single group of patients. We applied our method to
COPD patients and extracted a 25-gene signature that correlated with lung function in three
datasets (two in tissue, one in PBMCs). We then successfully validated our gene signature on
three independent datasets. We demonstrated the ability to identify a robust signature with
heterogeneous data and phenotypes by correlating the tissue datasets with increasing GOLD
stage, and the PBMC dataset with decreasing FEV. Our results suggest an increasing immune
response in later stage COPD patients, which has been noted by others, as well as point to a
under-appreciated role in sulfur-related oxidative stress. In summary, MetaCorrelator provides
a powerful framework to extract a gene signature that is linked to disease progression.
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